SCIRP Mobile Website

Why Us? >>

  • - Open Access
  • - Peer-reviewed
  • - Rapid publication
  • - Lifetime hosting
  • - Free indexing service
  • - Free promotion service
  • - More citations
  • - Search engine friendly

Free SCIRP Newsletters>>

Add your e-mail address to receive free newsletters from SCIRP.


Contact Us >>

WhatsApp  +86 18163351462(WhatsApp)
Paper Publishing WeChat
Book Publishing WeChat

Article citations


Sharma, K.R. (2011) Fundamentals of Engineering Economics. Cognella Academic Publishers, San Diego.

has been cited by the following article:

  • TITLE: Improvement of Biodiesel Product Yield during Simple Consecutive-Competitive Reactions

    AUTHORS: Kal Renganathan Sharma

    KEYWORDS: Biodiesel, Transesterification Reactions, Consecutive-Competitive Reactions, Jatropha Curcas Oil, Genomics, Centrifugal Separation, Optimization, Profitability, Method of Laplace Transforms

    JOURNAL NAME: Journal of Encapsulation and Adsorption Sciences, Vol.5 No.4, December 17, 2015

    ABSTRACT: Biodiesel is a renewable fuel that can be made from vegetable oil and waste restaurant greases by catalysed transesterification reactions. Over 5 billion gallons of biodiesel was produced in 2010. The European Union and United States are seeing the sigmoidal portion of the growth curve in biodiesel production. Economic analysis such as profitability and annualized worth (AW) of a biodiesel plant in Taiwan is presented. With the revenue from glycerine byproduct recovery and with lower raw material costs, biodiesel may be profitable especially during days of higher gasoline prices. Multiple reactions of the consecutive-competive type may be used to model the methonolysis of trigylcerides. The reaction rate constant ratios and residence time in the reactor are important parameters in determining higher selectivity of FAME, fatty acid methyl ester product yield over glycerol by-product production. Illustrations of higher FAME yield, higher glycerol yield and cross-over from FAME to glycerol are shown for some values of reaction rate constant ratios and reaction scheme from triglycerides to diglycerides, monoglycerides and glycerol along with formation of FAME in each step by addition of methanol and catalyst is shown. Product distribution curves are presented in Figures 2-5 for different values or reaction rate constant ratios.