SCIRP Mobile Website

Why Us? >>

  • - Open Access
  • - Peer-reviewed
  • - Rapid publication
  • - Lifetime hosting
  • - Free indexing service
  • - Free promotion service
  • - More citations
  • - Search engine friendly

Free SCIRP Newsletters>>

Add your e-mail address to receive free newsletters from SCIRP.

 

Contact Us >>

WhatsApp  +86 18163351462(WhatsApp)
   
Paper Publishing WeChat
Book Publishing WeChat
(or Email:book@scirp.org)

Article citations

More>>

Jensen, J. (1999) Fate and Effects of Linear Alkylbenzene Sulphonates (LAS) in the Terrestrial Environment. Science of the Total Environment, 226, 93-111.
http://dx.doi.org/10.1016/S0048-9697(98)00395-7

has been cited by the following article:

  • TITLE: Biodegradation of Linear Alkylbenzene Sulfonate (LAS) by Immobilized Pseudomonas sp.

    AUTHORS: Aju K. Asok, Pallickalvaliyaveettil Aboobaker Fathima, Manakulam Shaike Jisha

    KEYWORDS: Anionic Surfactant, Calcium Alginate, Pseudomonas nitroreducens, Polyvinyl Alcohol

    JOURNAL NAME: Advances in Chemical Engineering and Science, Vol.5 No.4, October 12, 2015

    ABSTRACT: Anionic surfactants are the most widely exploited chemical surfactants, which are being incorporated into majority of detergents and cleaning products used for household and industrial applications. Linear alkylbenzene sulfonates (LAS) is one of the major xenobiotic anionic surfactants. Biodegradation is an effective process to reduce the amount of surfactants released in the environment. In this study soil samples were collected from detergent contaminated sites to isolate linear alkylbenzene sulphonate degrading bacteria using mineral salt media supplemented with LAS as sole source of carbon. From the twenty isolates selected for the study, two of them (L9 and L12) have exhibited excellent ability to degrade LAS. The LAS degradation ability was determined by using MBAS assay and HPLC. The selected isolates were immobilized in alginate and polyvinyl alcohol to check the suitability of the isolates in onsite LAS removal. The percentage of degradation of LAS by alginate entrapped L9 was 85.155 ± 1.2 and that of PVA immobilized cells was 58.535 ± 2.9. Whereas L12 PVA entrapped were good compared to alginate. L12 exhibited 62.977 ± 1.3 percentage of degradation of LAS when immobilized in PVA and 61.07 ± 0.6 percentage in alginate entrapped condition. In comparison between the organisms alginate entrapped Pseudomonas nitroreducens (L9) was found to be superior to Pseudomonas aeruginosa (L12) in immobilised condition. It was found that immobilized cells performed superiorly than free cells. In particular, calcium alginate immobilised cells were more efficient in LAS removal than polyvinyl alcohol immobilised cells.