SCIRP Mobile Website
Paper Submission

Why Us? >>

  • - Open Access
  • - Peer-reviewed
  • - Rapid publication
  • - Lifetime hosting
  • - Free indexing service
  • - Free promotion service
  • - More citations
  • - Search engine friendly

Free SCIRP Newsletters>>

Add your e-mail address to receive free newsletters from SCIRP.

 

Contact Us >>

Article citations

More>>

da Silva, A.M.L., Cassula, A.M., Billinton, R. and Manso, L.A.F. (2001) Optimum Load Shedding Strategies in Distribution Systems. Proceedings of the IEEE Power Tech Conference, Porto, 10-13 September 2001.

has been cited by the following article:

  • TITLE: Multi Objective Load Shedding Framework

    AUTHORS: Atieh Delavari, Milad Nemati, Mohammad H. Moradi

    KEYWORDS: Objective, Load Shedding, Pareto Front, Fuzzy

    JOURNAL NAME: Smart Grid and Renewable Energy, Vol.6 No.8, August 31, 2015

    ABSTRACT: In this paper, a multi-objective load shedding framework on the power system is presented. The frame work is useable in any kind of smart power systems; the word of smart here refers to the availability of data transmission infrastructure (like PLC or power line carrier) in the system, in order to carry the system data to the load shedding framework. This is an open framework that means it can optimize load shedding problem by considering unlimited number of objective functions, in other word, the number of objectives can be as much as the operator decides, finally in the end of frame work just one matrix breaker state is chosen in a way of having the most compatibility with the operator ideas which are determined by objectives importance percentage which are one input groups of the framework. A two-stage methodology is used for the optimal load shedding problem. In the first stage, Discrete Multi-objective Particle Swarm Optimization method is used to find a collection of the best states of load shedding (Pareto front). In the second stage, the fuzzy logic is used as a Pareto front inference engine. Fuzzy selection algorithm (FSA) is designed in a way that it can infer according to the operator’s opinion without the expert interference that means rule base is formed automatically by fuzzy algorithm. FSA is consisted of two parts. Membership functions and rules base are formed automatically in the first part, the former in accordance with the costs of Pareto front particles and the latter in correspondence with importance percentage of objectives which are entered to FSA by operator; in other word, decision matrix is formed automatically in the algorithm according to the cost of Pareto front particles and importance percentage of objectives. In the Second part, Mamdani inference engine scrutinizes the Pareto front particles by the use of formed membership functions and rules base to know if they are compatible to operator’s opinion or not. Getting this approach, cost functions of each particle are considered as the inputs of (FSA), then a fuzzy combined fitness (FCF) is allocated to each Pareto front particle by Mamdani inference engine. In other word, FCF shows how much the particle is compatible to the operator’s opinion. Finding minimum FCF, final inference is done. The proposed method is tested on 30-bus, and 118-bus IEEE systems by considering two or three objective functions and the results are presented.