SCIRP Mobile Website
Paper Submission

Why Us? >>

  • - Open Access
  • - Peer-reviewed
  • - Rapid publication
  • - Lifetime hosting
  • - Free indexing service
  • - Free promotion service
  • - More citations
  • - Search engine friendly

Free SCIRP Newsletters>>

Add your e-mail address to receive free newsletters from SCIRP.


Contact Us >>

WhatsApp  +86 18163351462(WhatsApp)
Paper Publishing WeChat
Book Publishing WeChat

Article citations


Javot, H., Penmetsa, R.V., Terzaghi, N., Cook, D.R. and Harrison, M.J. (2007) A Medicago truncatula Phosphate Transporter Indispensable for the Arbuscular Mycorrhizal Symbiosis. Proceedings of the National Academy of Sciences of the United States of America, 104, 1720-1725.

has been cited by the following article:

  • TITLE: A Rice GRAS Gene Has an Impact on the Success of Arbuscular Mycorrhizal Colonization

    AUTHORS: Valentina Fiorilli, Veronica Volpe, Silvia Zanini, Marta Vallino, Simona Abbà, Paola Bonfante

    KEYWORDS: Rice, Arbuscular Mycorrhizal Symbiosis, GRAS Proteins, Transcription Factors

    JOURNAL NAME: American Journal of Plant Sciences, Vol.6 No.12, August 7, 2015

    ABSTRACT: Arbuscular mycorrhiza(AM) is one of the most spread symbiosis established between 80% of land plants and soil fungi belonging to the Glomeromycota. Molecular determinants involved in the formation of arbuscular mycorrhizas are still poorly understood. It has been demonstrated that in both Legumes and rice plants, several GRAS transcription factors are directly involved in both mycorrhizal signaling and colonization, namely NSP1, NSP2, RAM1, DELLA, DELLA-interacting protein (DIP1) and RAD1. Here, we focused on a rice GRAS protein, named Arbuscular Mycorrhizal 18 (OsAM18), previously identified as specifically expressed in rice mycorrhizal roots, and considered as an AM-specific gene. Phylogenetic analysis revealed that OsAM18 had a peculiar amino acid sequence, which clustered with putative SCARECROW proteins, even though it formed a separate branch. Allelic osma18 mutant displayed a drastic reduction in mycorrhizal colonization in-tensity and in arbuscule abundance, as mirrored by OsPT11 expression level. Non-mycorrhizal osam18 plants displayed a comparable plant development and root apparatus compared with the WT, while mycorrhizal osam18 mutants showed a reduction of plant biomass compared with mycorrhizal WT plants. The results suggest that OsAM18is a rice protein, which is likely to have an impact not only on the colonization process and AM functionality, but also on the systemic effects of the AM symbiosis.