SCIRP Mobile Website

Why Us? >>

  • - Open Access
  • - Peer-reviewed
  • - Rapid publication
  • - Lifetime hosting
  • - Free indexing service
  • - Free promotion service
  • - More citations
  • - Search engine friendly

Free SCIRP Newsletters>>

Add your e-mail address to receive free newsletters from SCIRP.


Contact Us >>

WhatsApp  +86 18163351462(WhatsApp)
Paper Publishing WeChat
Book Publishing WeChat

Article citations


Park, S.J., McSweeney, K. and Lowery, B. (2001) Identification of the Spatial Distribution of Soils Using a Process-Based Terrain Characterization. Geoderma, 103, 249-272.

has been cited by the following article:

  • TITLE: Spatial Variation of Soil Depth and Shallow Slope Failures in Sangun Mountains, Fukuoka Prefecture, Japan

    AUTHORS: Hendra Pachri, Yasuhiro Mitani, Hiro Ikemi, Wenxiao Jiang

    KEYWORDS: GIS, Sangun Mountains, Soil Depth, Slope Failures

    JOURNAL NAME: International Journal of Geosciences, Vol.6 No.8, August 7, 2015

    ABSTRACT: Shallow slope failure is often induced by rainfall infiltration in a soil mantle overlying a less permeable bedrock. Soil depth is an important input parameter in slope stability analysis. This paper provides the spatial variation of soil depth and the occurrence of slope failure in Sangun mountains area. The spatial pattern of soil depth was simulated by proses based model using airborne laser survey data (LiDAR data) and Geographic Information System (GIS) function. As a function for soil production, we use in the study area a numerical model developed by Dietrichet al.(1995) to predict the local spatial variation of the depth of soil. The soil depth data measured at 20 locations that represent morphological variability are used as a sample data set to test the model results. Furthermore, the soil depth variations are compared to the slope failure distribution in the whole area. Slope failure locations in the study area are identified from interpretation of aerial photographs and field surveys. Fifty-five of slope failures are considered for slope failure hazard analysis. Therefore, the slope failures occur more frequently at soil depth intervals in the ranged from 1.01 m to 1.5 m.