SCIRP Mobile Website
Paper Submission

Why Us? >>

  • - Open Access
  • - Peer-reviewed
  • - Rapid publication
  • - Lifetime hosting
  • - Free indexing service
  • - Free promotion service
  • - More citations
  • - Search engine friendly

Free SCIRP Newsletters>>

Add your e-mail address to receive free newsletters from SCIRP.

 

Contact Us >>

WhatsApp  +86 18163351462(WhatsApp)
   
Paper Publishing WeChat
Book Publishing WeChat
(or Email:book@scirp.org)

Article citations

More>>

Roustaei, A. and Bagherzadeh, H. (2014) Experimental Investigation of SiO2 Nanoparticles on Enhanced Oil Recovery of Carbonate Reservoirs. Journal of Petroleum Exploration and Production Technology, 5, 27-33.

has been cited by the following article:

  • TITLE: Investigating the Effect of Various Nanomaterials on the Wettability of Sandstone Reservoir

    AUTHORS: El-Abbas Moustafa, Ahmed Noah, Karam Beshay, Lamees Sultan, Mina Essam, Omar Nouh

    KEYWORDS: Nanomaterials, Wettability Alteration, Oil Recovery Mechanism

    JOURNAL NAME: World Journal of Engineering and Technology, Vol.3 No.3, August 4, 2015

    ABSTRACT: Wettability is the ability of a fluid to stick to a solid surface in the presence of other immiscible fluids. Wettability alteration is crucial as it affects the amount of oil recovered from a given reservoir. The majority of enhanced oil recovery mechanisms purposefully alter the wettability of the reservoir rock from oil-wet to water-wet; to increase the amount of oil recovered from it. This study investigates the effect of various nanomaterials on the wettability, and particularly the brine phase contact angle, of a sand stone reservoir. The nanomaterials used are Magnesium/Aluminum Layered Double Hydroxide, Silica/Zirconia, and a combination of 80.0% Magnesium/Aluminum Layered Double Hydroxide (Mg/Al-LDH) and 20.0% Silica/Zirconia (Zi/Zr). The results suggest that a concentration of 4.0 g/L of Magnesium/Aluminum Layered Double Hydroxide (Mg/Al-LDH) decreases the brine phase contact angle, in the presence of oil, from 66° to 60° in 0.033 minute as opposed to Silica/Zirconia which increases the brine phase contact angle to 68° in the same time interval. The combination of both nanoparticles results in a decrease of 1.0° in the brine phase contact angle indicating that Silica/Zirconia (Zi/Zr) lowers the efficiency of Magnesium/Aluminum Layered Double Hydroxide’s adsorption to the sandstone surface.