SCIRP Mobile Website
Paper Submission

Why Us? >>

  • - Open Access
  • - Peer-reviewed
  • - Rapid publication
  • - Lifetime hosting
  • - Free indexing service
  • - Free promotion service
  • - More citations
  • - Search engine friendly

Free SCIRP Newsletters>>

Add your e-mail address to receive free newsletters from SCIRP.

 

Contact Us >>

WhatsApp  +86 18163351462(WhatsApp)
   
Paper Publishing WeChat
Book Publishing WeChat
(or Email:book@scirp.org)

Article citations

More>>

Rai, K.N., Bidinger, F.R., Hussain, K. and Rao, A.S. (1998) Registration of ICMP 94001 Pearl Millet Germplasm. Crop Science, 38, 1411.
http://dx.doi.org/10.2135/cropsci1998.0011183X003800050065x

has been cited by the following article:

  • TITLE: Patterns of Molecular Diversity in Current and Previously Developed Hybrid Parents of Pearl Millet [Pennisetum glaucum (L.) R. Br.]

    AUTHORS: Shashi Kumar Gupta, Thirunavukkarasu Nepolean, S. Mukesh Sankar, Abhishek Rathore, Roma Rani Das, Kedar Nath Rai, Charles Thomas Hash

    KEYWORDS: Pearl Millet, Simple Sequence Repeat, Hybrid Parents, Heterotic Pool, Genetic Diversity

    JOURNAL NAME: American Journal of Plant Sciences, Vol.6 No.11, July 15, 2015

    ABSTRACT: ICRISAT’s pearl millet (Pennisetum glaucum (L.) R. Br.) breeding program at Patancheru, India, has developed genetically diverse hybrid parents since 1980s. The present study investigated genetic diversity pattern between two groups of parents in this program, bred till 2004 and developed during 2004-2010. Combined analysis of 379 hybrid parents (current 166 parents and 213 previously developed hybrid parents) carried out using a set of highly polymorphic 28 SSRs detected 12.7 alleles per locus. An average of 8.5 and 8.7 SSR alleles per locus were found in previously developed and current parents, respectively, indicating marginal improvement in the levels of genetic diversity of hybrid parents in this program. Distance matrix differentiated these current and previously developed hybrid parents into 2 separate clusters, indicating infusion of new genetic variability over time as reflected by development of more genotype-specific alleles. Also, the seed and restorer parents were found clearly separated from each other in both the sets with few crossovers, indicating existence of two diverse and broad-based pools in hybrid parents of pearl millet. Restorer parents (R-lines) were found more diverse than seed parents (B-lines), as higher average gene diversity was detected among R-lines (0.70) than B-lines (0.56), though variation between B- and R-lines was found reduced in newly developed lines to 9.22% from 16.98% in previously developed lines. Results suggested that newly developed lines were as much divergent when compared with previously developed lines, indicating that current ICRISAT pearl millet breeding program was moving towards development of diverse new hybrid parental lines. The study suggested use of trait-specific donors in B- and R-lines separately to maintain sufficient genetic distance between seed and restorer breeding lines. It was pointed out to cross parents having higher genetic distance within the seed (B-lines) and restorer (R-lines) breeding programs to derive diverse and productive hybrid parental lines in future.