SCIRP Mobile Website
Paper Submission

Why Us? >>

  • - Open Access
  • - Peer-reviewed
  • - Rapid publication
  • - Lifetime hosting
  • - Free indexing service
  • - Free promotion service
  • - More citations
  • - Search engine friendly

Free SCIRP Newsletters>>

Add your e-mail address to receive free newsletters from SCIRP.


Contact Us >>

Article citations


Besson, V., Rebeille, F., Neuburger, M., Douce, R. and Cossins, E.A. (1993) Effects of Tetrahydro Folatepolyglutamates on the Kinetic Parameters of Serine Hydroxymethyltransferase and Glycine Decarboxylase from Pea Leaf Mito-chondria. The Biochemical Journal, 292, 425-430.

has been cited by the following article:

  • TITLE: Discovery of Key Molecular Pathways of C1 Metabolism and Formaldehyde Detoxification in Maize through a Systematic Bioinformatics Literature Review

    AUTHORS: P. Deonikar, S. Kothandaram, M. Mohan, Cori Kollin, Phoebe Konecky, Rachael Olovyanniko, Zachary Zamore, Brian Carey, V. A. S. Ayyadurai

    KEYWORDS: Systematic Review, Bioinformatics, Molecular Pathway, C1 Metabolism, Formaldehyde, Detoxification, Maize, Methionine Biosynthesis, Methylation Cycle, Folate-Mediated Pathways

    JOURNAL NAME: Agricultural Sciences, Vol.6 No.5, May 29, 2015

    ABSTRACT: Computational systems biology approaches provide insights to understand complex molecular phenomena in living systems. Such understanding demands the need to systematically interrogate and review existing literature to refine and distil key molecular pathways. This paper explores a methodological process to identify key molecular pathways from systematic bioinformatics literature review. This process is used to identify molecular pathways for a ubiquitous molecular process in all plant biological systems: C1 metabolism and formaldehyde detoxification, specific to maize. The C1 metabolism is essential for all organisms to provide one-carbon units for methylation and other types of modifications, as well as for nucleic acid, amino acid, and other biomolecule syntheses. Formaldehyde is a toxic one-carbon molecule which is produced endogenously and found in the environment, and whose detoxification is an important part of C1 metabolism. This systematic review involves a five-part process: 1) framing of the research question; 2) literature collection based on a parallel search strategy; 3) relevant study selection based on search refinement; 4) molecular pathway identification; and 5) integration of key molecular pathway mechanisms to yield a well-defined set molecular systems associated with a particular biochemical function. Findings from this systematic review produced three main molecular systems: a) methionine biosynthesis; b) the methylation cycle; and c) formaldehyde detoxification. Specific insights from the resulting molecular pathways indicate that normal C1 metabolism involves the transfer of a carbon group from serine through a folate-mediated pathway to methionine, and eventually the methylation of a biomolecule. In photosynthetic tissues, C1 metabolism often proceeds in reverse towards serine biosynthesis and formate oxidation. C1 metabolism, in maize, appears to be present in the developing embryo and endosperm indicating that these cells are vulnerable to perturbations in formaldehyde detoxification. These insights demonstrate the value of a systematic bioinformatics literature review process from a broad spectrum of domain literature to specific and relevant molecular pathways.