SCIRP Mobile Website
Paper Submission

Why Us? >>

  • - Open Access
  • - Peer-reviewed
  • - Rapid publication
  • - Lifetime hosting
  • - Free indexing service
  • - Free promotion service
  • - More citations
  • - Search engine friendly

Free SCIRP Newsletters>>

Add your e-mail address to receive free newsletters from SCIRP.

 

Contact Us >>

WhatsApp  +86 18163351462(WhatsApp)
   
Paper Publishing WeChat
Book Publishing WeChat
(or Email:book@scirp.org)

Article citations

More>>

Clayton, R.W., Heaton, T., Chandy, M., Krause, A., Kohler, M., Bunn, J., Guy, R., Olson, M., Faulkner, M., Cheng, M., Strand, L., Chandy, R., Obenshain, D., Liu, A. and Aivazis, M. (2012) Community Seismic Network. Annals of Geophysics, 54.

has been cited by the following article:

  • TITLE: Seismic Data Collection with Shakebox and Analysis Using MapReduce

    AUTHORS: Bin Tang, Jianchao Han, Mohsen Beheshti, Garrett Poppe, Liv Nguekap, Rashid Siddiqui

    KEYWORDS: Seismic Data, Shakebox, Big Data, Hadoop MapReduce

    JOURNAL NAME: Journal of Computer and Communications, Vol.3 No.5, May 25, 2015

    ABSTRACT: In this paper we study a seismic sensing platform using Shakebox, a low-noise and low-power 24- bit wireless accelerometer sensor. The advances of wireless sensor offer the potential to monitor earthquake in California at unprecedented spatial and temporal scales. We are exploring the possibility of incorporating Shakebox into California Seismic Network (CSN), a new earthquake monitoring system based on a dense array of low-cost acceleration seismic sensors. Compared to the Phidget/Sheevaplug sensors currently used in CSN, the Shakebox sensors have several advantages. However, Shakebox sensor collects 4K Bytes of seismic data per second, giving around 0.4G Bytes of data in a single day. Therefore how to process such large amount of seismic data becomes a new challenge. We adopt Hadoop/MapReduce, a popular software framework for processing vast amounts of data in-parallel on large clusters of commodity hardware. In this research, the test bed-generated seismic data generation will be reported, the map and reduce function design will be presented, the application of MapReduce on the testbed-generated data will be illustrated, and the result will be analyzed.