SCIRP Mobile Website
Paper Submission

Why Us? >>

  • - Open Access
  • - Peer-reviewed
  • - Rapid publication
  • - Lifetime hosting
  • - Free indexing service
  • - Free promotion service
  • - More citations
  • - Search engine friendly

Free SCIRP Newsletters>>

Add your e-mail address to receive free newsletters from SCIRP.

 

Contact Us >>

Article citations

More>>

Kondratyev, V.N. (1979) Rates of Elementary Chemical Processes in Gases on the Works of the Institute of Chemical Physics Akad. Nauk SSSR. In: Kondratyev, V.N., Ed., Problems of Chemical Kinetics. To the Eightieth Anniversary of Academician N.N. Semenov, Nauka, Moscow, 13-21.

has been cited by the following article:

  • TITLE: Vibrational Nonequilibrium in the Hydrogen-Oxygen Reaction at Different Temperatures

    AUTHORS: Oleg V. Skrebkov

    KEYWORDS: Gas Phase, Hydrogen-Oxygen Reaction, Chemical Kinetics, Vibrational Relaxation, Electronically Excited States

    JOURNAL NAME: Journal of Modern Physics, Vol.5 No.16, October 30, 2014

    ABSTRACT: A theoretical model of chemical and vibrational kinetics of hydrogen oxidation is suggested based on the consistent account for the vibrational nonequilibrium of HO2 radical which forms in result of bimolecular recombination H + O2 = HO2 in the vibrationally excited state. The chain branching H + O2 = O + OH and inhibiting H + O2 + M = HO2 + M formal reactions are considered (in the terms of elementary processes) as a general multi-channel process of forming, intramolecular energy redistribution between modes, relaxation, and monomolecular decay of the comparatively long-lived vibrationally excited HO2 radical which is capable to react and exchange of energy with another components of the mixture. The model takes into account the vibrational nonequilibrium for the starting (primary) H2 and O2 molecules, as well as the most important molecular intermediates HO2, OH, O2(1D), and the main reaction product H2O. The calculated results are compared with the shock tube experimental data for strongly diluted H2-O2 mixtures at 1000 T p 2 radical acts as a key intermediate in the principally important chain branching process. For T 2 radical is the essence of this process.