SCIRP Mobile Website
Paper Submission

Why Us? >>

  • - Open Access
  • - Peer-reviewed
  • - Rapid publication
  • - Lifetime hosting
  • - Free indexing service
  • - Free promotion service
  • - More citations
  • - Search engine friendly

Free SCIRP Newsletters>>

Add your e-mail address to receive free newsletters from SCIRP.

 

Contact Us >>

WhatsApp  +86 18163351462(WhatsApp)
   
Paper Publishing WeChat
Book Publishing WeChat
(or Email:book@scirp.org)

Article citations

More>>

Monbet, V., Ailliot, P. and Prevosto, M. (2007) Survey of Stochastic Models for Wind and Sea State Time Series. Probabilistic Engineering Mechanics, 22, 113-126.
http://dx.doi.org/10.1016/j.probengmech.2006.08.003

has been cited by the following article:

  • TITLE: Probabilistic Model for Wind Speed Variability Encountered by a Vessel

    AUTHORS: Igor Rychlik, Wengang Mao

    KEYWORDS: Wind Speeds, Wind-Energy, Spatio-Temporal Model, Gaussian Fields

    JOURNAL NAME: Natural Resources, Vol.5 No.13, October 29, 2014

    ABSTRACT: As a result of social awareness of air emission due to the use of fossil fuels, the utilization of the natural wind power resources becomes an important option to avoid the dependence on fossil resources in industrial activities. For example, the maritime industry, which is responsible for more than 90% of the world trade transport, has already started to look for solutions to use wind power as auxiliary propulsion for ships. The practical installation of the wind facilities often requires large amount of investment, while uncertainties for the corresponding energy gains are large. Therefore a reliable model to describe the variability of wind speeds is needed to estimate the expected available wind power, coefficient of the variation of the power and other statistics of interest, e.g. expected length of the wind conditions favorable for the wind-energy harvesting. In this paper, wind speeds are modeled by means of a spatio-temporal transformed Gaussian field. Its dependence structure is localized by introduction of time and space dependent parameters in the field. The model has the advantage of having a relatively small number of parameters. These parameters have natural physical interpretation and are statistically fitted to represent variability of observed wind speeds in ERA Interim reanalysis data set.