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Abstract 
The emergence of COVID-19 has caused extensive harm and is recognized as 
a significant threat to human life worldwide. Currently, the application of 
nanomedicine techniques in pre-clinical studies related to various infections, 
such as respiratory viruses, herpes viruses, human papillomavirus, and HIV, 
has demonstrated success. Nanoparticles, due to their specific attributes, have 
garnered considerable attention in combating COVID-19. Strategies employ-
ing nanomaterials for COVID-19 prevention encompass the development of 
rapid, precise diagnostic tools, the creation of effective disinfectants, the deli-
very of mRNA vaccines to the biological system, and the administration of an-
tiretroviral medications within the body. This article focuses on recent re-
search regarding the effectiveness of nano platforms as antiviral measures against 
coronaviruses. It delves into the molecular characteristics of coronaviruses 
and the affected target systems, highlighting challenges and limitations in com-
bating SARS-CoV-2. Additionally, it explores potential nanotechnology-based 
treatments to confront current and future variants of coronaviruses associated 
with COVID-19 infections.  
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1. Introduction 

The COVID-19 pandemic continues to affect millions worldwide with no signs 
of abating. Nanotechnology presents potential strategies involving antigen dis-
tribution, adjuvants, and mimicking viral structures. Among these, an mRNA 
vaccine delivered via lipid nanoparticles marks the initial vaccine candidate in 
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clinical trials. A robust vaccination platform should expedite development, stream-
line production, and widespread distribution, aiming to quell current and future 
pandemics [1] [2] [3]. Nanomaterials, boasting unique physical and chemical 
properties like nano-scale dimensions, extensive surface area, and adaptable 
surface alterations, have been crafted to combat viral, bacterial, and fungal ail-
ments. These attributes aid in optimizing drug delivery, enhancing drug solubil-
ity, modulating pharmacokinetics, facilitating cell membrane penetration, and 
elevating drug bioavailability against diverse viruses, fostering optimism for 
COVID-19 diagnostic and therapeutic tools [4] [5]. 

Nanoparticles, nano-based vaccines, and Smart Medicines offer multifaceted 
roles in preventing coronaviral infections. However, challenges and limitations 
in this technology prompt a comprehensive exploration. This review systemati-
cally outlines recent nanoparticle advancements in the realm of antiviral thera-
peutic options in light of the new coronavirus mutations [6] [7]. Presently, the 
US FDA has approved treatments for COVID-19, but no vaccines as of yet. 
Therefore, there’s a pressing need to develop comprehensive therapies, and the 
utilization of nanotechnology appears promising [8]. 

Nanotechnology-based vaccines or monoclonal antibodies have been pro-
posed as viable approaches for swift diagnosis and effective treatment. Enhanc-
ing treatment efficacy involves innovative nanotherapeutic components guided 
by specific techniques: designing polymeric nanoparticles with rapid mucosal 
penetration, crafting biodegradable and non-toxic lung-targeted nanoparticles to 
minimize pulmonary toxicity, and surface modifications to mitigate adverse ef-
fects while ensuring efficient treatment by coupling PEG with compounds. 

1.1. Properties of NPs for COVID-19 Treatment 

In recent times, the rapid advancement of nanomaterials has significantly trans-
formed various scientific domains such as aeronautics, military applications, and 
medicine. This progress has led to improved drug availability, precise delivery at 
cellular and intracellular levels, and minimized adverse effects, thereby enhanc-
ing therapeutic effectiveness through nanotechnology. Nanomedicine can also 
address the advantageous medication resistance observed in viral therapy. 

Nanoparticles (NPs) exhibit distinct physicochemical traits that demonstrate 
virucidal activity. Their small size, extensive surface area, targeted action, and 
responsive properties make them efficient antiviral agents. Studies have shown 
inactivity of viruses like H1N1, H5N1 influenza [9], poliovirus [10], NIPAH, res-
piratory syncytial virus, herpes simplex, human papillomavirus, Dengue, and len-
tivirus when exposed to NPs. Nanomaterials like AuNPs, through infrared light 
emissions, can bind to and disrupt the structure of coronaviruses, effectively 
killing the virus. Beyond their direct antiviral effects, NPs are seen as potential 
carriers for antiviral medications, especially since specific antiviral therapies for 
many viruses remain limited [11] [12]. 

Specifically targeting viral genes like SiRNA, microRNA, and shRNA as novel 
therapeutic agents against viruses like COVID-19 is being explored [13] [14] 
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[15]. The proposed drugs such as Remdesivir and hydroxychloroquine might be 
co-encapsulated in mice using Nanocarriers to treat COVID-19. Additionally, 
the development of self-assembly protein nanoparticles (SANPs), a new nano-
structure generated by the oligomerization of monomeric protectins via recom-
bination technologies, shows promise in medicinal applications. SANPs ranging 
from 20 - 100 nm have potential in creating respiratory virus nanovaccines [16]. 
Researchers have developed nucleoprotein-based SANPs from the respiratory 
syncytial virus (RSV) and studied their potential as an antigenic vaccine in the 
RSV model [16]. 

1.2. Nano Based Gene for Treatment of Coronaviruses 

The utilization of SiRNA therapy offers several advantages compared to conven-
tional medications and vaccines. Employing smaller amounts of siRNA to dimi-
nish viral RNA proves to be an effective strategy in preventing RNA viral repli-
cation. Insights gained from SARS-CoV studies can be extrapolated to SARS 
CoV-2, exhibiting high nucleic acid homology. Researchers have identified the 
efficacy of RNAi against the SARS-CoV virus, utilizing siRNAs from a plasmid 
to target specific regions of the viral genome. This discovery holds promise for a 
new era of antiviral medications to combat SARS [17] [18]. 

Recent investigations have pinpointed the S generation in the SARS-CoV vi-
rus, associated with severe respiratory disease, as a viable target. Scientists have 
demonstrated that the S-section effectively inhibits viral infection and replica-
tion, suggesting its potential as a treatment option [19] [20]. In the context of 
COVID-19, a distinct strain of the MERS-CoV coronavirus, RNAi may play a 
transformative role. Researchers have identified specific siRNAs, Smad7-1 and 
Smad7-2, that exhibit potential in gene therapy utilizing RNAi to eliminate 
MERS-CoV in human lung and kidney cell lines, effectively suppressing viral 
replication and infection [19] [20]. 

SiRNA antivirals may be applied selectively to cells lacking adequate endo-
somal release. Various nanocarriers composed of polymers, lipids, hybrid (po-
lymer/lipid) NP, Nanochrome, silica, dendrimers, iron oxide NPs, and AuNPs 
are potential candidates for delivering targeted siRNA. FDA-approved materials 
like poly (lactic acid), polycaprolactone, poly[glycolic acid], and their copoly-
mers have been authorized for tailored in vivo siRNA delivery. Additionally, NP 
configurations such as solid-lipid NPs, nanocarriers, nanostructured lipids, and 
liposomes are suitable for advancing SiRNA delivery systems. Cationic lipids or 
polymers maintain low endosomal pH, enhancing proton and water influx, 
leading to endosomal rupture and subsequent release of bound siRNA into the 
cytoplasm. Nanotechnology-based structures can facilitate SiRNA loading for 
inhalation and pulmonary delivery via aerolite-based systems. The incorporation 
of antibodies targeting alveoli-specific surface markers-I and II shows promise 
for nanocarrier functionality and targeted delivery to lung cells and other tissues 
expressing these therapeutic siRNA indicators [21] [22]. 
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1.3. Nucleic Acid-Based Vaccines 

DNA and mRNA vaccines are currently under investigation in the context of the 
COVID-19 pandemic. The CD8+ cytotoxic T cell responses triggered by DNA 
vaccines play a crucial role in eliminating the virus. In vitro transcription muta-
tion vaccines offer a potential solution to cell requirements and associated regu-
latory hurdles. Notably, DNA vaccines demonstrate greater longevity compared 
to mRNA vaccines; while mRNA is non-integrating and doesn’t pose a risk of 
insertion mutations, DNA vaccines provide more enduring protection. Modifi-
cations can be made to mRNA, altering its half-life, stability, and immunogenic-
ity. For instance, research at the Imperial College of London and by Arcturus 
Therapeutics involves incorporating self-amplifying RNA to prolong the other-
wise short half-life of RNA and boost S protein production [23] [24] [25]. 

The Moderna mRNA vaccine employs nanoparticles with a lipid platform, al-
though several other nucleic acid delivery nanotechnologies are in development. 
Nanotechnology platforms such as cationic nanoemulsions, liposomes, dendri-
mers, or polysaccharides have been utilized to enhance the stability and distribu-
tion of mRNA-based vaccines. These platforms hold promise for improving the 
nuclear translocation of plasmid DNA [26]. 

1.4. Protein-Based Nanoparticles 

Vaccines derived from SARS and MERS proved to be more prone to infec-
tion-related antibody enhancement (ADE) compared to other vaccinations. This 
susceptibility stems from the full-length S protein’s wide array of potent epi-
topes, triggering diverse antimicrobial and cellular responses. However, this 
broad reaction spectrum might pose an increased risk of adverse effects on the 
immune system’s ability to combat the disease [27] [28] [29]. As antibodies that 
don’t neutralize SARS-CoV-2 infections and potentially life-threatening allergic 
inflammations are on the rise, the La Jolla Institute of Immunology (LJI), funded 
by the National Health Institutes (NIH), has initiated efforts in this domain. In 
silico analysis has unveiled various protein B- and T-cell epitopes, and LJI is 
pioneering a peptide epitope vaccination that holds promise for more efficacious 
antigens in second-generation SARS vaccines [30] [31] [32] [33] [34]. 

Peptide-based vaccines represent the simplest, swiftly validated, and rapidly 
producible vaccine format. These can be formulated as peptides or blends, deli-
vered with suitable nanocarriers, or encoded within nucleic acid vaccine formu-
lations. Industry and academic institutions are leveraging predicted B- and 
T-cell epitopes in their SARS-CoV-2 subunit vaccines, such as OncoGen and the 
University of Cambridge/DIOSypVax, utilizing immunoinformatic sequences 
from the S-protein [35] [36] [37]. 

Nanoparticles offer potential in targeting lymph nodes (LNs) or subcellular 
subsets and locations. The “albumin hitchhiking” strategy exploits LNs’ natural 
transportation capability via albumin. Nanoparticles have been instrumental in 
designing dual-targeted hepatitis B virus (HBV) vaccines, directing them to-
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wards specific lentil-resident dendritic cell and macrophage subsets. This tar-
geting led to enhanced viral clearance in chronic HBV mice models [38]. Nano-
technologies are also employed for various vaccination and therapeutic purpos-
es, generating VLPs from mammalian viruses, insect viruses, plant viruses, and 
bacteriophages (Figure 1(a) and Figure 1(b)). VLPs mimic infection-associated 
molecular patterns, triggering robust antigen-specific immune responses. Their 
visualization and administration systems serve as potent adjuvant systems, acti-
vating and amplifying immune responses [39]. 

The design features of vaccines, such as encapsulated antigens versus sur-
face-displayed antigens, dictate antigen processing and presentation, influencing 
the ensuing immunological response. Nano-barriers like polymeric micelles 
(PEG-PE) alter antigenic peptides’ structure, enabling cytosolic transport for LN 
targeting, APC absorption, and antigene cross-presentation (Figure 1(c)). A  
 

 

Figure 1. (a) Nanoparticle vaccine technologies utilize proteins and nanoparticles ranging in diameter from 10 to 1000 nm. Pro-
tein nanoparticles have been produced using PDB data through Chimera software (P22, ferritin, and CPMV represented by 3IYI, 
1FHA, and 1NY7, respectively). (b) Components integral to nanoparticle-based vaccinations include protein nanoparticles. (c) 
Important processes involved in antigen-presenting cell (APC) vaccine production using nanoparticles imply the presentation of 
MHC-I and MHC-II epitopes. This presentation leads to the generation of CD8+ cytotoxic T cells and CD4+ T helper cells neces-
sary for synthesizing antiviral agents. 
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well-developed delivery framework is crucial for combatting future waves of 
SARS-CoV-2 and other emerging viruses effectively and efficiently [40]. 

1.5. Nano Based Immunotherapy against Coronaviruses 

Immunotherapy utilizing Nanoparticles (NPs) has proven highly effective in 
managing infectious diseases. Nonetheless, improving treatment efficacy while 
minimizing adverse effects remains challenging. Understanding the immune 
system’s response to infections and exploring potential methods for immune 
modulation are crucial steps in developing successful immunological treatments. 
Recent studies have revealed that pathogen-associated molecular patterns 
(PAMPs) on the virus’s surface alert innate immune cells upon encountering the 
first line of immune defense (such as mucus and ciliated cells). This triggers the 
release of type I interferons (IFN-α/β), heightening the risk of complications 
[41] [42] [43]. Subsequently, other immune cells like natural killer cells, alveolar 
macrophages, monocytes, and neutrophils become activated during acute infec-
tions, leading to the production of pro-inflammatory cytokines that affect respi-
ratory epithelial cells. IFN-I halts viral reproduction via various pathways, con-
tributing to cell cytotoxicity. While anti-PAMP injections may cause pulmonary 
complications in some individuals, this remains unclear in humans. SARS-CoV-2 
infection has been associated with prolonged antibody production and decreased 
CD4+/CD8+ T cells. Macrophages and dendritic cells play pivotal roles in in-
itiating specialized immune responses, retracting virus particles via phagocyto-
sis, initiating IFN-I production, and triggering the adaptive immune response 
[45] [46]. 

Studies suggest that pretreatment with IFN-α may induce the development of 
IFN genes and signaling pathways pre-SARS-CoV infection. Early data suggest 
that IFN-1 exhibits antiviral activity against SARS-CoV-2, but further clinical 
studies are required to confirm these findings. Antibodies mediate the death of 
infected cells through various pathways like phagocytosis, neutralization, com-
plement system activation, and antibody-related cell cytotoxicity. Regulating the 
virus’s pathogenicity and the host’s immune response is crucial to effectively 
combat viral infections [47] [48]. 

Monoclonal antibodies’ use stands out among other techniques due to their 
specificity, minimal risk of bloodborne pathogens, and safety. They can be more 
effectively used in recovered patients than in new cases [49] [50] [51] [52]. IFNs 
combat infections by inducing antiviral protein production and cytokine-stimulated 
interferon genes, exerting antiviral effects by halting replication or aiding the 
immune system’s adaptability. IL-6 is considered crucial in treating SARS-CoV-2 
due to its association with heightened inflammatory cytokine levels [53] [54] 
[55] [56] [57]. Implementing these outlined immunotherapy techniques, inde-
pendently or in combination with other medications, has been suggested for 
SARS-CoV-2-infected patients. However, the manufacturing of monoclonal an-
tibodies remains challenging, expensive, and time-consuming, requiring sophis-
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ticated infrastructure and components for cost-effective and timely immuno-
therapy [58] [59] [60]. 

Nanoparticles can influence the immune system’s performance through vari-
ous means such as enhancing multivalent receptor linkages, controlling intra-
cellular processes, facilitating cytosolic transport, targeting the innate immune 
system, and reducing immune modulator toxicity. They can also integrate mul-
tiple antigens on their surface to more effectively activate the immune system 
[61] [62] [63] (Figure 2). 

Development of vaccines 
The immunization system, owing to its innate capability to induce a durable 

protective immune response, stands as one of the most efficient public health 
measures in preventing or curbing the spread of infectious diseases. Vaccines 
consist of two critical elements: the antigen, eliciting the immune response, and 
the adjuvant, which modulates or enhances the immune response to the antigen 
[64]. Various vaccine formulations have elicited immune responses against in-
fectious diseases. Live Attenuated or Inactivated Entire Pathogen Vaccines have 
been extensively utilized to control human and animal diseases. However, safety  
 

 

Figure 2. Strategies involving immune responses and therapies for combating SARS-CoV-2 infection: (a) Understanding the innate 
and adaptive immune responses triggered by SARS-CoV-2. (b) Immunotherapeutic approaches encompassing passive antibody 
treatment, interferon alpha/beta, and IL-6 receptor (IL-6R) inhibitors. Adapted from reference 45 with permission. Copyright 
2020 Wiley. 
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concerns such as genetic reversion and potential tumorigenicity in immuno-
compromised hosts exist with attenuated vaccines. Not all pathogens can be em-
ployed as live vaccines due to their virulence or inherent immunity. DNA or 
RNA vaccines, the latest in vaccination, come with drawbacks like inadequate 
antigen immunogenicity, the need for adjuvants to bolster immune responses, 
and susceptibility to premature antigen breakdown in adverse conditions. Syn-
thetic peptides, inactivated toxins, and recombinant subunit protein vaccines 
serve as alternatives to live-attenuated or inactivated vaccines, although evidence 
indicates their limited availability in the market [65] [66] [67]. 

Vaccines are preferred over chemotherapeutic drugs in combating infectious 
diseases due to their specificity and capacity to induce an immune response [68]. 
Many current vaccines utilize viral proteins to achieve CoV neutralization. An-
tibodies generated target CoV proteins like M, E, or S, hindering viral entry by 
binding to these proteins [69]. Nano-based therapies have emerged as potential 
options against various forms of CoVs due to the immunostimulatory effects of 
NPs. 

2. Conclusions 

Nanotechnology is swiftly emerging as a dynamic contender in combatting co-
ronaviruses through antiviral treatment. Its primary objective is to enhance the 
delivery of biotherapeutics across physiological barriers, overcoming the tradi-
tional challenge of limited bioavailability. Nanomaterials present a multitude of 
physical and biological advantages, featuring smaller particle sizes that enable 
them to navigate natural barriers, ample surface areas for increased drug loads, 
adaptable surface properties aiding drug entry into cell membranes, ligand bind-
ing capabilities, and improved solubility and pharmacokinetic traits. Notably, 
these materials hold promise not only as antiviral agents but also in potential an-
ticancer medications or various therapeutic approaches. While breaching the mu-
cus barrier doesn’t necessarily lead to reduced absorption or non-absorption by 
nanoparticles, it poses challenges such as molecular interactions causing ma-
crophage opsonization and phagocytosis. An ideal nanocarrier for antiviral thera-
py must exhibit efficiency, accessibility, targeting capabilities, safety, and eco-
nomic viability, minimizing intake, downtime, side effects, and therapeutic costs 
while being biodegradable, biocompatible, and non-toxic. Polymer-based nano-
particles, such as polyethylene glycol and poly(lactide co-glycolide), are antic-
ipated to advance the development of single- and needle-free vaccines and drug 
carriers [70]. 

Metal nanoparticles (NPs) emerge as alternate options for delivering thera-
peutic agents against CoVs. Their nanometer size (<200 nm) significantly influ-
ences their distribution and consumption rates. Several nano-based vaccines 
have shown potential in generating a stronger immune response. However, fur-
ther research is crucial to understand the interaction between viral particles and 
host cells [71] [72]. Emergency approvals for eight vaccines utilizing various 
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technologies have been granted since February 2021. The emergence of novel 
SARS-CoV variants with heightened transmissibility underscores the urgent 
need for highly efficient new vaccines. Currently, over 250 additional vaccines 
are in various stages of development for SARS. Remarkably, within just 40 days 
of the first candidate entering clinical development, sixteen vaccine candidates 
are in phase II, and one is in phase III. While the clinical reality for any vaccine 
remains months away, the rapid and concurrent efforts by academic and indus-
trial laboratories offer hope for success. The lethal COVID-19 coronavirus has 
propelled the enhancement of platform technologies to prepare for future pan-
demics. Numerous nanomaterials provide scalable, stable, portable, distributa-
ble, and integrable platform technologies adaptable to address seasonal or novel 
coronavirus variants [73] [74] [75]. 
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