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Abstract 
The purpose of the paper is to substantiate the possibility of constructing the 
physics of the evolution of matter based on the fundamental laws of physics. 
It is shown how this can be done within the framework of an extension of 
classical mechanics. Its expansion is based on the motion equation of a struc-
tured body. The fundamental difference between this equation and Newton’s 
motion equation is that instead of a model of a body in the form of a material 
point, it uses a structured body in the form of a system of potentially inte-
racting material points. To obtain this equation, the principle of symmetry 
dualism, new for classical mechanics, was used. According to this principle, 
the dynamics of a body are determined not only by the symmetries of space, 
as in the case of a structureless body, but also by its symmetries. Thanks to 
this derivation of the equation, it takes into account the fact that the work of 
external forces, in addition to changing the body’s motion energy, also changes 
its internal energy. This change occurs due to the body’s motion energy when 
it moves in a non-uniform field of forces. It is shown why the motion equa-
tion of a structured body is irreversible. Its irreversibility made it possible to 
introduce the concept of D-entropy into extended classical mechanics. It is 
defined as the value of the relative increase in the body’s internal energy due 
to the motion energy. The relationship between the values of motion energy 
and D-entropy in the process of matter evolution is considered. It is shown 
how this connection is realized during the transition from one hierarchical 
level of matter to the next level. As a result, it was possible to prove that the 
evolution of the hierarchical structure of matter is characterized by the rela-
tionship between D-entropy and the motion energy of elements at each of its 
hierarchical levels.  
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1. Introduction 

The understanding of evolutionary processes and the development of their theory 
in modern physics have far from reached a level corresponding to the impor-
tance of the role of evolution in nature. As I. Prigogine said, today we have the 
physics of the “existing”, but there is no “physics of the emerging” [1]. This is 
largely due to the fact that modern physics represents insufficiently connected 
and sometimes contradictory sections, while the nature of evolutionary processes 
is uniform and for its description requires the consistency of the laws of physics 
and its corresponding sections. 

Motion is the way of existence of matter. Hence, classical physics can be repre- 
sented in the form of two sections that are directly related to its dynamics. 

The first section studies the dynamics of bodies based on the laws of classical 
mechanics, including Newton’s laws. In this case, the main quantity characteriz-
ing the dynamics of bodies is the motion energy. Formalisms that make it possi-
ble to study the dynamics of systems are built based on the assumption of the 
potentiality of all collective forces and the condition of holonomy of connec-
tions. Moreover, the dynamics of bodies is studied without taking into account 
the processes of changing internal states. All this leads to the reversibility of clas-
sical mechanics. That is, the restrictions used in the construction of classical 
mechanics exclude the possibility of describing evolutionary processes that are 
inextricably linked with dissipation and irreversibility [2] [3]. 

The second section studies the internal states of bodies and their dependence 
on changes in external constraints. These studies are carried out within the frame- 
work of thermodynamics, statistical physics and kinetics for systems at rest, as a 
rule, equilibrium or close to equilibrium. At the same time, the role of motion 
and interaction of bodies in changing their internal states is not taken into ac-
count [4] [5]. The main quantities, characterizing the internal state of bodies, in-
clude internal energy and entropy. Moreover, internal processes are irreversible, 
which is consistent with the processes of evolution. 

The evolution of bodies is characterized by the processes of formation, devel-
opment and decay of systems, which are determined by the interrelationship of 
dynamics and changes in internal states. Therefore, a description of evolutionary 
processes is impossible without taking into account such a relationship. But for 
this, first of all, it is necessary to eliminate the contradictions between classical 
mechanics and thermodynamics. Thus, according to classical mechanics, all pro- 
cesses in nature are reversible, while thermodynamics states the opposite. 

The probabilistic explanation of irreversibility proposed by Boltzmann and then 
developed by other authors is based on hypotheses about the existence of arbi-
trarily small external fluctuations that lead to the irreversibility of dynamics 
Hamiltonian systems due to exponential instability according to Lyapunov [6]. 
Taking into account the probabilistic explanation of the mechanism of irreversi-
bility, work was also carried out on the development of statistical methods for 
analyzing the evolution of open nonequilibrium dynamic systems in time [7]. In 
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general, numerous attempts to find a solution to the problem of irreversibility 
within the framework of the formalisms of classical mechanics did not give the 
desired result [8] [9]. But even if we discard questions related to the absence of 
the concepts of probability in classical mechanics and the nature of external fluc-
tuations, then still, when constructing a theory of the physics of evolution, one 
cannot rely on the probabilistic theory of fluctuations. Indeed, with a probabilis-
tic description of evolution, the next question remains open: how this or another 
direction of development of evolution arises, why it goes “from simple to com-
plex” [1] [6]. Moreover, the principle of causality is violated. 

Relatively recently, the motion equation of a structured body (SB) was obtained. 
It uses a system of potentially interacting material points (MPs) as an SB. It, in 
contrast to Newton’s motion equation for MP, is constructed taking into ac-
count the fact that the work of external forces changes not only the body’s mo-
tion energy, but also its internal state [10] [11]. This made it possible to take into 
account the role of the dynamics of a body in changing its internal state and to 
link classical mechanics with thermodynamics together based on the fundamen-
tal laws of physics. Thus, the SB’s motion equation opened up the possibility of 
constructing physics that describes the processes of emergence, development and 
destruction of natural systems within the framework of fundamental laws. The 
physics that studies these processes we proposed to call it “Physics of Evolution” 
[11]. The importance of its construction follows from the fact that it is hardly 
possible to find a branch of physics where questions of evolution do not arise. 
But so far, the development of “Physics of Evolution” is at an early stage. Its 
main content is an extension of classical mechanics. It consists of modifying the 
Lagrange, Hamilton, Liouville equations based on the SB motion equation. The 
construction of an evolutionary model of the infinite hierarchical structure of 
open nonequilibrium dynamic systems has also begun. The issues of describing 
bifurcation processes, phase transitions are considered, based on taking into ac-
count the dependence of macroprocesses on microprocesses at special points of 
phase trajectories, etc. [10] [11]. It is quite natural that many problems arise on 
the way to its further construction. One of these problems is associated with 
identifying key parameters characterizing the evolution of open nonequilibrium 
dynamic systems. The motion energy SB and D-entropy are proposed as such 
parameters. Accordingly, the purpose of this work is to substantiate this state-
ment. To do this, let us explain how the SB motion equation is constructed, how 
the concept of D-entropy follows from it, and why the concepts of motion ener-
gy and D-entropy are key to describing the evolutionary processes of hierarchi-
cally structured matter. 

2. The System’s Motion Equation 

In accordance with modern trends, the SB’s motion equation was constructed 
based on the concept of symmetry [12]. From symmetry follows the requirement 
of invariance of the total energy, represented by the sum of the motion energy 
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and the SB’s internal energy [4]. The derivation of the SB’s motion equation was 
carried out based on of fundamental laws and principles applicable to both sys-
tems and their elements. These include the law of conservation of motion and 
Galileo’s principle. In addition to them, the principle of dualism of symmetry 
(PDS) was used [13] [14]. According to this principle, the motion of SB is de-
termined by both spatial symmetry and body’s internal symmetry. It was also 
postulated that the laws for the system and the environment should be equally 
complete. These two provisions expanded the scope of application of classical me- 
chanics, allowing it to describe dissipative processes, without which evolution is 
impossible. Let us explain the idea of deriving the SB’s motion equation using 
the example of the well-known empirical motion equation that takes into ac-
count friction. It has the form [4]: 

0 0 0MV F Vµ= − −� ,                        (1) 

Here M is the mass of the body; V0 is the speed of the center of inertia of SB; 
F0 is the force acting on the center of inertia; μ is the effective coefficient of fric-
tion. 

In accordance with this equation, the body’s motion energy is converted into 
its internal energy. The effectiveness of such a transformation is determined by 
the empirical coefficient μ. It turned out that this coefficient can be obtained 
analytically, that is, it is possible to find the body’s motion equation with a func-
tional dependence of friction on dynamic variables. This opens up the possibility 
of describing friction forces and dissipation within the framework of extended 
classical mechanics. 

Let us consider the body’s motion along an inclined rough surface under the 
influence of gravity. Let us define its model in the form of an SB, consisting of a 
sufficient number of potentially interacting MPs. According to Equation (1), 
part of the SB’s motion energy in the gravitational field will go to change its ki-
netic energy. The other part will go to increase the internal energy SB due to the 
work of the friction force. That is, the work of external forces goes to increase 
the total velocity of all MPs, which determines the SB’s motion energy, and to 
increase the chaotic components of the MP’s velocities relative to the center of 
inertia, which determine the kinetic component of the internal energy. The total 
energy SB is equal to the sum of the motion and internal energy [4]. This also 
follows from equality [11]: 

12 2 2
1 1 1

N N N
i N N iji i j iN v NM V v−

= = = +
= +∑ ∑ ∑                  (2) 

The vector iv  determines the speed of the MP in the laboratory coordinate 
system; , 1,2,3, ,i j N= �  is MP number, where values ,i j  vary from 1 to N and 
i j≠ ; ij i jv v v= − ; vector ( )1

N
N iiV v N

=
= ∑  is the speed of the center of inertia 

SB; NM Nm= ; 1m = , NM N= . 
Equality (2) proves the independence of the variables that determine the total 

energy SB in the form of the sum of the motion energy and internal energy. The 
variables that determine the motion of SB are macrovariables, and the variables 
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that characterize the internal energy are microvariables. 
The first term on the right-hand side of Equation (2) corresponds to the “Or-

der” measure. It is maximum when the velocity vectors of all MPs are equal 
in magnitude and coincide in direction. The second term corresponds to the 
measure of “Chaos”. It is maximum when the sum of all MP velocity vectors is 
zero. 

It is known that the MP’s motion equation can be obtained from the condition 
of invariance of the motion energy. In a similar way, but from the total energy, the 
SB’s motion equation can be obtained. To do this, energy in accordance with the 
Equation (2), should be presented in micro- and macrovariables in the form of 
the sum of internal energy and the motion energy [4]. As will be seen from the 
further presentation, this way of obtaining the SB’s motion equation allows us to 
take into account that when a body moves in a non-uniform field of external 
forces, the work of these forces goes both to change the motion energy of the 
body and to change its internal energy. 

Full energy SB, represented by in micro- and macrovariables, has the form: 
tr ins

N N NE E E const= + =                       (3) 

Here ins ins ins
N N NE T U= +  is the internal energy SB, where 2

1 2Nins
N iiT mv

=
= ∑ �  is 

the kinetic component of the internal energy; tr tr tr
N N NE T U= +  is motion energy, 

tr
NT  is kinetic energy SB, depending on macrovariables, tr

NU  is potential energy 
SB in the field of external forces.  

According to Equation (3), the work of external forces goes to change the mo-
tion energy and internal energy SB (dualism of work): 

tr int
N N Nd dE dEℑ = +                        (3a) 

The law of conservation of body energy for extended mechanics can be for-
mulated as follows: the sum of the motion energy and the internal energy of a 
body is invariant along its trajectory. Moreover, each of these types of energy is 
not an invariant of motion. The SB’s motion equation is obtained by differen-
tiating Equation (3) with respect to time, followed by summing the values of 
energy changes for each MP. Under the condition of invariance of the total energy, 
it has the form: 

0 d
N N N NM V F Vµ= − −� ,                      (4) 

where 0 0
1

N
N iiF F

=
= ∑ ; 0

iF  is external force acting on ith MP; ( )2d int max
N NE Vµ = � ; 

ijF  is interaction force i and j MP; 0 0 0
ij i jF F F= − ;  

( )1 0
1 1

N Nint
N ij ij ij iji j iE v mv F NF−

= = +
= + +∑ ∑� � ; 0max int

N N NV E F= − � . 
Equation (4) takes into account the connection between the motion of each 

MP and the motion of SB. This connection is due to a decrease in the motion 
energy due to an increase in the chaotic components of the MP speeds relative to 
the center of inertia. First term in the right-hand side of the Equation (4) deter-
mines the external potential forces that change the speed of the center of inertia. 
Its appearance is due to the symmetry of space. The second term is due to taking 
into account the SB symmetry. It is bilinear, depends on micro- and macrova-
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riables and is different from zero when the field of external forces is non-uniform. 
That is, provided: 0 0 0 0ij i jF F F= − ≠ . This term is called evolutionary nonlinear-
ity. It determines the change in internal energy of SB due to the motion energy 
[11] [13]. If the field of external forces is uniform or if the rigid body approxi-
mation is valid, the evolutionary nonlinearity disappears and Equation (4) is re-
duced to Newton’s motion equation. If the friction force reaches the value of the 
active force, Equation (4) is reduced to Aristotle’s motion equation. But if the 
SB’s motion equation is derived in a standard way by summarizing the MP’s 
motion equations [3], then the evolutionary nonlinearity will disappear. 

Thus, the dissipation necessary for the emergence of attractors is possible only 
for SB. This means that if matter arose by evolutionary means, then according to 
the laws of classical mechanics, matter represents an infinite hierarchy of SBs 
nested within each other [11]. 

3. Motion Energy and D-Entropy 

The SB’s motion equation takes into account that the work of external forces 
goes not only to move the body, as is the case with Newton’s motion equation, 
but also to change the body’s internal energy. It follows that the dynamics and 
changes in the state of SB are determined not by one, but by two quantities [4]. 
The motion energy determines the motion of SB. But to determine the evolution 
of SB associated with a change in internal energy, in addition to the motion 
energy, we also need a quantity that would determine the internal state of SB. In 
thermodynamics, this is entropy. At first glance, entropy can be used here. But 
that’s not true. The impossibility of its use is associated only with the fact that it 
is defined for motionless bodies close to equilibrium, or when their motion does 
not affect internal states [4] [15]. Therefore, for SB it is necessary to introduce a 
different, albeit entropy-like, quantity that determines the change in the internal 
state as a result of the motion of SB in a non-uniform field of forces. This value 
must be determined by the dynamic parameters SB in accordance with the second 
term of Equation (4). It was called D-entropy, and is determined by the ratio of 
the increment in internal energy SB to its total value. Thus, for D-entropy we 
have [14] [16]: 

d int int
N N NS E E∆ = ∆                          (5) 

The SB’s motion energy can be put in correspondence with the measure of 
“Order”, since it characterizes the measure of ordered motion. In the internal 
energy SB should be put in correspondence with the measure of “Chaos”, since it 
determines the measure of the chaotic motion of the elements of SB. Thus, 
D-entropy determines the connection between “Chaos” and “Order”. A suffi-
ciently large equilibrium system can always be represented by a set of equili-
brium SB that are motionless relative to each other. In the particular case of 
body motion with friction, D-entropy determines the heating of each SB. That is, 
D-entropy characterizes the transformation of “Order” into “Chaos” and thereby 
characterizes the processes of evolution of bodies. 
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D-entropy, unlike thermodynamic entropy, is applicable for any number of 
elements of SB [19]. For small SB, D-entropy can be negative. For example, cal-
culations have shown that the internal energy of an oscillator can be converted 
into motion energy [17]. But already at N1 > 100, D-entropy only increases. 
When N2 > 103, D-entropy stops growing with increasing number N. This is 
consistent with the fact that the coefficient of friction does not depend on the 
volume of the body. That is, the number N2 - 103 determines the range of appli-
cability of the thermodynamic description SB. Note that a similar result was ob-
tained within the framework of statistical physics [18]. In general, these critical 
numbers depend on the substance and conditions. 

4. D-Entropy and Motion Energy for Open Nonequilibrium  
Dynamic Systems 

All bodies are open. Otherwise, they would not have arisen. The fact that in the 
general case all bodies can be represented as an ensemble of SBs, moving relative 
to each other, means that they are nonequilibrium. The fact that all bodies, to 
one degree or another, have the motion energy, suggests that dynamics is their 
defining state. Therefore, all natural objects can be classified as open nonequili-
brium dynamic systems (ONDS). 

In the approximation of local thermodynamic equilibrium, with a sufficient 
degree of generality, the ONDS can be represented as a set of equilibrium sub-
systems of potentially interacting MPs moving relative to each other [15]. Each 
subsystem moves in a non-uniform field of external forces and forces created by 
other subsystems. In the absence of external forces, the ONDS comes to equili-
brium. It is determined by the equality to zero of the relative velocities of the 
subsystems [4]. For a closed nonequilibrium system, the change in D-entropy is 
determined by the sum of increments in the internal energy of its subsystems 
due to the energies of their relative motion. The increment of D-entropy of the 
ensemble has the form [16] [19]: 

{ }1 1 dLR Nd int int L
N N N L ks k LL k sS E E N F v t E

= =
 ∆ = ∆ =  ∑ ∑ ∑∫          (6) 

LE  is internal energy; L
ksF  is force acting on k-th particles of one subsystem 

from particles s-th of other subsystems; s is an external particle in relation to L is 
subsystem interacting with its k-th particles; kv  is speed of k-th particle; LN  is 
number of particles in L-th subsystems; 1,2,3,L = � ; R is the number of sub-
systems in a system. 

To identify the patterns of SB motion in a non-uniform force field, numerical 
calculations of the dependence of fluctuations of the internal energy of SB from 
the number of MPs, based on Equation (4) were performed [11] [17]. To do this, 
we took SB with a different number of potentially interacting MPs, ranging from 
2 to 1024, with a given value of internal energy and the motion energy of the 
center of inertia. The coordinates and velocities of the MP were set randomly so 
that their sum was equal to zero in the center of inertia system. The passage of 
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SB through a potential barrier in the form of a semi-sinusoid, the height of which 
is less than the kinetic energy of the center of inertia of SB, was considered. For 
each number of MPs in the SB, calculations of the SB passage of barrier were 
performed 400 times. In this case, the initial distribution of MP was set random-
ly, but so that it satisfied the Maxwellian distribution. The average amplitude of 
internal energy fluctuations when the system passes a barrier was determined 
depending on the number of MPs. It turned out that this dependence obeys the 
law: 

~ 1intE Nδ                           (7) 

The same law is known in statistical physics [4]. But here the Equation (7) is 
determined by the deterministic motion equations. This is also consistent with 
the fact that the principle of maximum entropy of an equilibrium system cor-
responds to the principle of least action [4] [11]. That is, the fundamental laws of 
physics determine the scope of application of statistical laws, which can be con-
sidered as valid simplifications convenient for analyzing the dynamics of sys-
tems. 

Let us show using Equation (4) that the establishment of equilibrium in closed 
systems, which are an ensemble of interacting equilibrium subsystems, occurs 
due to the transition of the energy of the relative motion of the subsystems into 
their internal energy [19]. 

Let be trE  the energy of relative motions of subsystems. According to Equa-
tion (4), part of it trE∆  will turn into internal energy over some time. In this 
case, the quantity trE∆  is determined by a bilinear term of the second order of 
smallness. Note that in statistical physics the quantity trE∆  also has a second 
order of smallness [4]. From here we can write: 2~trE χ∆ , where χ  is a small 
parameter, for example, a change in internal energy. If 1tr intE E∆ � , then the 
imbalance of subsystems during their interaction can be neglected. Then the re-
verse transformation of the internal energy of the equilibrium subsystem into 
the energy of its motion is impossible due to the conservation of the momentum 
of the system at rest. 

Let now the interaction forces of subsystems or their gradients be sufficiently 
large. In this case, the equilibrium of the subsystems will be disrupted, and they 
will represent a set of equilibrium subsystems moving relative to each other. 
Then, to increase the internal energy of the subsystems, we write:  

tr tr h
insE E E∆ = ∆ + ∆ , 

where tr
insE∆  is the energy of the relative motions of the subsystems, hE∆  and 

is the increment in the internal energies of the subsystems. This means that 
tr h
insE E∆ < ∆ . Energy hE∆  cannot be converted into the energy of motion of 

subsystems. Therefore, we will proceed from the requirement that only tr
insE∆  

can return to the energy of their motion. Let us denote the reverse flow of inter-
nal energy of subsystems as tr

retE∆ . According to Equation (4), the value tr
retE∆  

is determined by a bilinear function of micro- and macrovariables of the second 
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order of smallness. And since 2~trE χ∆ , we will have 4~tr
retE χ∆ . Thus, the 

return flow of the internal energy of the subsystem into the energy of its motion 
cannot be more than the fourth order of smallness. Hence, the energy balance of 
the system is determined by the expression [14]: 

2 4tr
decE αχ βχ∆ ≈ −                         (8) 

Here ,α β  are constants defined by Equation (4). That is, the increase in D- 
entropy of a closed nonequilibrium system is always positive, which proves our 
statement. 

The entropy for ONDS can also be obtained using the distribution function, 
( ), ,p pf f r p t= , which is a solution to the extended Liouville equation [20]: 

( ) ( ){ }1d d N
p p i p i i p i pif t f t v f r p f p f σ

=
= ∂ ∂ + ∂ ∂ + ∂ ∂ = −∑ �        (9) 

Here 1,2,3, ,i N= �  is subsystem number, p
iF  are forces acting on i-th sub-

system, ip  is impulse of the subsystem, 1
N p

i ii F pσ
=

= ∂ ∂∑ . 
Equation (9) is derived from Equation (4) in the same way as the canonical 

Liouville equation is derived from Newton’s motion equation. It differs from the 
canonical Liouville equation in that the phase volume SB is determined not only 
by the motion energy, but also by the internal energy. In accordance with Equa-
tion (4), the magnitude of the change in the distribution function is proportional 
to the gradients of external forces. For a closed nonequilibrium system, the value 
σ  decreases with a decrease in the energy of the relative motions of the subsys-
tems due to its transition into the internal energy of the subsystems.  

From Equation (9) it follows that the contribution to the change in function 
( ), ,p pf f r p t=  introduce non-potential forces. The formal solution of Equation 

(9) can be written as follows: 

exp do
p pf f tσ= ∫ .                       (10) 

Function ( ), ,p pf f r p t=  obtained taking dissipation into account. 
For systems close to equilibrium, the Boltzmann formula is valid:  

( )ln d dB
p pS f f p q= −∫ . From Equation (10) it follows that if 0σ = , then we 

have: d d 0BS t = . As one would expect, BS  it has a maximum when the ensem-
ble reaches equilibrium. 

5. The Principle of Relativity of Motion Energy and  
D-Entropy 

Let us consider the general case when, in accordance with the condition of infi-
nite divisibility of matter, the ONDS is a hierarchy of subsystems nested within 
each other. In accordance with PDS, the total energy of the ONDS can be re- 
presented as the sum of the motion energy and internal energy for each hierar-
chical level. In this case, the work of external forces changes both of these types 
of energy. That is, the internal energy at each hierarchical level of the ONDS 
should be divided into the sum of the energies of the relative motions of its ele-
ments and the sum of changes in their internal energies. And the change in the 
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internal energy of each hierarchical level of the ONDS determined by D-entropy. 
This means that the motion energy that went into changing D-entropy at the 
previous hierarchical level of matter already consists of an increase in the motion 
energy of the elements of the lower hierarchical level and increments of internal 
energies of elements of a given level. Let’s call this the principle of relativity of 
energy and D-entropy for the steps of the hierarchical ladder of ONDS. 

Let’s imagine ONDS in the form of a chain of hierarchical steps  

1 2 3 1, , , , ,S SL L L L L−� . Moreover, the elements of each iL  hierarchical level is 

1iL +  a stage. This model corresponds to the fact that anybody consists of mole-
cules, molecules consist of atoms, and so on. 

Let’s consider how the energy of the ONDS changes when external forces work 
over time t∆ . In general, external forces can change energy at all hierarchical 
levels of the ONDS. An example is solar radiation. It not only heats the atmos-
phere, but also excites its molecules and atoms. In practice, as a rule, external in-
fluence directly changes the energy of the adjacent stage. For example, when a 
meteorite falls in the atmosphere or when a body rolls down an inclined surface 
due to friction and heating, their motion energy and internal energy change, but 
the states of the molecules and atoms are preserved. Here we limit ourselves 
consideration of the case when the work of external forces changes the state of 
the adjacent level of the ONDS. Let it be equal 0 1 1

m inE E E− + +∆ = ∆ + ∆ . The in-
dices “m” and “in” mean the energies of motion of the elements and their inter-
nal energies, respectively; the signs “−” and “+” correspond to the loss of energy 
of the upper level and the gain of energy of the lower level; 0E−∆ -the total work 
expended on changing the energy of the first hierarchical level 1L  for time t∆ . 
Moreover 1

mE+∆ , is increase in the motion energy of elements, and 1
inE+∆  is 

an increase internal energies and elements. 
Let us take into account that over time t∆ , dissipative processes occur at hie-

rarchical levels, as a result of which the motion energy of each level goes to the 
lower level. Let as a result of dissipation at the level 1L  over time t∆ , energy 
has gone to the lower level: 1 2 2

m m inE E E− + +∆ = ∆ + ∆ . Reduced energy of motion at 
the level 2L  has the form: 2 3 3

m m inE E E− + +∆ = ∆ + ∆ . The increment of energy at 
each hierarchical level over time t∆  is determined by the balance of incoming 
and outgoing energy. Then we have: 1 1

m m
i i iE E E+ − − +∆ = ∆ − ∆ . Corrections above 

the quadratic degree of smallness are not taken into account here. Also not taken 
into account are small terms that are associated with the reverse transformation 
of the energy of the lower hierarchical level to the upper hierarchical one level. 

For each hierarchical level, the increment of D-entropy and is determined by 
the expression: d in in

i i iS E E+∆ = ∆ . That is, it is determined by the ratio of the 
increment of internal energy to the total value of internal energy at a given hie-
rarchical level due to the dissipative loss of motion energy of the upper hierar-
chical level. The disequilibrium of each hierarchical level is determined its mo-
tion energy. Her and change is determined by the condition: m m m

i i iE E E+ −∆ = ∆ − ∆ . 
In accordance with the definition of negentropy, the change in its value at 
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each hierarchical level is determined as follows: NE m m
i i iW E E+∆ = ∆ . 

The stationarity of the ONDS is determined by the fact that at each hierar-
chical level the following condition holds: 0m m m

i i iE E E+ −∆ = ∆ − ∆ = . That is, for 
the stationarity of the ONDS it is necessary that the negentropy at all its levels 
compensated for the dissipation of motion energy. 

Here, when calculating the energy balance, ONDS is taken into account not all 
its determining factors. In particular, the energy influx will be compensated by 
Planck radiation [15]. In this case, a complete description of the energy balance 
of the ONDS goes beyond the scope of classical mechanics. But in general, it can 
be argued that the motion energy and D-entropy make it possible to determine 
the state of the ONDS. 

6. Conclusions 

Description of evolutionary processes becomes possible after eliminating the 
contradictions between classical mechanics and thermodynamics. This contra-
diction lies in the reversibility of the dynamics of bodies and the irreversibility of 
internal processes caused by the dynamics of their elements. The contradiction is 
eliminated as a result of the use in classical mechanics of a new principle of sym-
metry dualism, and the construction of the SB motion equation on its basis. 
Thanks to this principle, it is built taking into account the fact that the work of 
external forces goes not only to change the SB motion energy, but also to change 
its internal state. The SB motion equation follows from the condition for the ful-
fillment of the law of conservation of total energy, represented by the sum of the 
motion energy and internal energy SB in independent micro- and macrovariables. 

According to the SB’s motion equation, a description of evolution becomes 
possible if we rely not only on the concept of motion energy as a measure of 
“Order”, but also on the concept of D-entropy, which determines the increase in 
the measure of “Chaos” as a result of the transformation of motion energy into 
internal energy. Thus, the evolution of bodies is determined by two quantities. 
These quantities include the motion energy and D-entropy. D-entropy characte-
rizes the internal state of a moving body and depends on the body’s motion 
energy, its internal structure, and is expressed through micro- and macrova-
riables.  

For comparison, we note that the state of the system in the thermodynamic 
approach is also determined by two quantities that are not related to the body’s 
motion. This is the internal energy of the body and its entropy. A distinctive 
feature of D-entropy is that it takes into account the role of the dynamics and 
interaction of bodies in changing their internal states. This is precisely what al-
lows it to be used along with the motion energy to describe evolutionary pro- 
cesses. 

According to the hierarchical organization of matter, due to its infinite divisi-
bility, an increase in D-entropy at the corresponding hierarchical level goes to 
the energy of the relative motions of the elements of a given level, and to an in-
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crease in their D-entropy. For the steps of the hierarchical ladder of matter, the 
principle of relativity of energy and D-entropy applies. 
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