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Abstract 
The purpose of this paper is to demonstrate the applicability of Particle Swarm 
Optimization algorithm to determine material parameters in incompressible 
isotropic elastic strain-energy functions using combined tension and torsion 
loading. Simulation of rubber behavior was conducted from the governing 
equations of the deformation of a cylinder composed of isotropic hyperelastic 
incompressible materials. Four different forms of strain-energy function were 
considered based respectively on polynomial, exponential and logarithmic 
terms to reproduce load force (N) and torque (M) trends using natural rubber 
experimental data. After highlighting the minimization of the objective func-
tion generated in the fitting process, the study revealed that a particle swarm 
optimization algorithm could be successfully used to identify the best materi-
al parameters and characterize the behavior of rubber-like hyperelastic mate-
rials. 
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1. Introduction 

The study of the mechanical behavior of materials is of great importance to var-
ious industrial applications such as automation, aeronautics and biomechanics. 
The wide use of hyperelastic materials in industrial applications accounts for the 
high research interest expressed both in their characterization through experi-
mental techniques and in the study of accurate constitutive models capable of 
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describing their particular behaviour. Three criteria are necessary to determine 
the real behavior of a material: the choice of an adapted mechanical test, the 
choice of a constitutive law and the strategy of optimization of the material’s pa-
rameters. The optimization of hyperelastic parameters is an essential step in the 
designing of industrial parts. Several numerical methods suitable for the collec-
tion of experimental data are available in the literature notably Levenberg- 
Marquardt algorithm [1] [2] [3] [4], Beda-Chevalier method [5] [6] and the 
most recent methods such as Genetic Algorithm [7] [8] [9] (GA) and Particle 
Swarm Optimization method (PSO) [10] [11]. It has been shown that the PSO 
has better performance in finding the correct optimal solution than GA from a 
stochastic point of view [12]. The authors compared the performance of PSO 
and GA in terms of their accuracy, their robustness vis-à-vis population size and 
algorithm coefficients. Their study also revealed that not only does PSO have a 
higher probability to find the correct optimal solution than GA but is preferable 
to GA when time is a limiting factor. Without making a comparative study of 
optimization methods, this work seeks to demonstrate the applicability of the 
powerful PSO method to optimize the parameters of hyperelastic constitutive 
models. 

The choice of an appropriate test is also essential to predict the mechanical 
behavior of hyperelastic materials. Materials’ parameters were thus optimized 
using a combined tension-torsion test. Simultaneous tension-torsion experi-
ments are a relevant alternative to consider multiple loading conditions [13] and 
guarantee the model’s reliability to reproduce complex loading conditions. Sev-
eral studies show that this type of test is well adapted to complex problems [14] 
[15] [16]. Lectez et al. [17] for example, use the tension-torsion test to charac-
terize the behavior of elastometric engine mounts. Humphrey et al. [18] studied 
the finite extension and torsion of a nonlinear homogenous transversely iso-
tropic incompressible solid cylinder. They proposed an analytical solution of the 
problem specifically for experimental correlation to identify a constitutive model 
for papillary muscles. These characterizations of rubbery materials on combined 
tension-torsional tests are reported in the literature. Emphasis is on the problem 
of torsion superimposed on the axial extension of a circular cylinder composed 
of an incompressible isotropic hyperelastic material [19]-[26]. 

This paper aims to implement PSO algorithm in Matlab code in order to de-
termine the material parameters of the hyperelastic incompressible isotropic 
models using combined tension-torsion test data. The adopted method consists 
of reproducing trends of load force (N) and torque (M) of selected models using 
a solid circular cylinder’s large deformations. To investigate PSO algorithm’s 
appropriateness, the identification step of the material parameters is presented 
based on the correlation between the torsional couple (rather than the conven-
tional methods of stress correlation or strain energy density correlation) rebuilt 
from test data and the theory. The identified parameters have been validated 
from the load force curves. Based on the combined tension-torsion test, the pre-
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dictions of the selected models concur with experimental data. 

2. Fundamentals 

Homogeneous large strain elastic materials such as elastomers and biological 
tissues are conveniently modeled by hyperelastic constitutive equations. Practi-
cally, there exists a strain energy density function W, such that the stress tensor its 
derivative with respect to the strain [27]. Let us denote B  the left Cauchy-Green 
strain tensor defined as TFF , F being the deformation gradient tensor and T⋅  
the transposition. Based on the assumption that elastomers are both isotropic 
and incompressible, this strain-energy function only depends on the two first 
invariants of the left B, i.e. 

( )1 2, ,W W I I=                         (1) 

with 

( )2 2
1 2 1tr and tr .I I I= = −B B                  (2) 

The corresponding Cauchy stress tensor σ  is expressed as follows: 

1

1 2

2 2 ,W Wp B
I I

σ −∂ ∂
= − + −

∂ ∂
I B                   (3) 

where p is a hydrostatic pressure term associated with the incompressibility con-
straint and I  is the identity tensor. The equations describing the tension-torsion 
deformation of an isochoric cylinder were derived by Rivlin and Saunders [19]. 
We consider a deformed circular cylinder of radius R, length l, subject to a com-
bination of a tension load N and a torsion torque M. The deformation consists 
in an axial displacement u in the direction ez (Figure 1). Let us assume that 
( ), ,r zθ  is the undeformed cylindrical coordinate and ( ), ,R ZΘ , the coordi-
nate in the deformed configuration. This can be written thus: 

 

 
Figure 1. Circular cylinder subject to combined tension and torsion. 
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, and ,rR z Z zθ λ λ
λ

= Θ = +Ψ =               (4) 

where the constant of proportionality Ψ  is termed the amount of torsion, θ  
the angle through which one end of the cylinder is rotated with respect to the 
other and λ  the global extension is given by 

.l Lθ λ= Ψ = Ψ                         (5) 

Considering a cylinder subject to both extension and torsion, the deformation 
gradient tensor is: 

1 2

1 2 1 2

0 0
0 ,
0 0

r
λ

λ λ
λ

−

−

 
 

= Ψ 
 
 

F                    (6) 

and the left Cauchy-Green tensor B  is: 
1

1 2 2 3 2

3 2 2

0 0
0 .
0

r r
r

λ
λ λ λ
λ λ

−

−

 
 

= + Ψ Ψ 
 Ψ 

B                  (7) 

Thus, the main strain invariants are reduced to 

2 2 2 2 2
1 2 2

2 1and 2 .I r I rλ λ λ
λ λ

= Ψ + + = Ψ + +            (8) 

The resultant applied load force and torque necessary to maintain the defor-
mation are given by: 

3
0

1 2

14 d ,
a W WM r r

I Iλ
 ∂ ∂

= Ψ + 
 

π ∫                  (9) 

and 

( )2 2 3
0 0

1 2 1 2

1 24 d 2 d .
a aW W W WN r r r r

I I I I
λ λ

λ λ
−    ∂ ∂ ∂ ∂

= − + − Ψ +   
   

π π∫ ∫   (10) 

3. Hyperelastic Constitutive Models 

A broad collection of models are available in the literature. In this study four 
phenomenological models were used models: 

Mooney-Rivlin model [28] 
The mooney-rivlin model is rather simple and uses a reduced amount of pa-

rameters. It deals with moderate nonlinear and simple material behavior. Strain- 
energy density function based on two invariants of the right Cauchy-Green de-
formation tensor is defined as: 

( ) ( )10 1 01 23 3 ,W C I C I= − + −                   (11) 

where 10C  and 01C  are the material parameters. 
Yeoh model [29] 
The Yeoh model is a reduced third-order polynomial based only on the first 

invariant of the right Cauchy-Green tensor. This model deals with high non-linear 
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material behavior using only three parameters. 

( ) ( ) ( )2 3
10 1 20 1 30 13 3 3 ,W C I C I C I= − + − + −             (12) 

where 10C , 20C , and 30C  are the material parameters. 
Gent and Thomas model [30] 
Considering the general form proposed by Rivlin and Saunders [17], Gent and 

Thomas proposed the following empirical strain energy function which involves 
only two material parameters and a logarithmic function of the second invariant: 

( ) 2
1 1 23 log ,

3
IW K I K= − +                    (13) 

where 1K  and 2K  are the material parameters. 
Fung model [31] 
Yuan-Cheng Fung, the Founder of Modern Biomechanics, formulated the 

famous exponential strain constitutive equation for preconditioned soft tissues. 
The expression of this strain energy density function is based only on the first 
invariant of the right Cauchy-Green tensor 

( )( )1 3exp 1 ,IW C β −= −                      (14) 

where C and β  are the material constants. 

4. PSO Algorithm for Hyperelastic Characterization 

The ability of the different material models to reproduce any deformation curve 
depends on the definition of the values of the parameters associated to each 
model. Furthermore, the choice of these parameters depends on how a particular 
experiment is conducted and how the experimental data are processed [32] [33] 
[34] [35]. For an elastic material subject to large strains, the usual approach is to 
directly approximate the constants that appear in the mathematical model by 
employing numerical optimization techniques to minimize the residual between 
the stress-strain relation (for case of classical tests), the torsional couple or load 
force (for case of tension-torsion test, see for example [36] [37]) and the experi-
mental data. Then, identification consists in relating the theoretical solution 

modelM  resulting from a model with the experimental curves represented by a 
couple of the point ( ),exp expM Ψ , with 1, 2,3, ,i n=   the number of the expe-
rimental points. To quantify the gap between the two responses, the objective 
function objf  is generally defined as: 

( ) ( )( )1

2
.n

obj i iexp moi del
f

=
= Ψ − Ψ∑                 (15) 

A PSO algorithm will be used to minimize the objective function and identify 
the material parameters to obtain a proper fitness of the curves. The load-force 
curves simulation response is fitted to validate the specified parameters by the 
PSO method employed. 

The PSO algorithm was formulated by Edward and Kennedy in 1995 [38]. 
This algorithm is a stochastic optimization technique that is well adapted to the 
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optimization of nonlinear functions in multidimensional space. It has been ap-
plied to several real world problems [39]. It is a class of swarm intelligence algo-
rithms that attempts to reproduce the social behavior of a generic population. 
PSO population is called a swarm and each individual in the population of PSO 
is called a particle. All of the particles have fitness values evaluated by the fitness 
function to be optimized. They have velocities that direct the ?ying of the par-
ticles. The system is initialized with a population of random solutions and 
searches for optima by updating generations. To seek the optimal solution, each 
particle moves in the direction to its previously best ( Pbest ) position and the 
global best ( Gbest ) position in the swarm. The speed and position of each par-
ticle change according to the following equality (see [40]): 

( ) ( )1
, , 1 1 , , 2 2 , , ,k k k k k k

i j i j i j i j i j i jV wV c r Pbest X c r Gbest X+ = + − + −        (16) 

1 1
, , , .k k k

i j i j i jX X V+ += +                       (17) 

The index i varies from 1 to n, whereas the index j varies from 1 to D. n is 
population size and D is component of each individual of population. ,

k
i jPbest  

represents personal best jth component of ith individual, whereas k
jGbest  represents 

jth component of the best individual of population up to iteration k. w, the inertia 
weight used to balance the global exploration and local exploitation, 1r  and 2r  
are uniformly distributed random variables within range [ ]0,1 , and 1c  and 2c  
are positive constant parameters called acceleration coefficients. 

 
Application of the PSO to the Mooney-Rivlin model. 
Set Parameters 
F: objective fonction. 

100n = : population size. 

min 0.4w = : minimal inertia weigh. 

max 0.9w = : maximal inertia weigh. 

1 0.5c = : acceleration coefficient of particule. 

2 1c = : acceleration coefficient of essaim. 

max 1.5Vit = : maximal velocity. 

min 1.5Vit = − : minimal velocity. 

max 100I = : maximum number of iteration. 

01min 0C = : lower bound of variable 01C . 

01max 5C = : upper bound of variable 01C . 

10min 0C = : lower bound of variable 10C . 

10max 5C = : upper bound of variable 10C . 
Initialize population of particles having positions and velocities 

( ) ( )01 01min 01max 01min 1,C C C C rand n= + − ∗  
( )01 min 01 1,VC Vit C rand n= ∗ ∗  

( ) ( )10 10min 10max 10min 1,C C C C rand n= + − ∗  
( )10 min 01 1,VC Vit C rand n= ∗ ∗  
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Evaluation 
Set iteration 1k = . 
Calculate fitness of particles ( ) ( )F Cp F Cg< ; and find the index of the best 

particle p g= . 
Update velocity and position of particles 

( ) ( )
( ) ( )

1
01 , 01 , 1 01 , 01 ,

2 01 , 01 ,

1

1

k k k k
i j i j boni j i j

k k
boni j i j

VC w VC c rand Cp C

c rand Cg C

+ = ∗ + ∗ −

+ ∗ −
 

1 1
01 , 01 , 01 ,

k k k
i j i j i jC C VC+ += +  

( ) ( )
( ) ( )

1
10 , 10 , 1 10 , 10 ,

2 10 , 10 ,

1

1

k k k k
i j i j boni j i j

k k
boni j i j

VC w VC c rand Cp C

c rand Cg C

+ = ∗ + ∗ −

+ ∗ −
 

1 1
10 , 10 , 10 ,

k k k
i j i j i jC C VC+ += +  

with ( )min max min maxw w w w iter I= + − ∗ . 
Evaluate fitness 

( ) ( )bonend bonendF Cp F Cg=  
If maxk I<  then 1k k= +  and goto step update velocity and position of par-

ticles else goto. 
Print optimal solutions 

bonend bonendCp Cg=  
STOP 

 
The methodology presented in this section is summarized in the flowchart 

presented in Figure 2. 

5. Results and Discussion 
5.1. Pure Torsion Application 

The application of combined finite axial stretch and finite torsion to a solid right 
cylinder of length l and radius is described in Rivlin’s works (1949). The cylinder 
is first subjected to a simple extension in which its length increases and its radius 
decreases. Then, it is subjected to a simple torsion. 

In the pure torsion case, the cylinder is maintained unextended, so that 1λ = , 
Equations (9) and (10) become: 

3
0

1 2

4 d .
a W WM r r

I I
 ∂ ∂

= Ψ + 


π


∫                  (18) 

and 

2 3
0

1 2

2 2 d
a W WN r r

I I
 ∂ ∂

− = Ψ + 
 

π ∫                 (19) 

The analytical expressions of the torsional couple (M) and load force (N) cal-
culated for each model in this case are summarized in Table 1. 
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Figure 2. PSO Flowchart. 

 
Table 1. Analytical solutions of load force N and torque M calculated on pure-torsion 
test. 

Models Torque M and load force N expressions 

Mooney-Rivlin ( )4
10 01M a C CΨ +π=  

 2 4
10 01

1
2

N a C C = − Ψ +


π 
  

Yeoh 4 2 2 4 4
10 20 30

1 1 34
4 3 8

M a C a C a Cπ  = Ψ + Ψ + Ψ 
   

 2 4 2 2 4 4
10 20 30

1 1 32
4 3 8

N a C a C a C = − Ψ + Ψ + Ψ


π 
  

Fung ( )2 2 2 2 2 2
3

2 1 exp expa aCM aβ β β
β

Ψ Ψ= − + Ψ
Ψ
π

 

 ( )2 2 2 2 2 2
2 1 exp expa aCN aβ β β
β

Ψ Ψ

Ψ
π

= − − + Ψ
 

Gent-Thomas ( ) ( )( )4 4 2 2 2 2
2 1 2 23 6 ln 3 2 6 ln 3M K a K K a K a= + Ψ −

Ψ
π

+ Ψ Ψ +
 

 ( ) ( )( )4 4 2 2 2 2
2 1 2 22 12 ln 3 4 12 ln 3

2
N K a K K a K a= − + Ψ + Ψ − Ψ +

Ψ
π
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5.1.1. Optimization of Material Parameters 
The optimization of the material parameters already described above is carried 
out in the case of pure torsion. The experimental data are those of Rivlin [41] 
and the analytical expressions of the torque are those given in Table 1. An opti-
mization particle swarm algorithm was used to fit material constants’ best values 
by minimizing the objective function. 

Fitness evaluation 
Finally, the algorithm must evaluate the fitness level between the experimental 

and theoretical curves. In this case, it is clear that the fitness function must be 
related to the error between the curve created with a set of optimized parameters 
and the data obtained with the real test. The process of fitness evaluation is 
aimed at determining the margin of error. So, when the error of the curve is near 
to zero, fitness is near to 100. 

Relative error is defined by 

exp model

exp

M MM
M M

−∆
=                     (20) 

where expM  is the experimental torque and modelM , the theoretical predicted 
response of the model. The calculation of the relative errors generated in the fit-
ting process presented in Figure 3 reveals that the relative errors are 0.012, 
0.015, 0.016 and 0.016 for Mooney-Rivlin, Fung, Gent-Thomas and Yeoh mod-
els, respectively. 

Both generated and approximated curves are presented in Figure 4 to show 
case the results obtained. From Figure 4, it can be observed that all the curves 
almost coincide along all the strain domain. It can thus be concluded that if  

 

 
Figure 3. Plot of the relative error. 
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Figure 4. Best fit material parameters optimization: torsional torque curves on pure tor-
sion test. 

 
Table 2. Results of the identified parameters. 

Models Materials parameters optimized, kPa 

Mooney-Rivlin 10 0.2914C =  

 01 0.09C =  

Yeoh 10 0.38C =  

 3
20 1.06 10C −= ×  

 5
30 4 10C −= ×  

Fung 283.038C =  

 0.1091β =  

Gent and Thomas 1 0.2259K =  

 2 0.4990K =  
 

enough amount of data is used to fit the curve, the results will converge and cor-
rectly match the input data. The quest in this work for a proper match between 
the experimental and theoretical torsional torque curve of each model, led to the 
determination of the values of the material parameters which are presented in 
Table 2. 

5.1.2. Verification of the Identified Material Parameters 
To verify the accuracy of the optimized parameters, the identified constants in 
Table 1 were employed to predict the corresponding responses of the load force 
curve (N). The resulted calculated were compared with the data and plotted as 
presented in Figure 5. Based on the identified parameters, Figure 5 shows 
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agreement between the experimental and calculated results curves. This suggests 
that the proposed identification method by using PSO is reliable and efficient. 

5.2. Characterization of Hyperelastic Models  
by Combined Tension-Torsion Test 

Prediction of Tension-Torsion Behavior 
In the case of combined tension and torsion, the uniaxial extension is kept con-
stant during torsion. The analytical expressions of the torque M of the deformed 
cylinder are presented with each model in Table 3 and the simulation results of  

 

 
Figure 5. Verification of identified material parameters: load force curves on pure torsion 
test. 

 
Table 3. Analytical solutions of torque M calculated on combined tension and torsion 
loading. 

Models Torsional couple M expressions 

Mooney-Rivlin 4
10 01

1M a C C
λ

π  = Ψ + 
   

Yeoh 

4 4 4 2 2 2 2
30 20 30

2
4 2 2

10 20 30

3 1 24 2 6 3
8 6

1 2 24 2 3 3 3
4

M a a C C C a

a C C C

λ λ λ
λ

λ λ λ
λ λ

π

π

   = Ψ Ψ + Ψ + Ψ + −   
   

     + Ψ + + − + + −              

Fung ( ) ( )( )2 2 3 2 2 33 23 (2 )/ 2 2
3

2 exp exp exp expa aCM aβ λ λ λ β λ λ λβ β λ λ β
β

Ψ + Ψ + +− += − +
π

Ψ
Ψ  

Gent-Thomas 
( ) ( )( )

( ) ( )( )

3 3 3 4 4 2 2
2 2 1 23

2 2 3 3 2 2 3
2 23

2 ln 1 2 4 ln 1 2 2

2 ln 1 2 4 ln 1 2

M K K K a K a

K a K a

λ λ λ λ λ
λ

λ λ λ λ λ
λ

= + + + + Ψ + Ψ
Ψ

− Ψ + + + Ψ + +
Ψ

π

π
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the torque in Figures 6-9. 
To investigate the prediction power of the mechanical behaviour of hyperelastic 

models using combined tension and torsion test, the material parameters were de-
termined for the first time by the PSO algorithm. This mechanical study shows that 
exponential and logarithmic strain energy functions do not give a good prediction 
of the tension-torsion test. The Fung (Figure 6) and Gent-Thomas (Figure 7)  

 

 
Figure 6. Prediction of tension-torsion curve by Fung model. 

 

 
Figure 7. Prediction of tension-torsion curve by Gent-Thomas model. 
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Figure 8. Prediction of tension-torsion curve by Yeoh model. 

 

 
Figure 9. Prediction of tension-torsion curve by Mooney-Rivlin model. 

 
models failed at small torsion angles. It is at intermediate angles that these two 
models reproduce the tensile-torsional test curve. The polynomial models are good 
models for the prediction of the tensile-torsional stress. Yeoh’s model produces the 
tensile-torsional test up to a value of 0.7 rad cmΨ = , then changes concavity 
(see Figure 8) due to the absence of 2I  in this model. Among the selected mod-
els, the Mooney-Rivlin model, the most accurate model to reproduce the shape 
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of the experimental curve, as shown in Figure 9. The PSO method used in this 
work thus allowed for a qualitative mechanical characterization of the hyperelas-
tic models. 

6. Conclusions 

The aim of this work was to identify the parameters of hyperelastic incompressi-
ble isotropic materials models using PSO algorithm through the combined ten-
sion and torsion loading test. Four classical hyperelastic models were used based 
on the simulation of their torque and force curves to determine that is the best 
theoretical model capable of reproducing the mechanical behavior for rubber-like 
materials under tension-torsion loading. An optimization particle swarm algo-
rithm was used to fit material constants’ best values on the pure torsion test. 
These parameters were then validated and used to simulate the tension-torsion 
behavior. All in all, the results of the study revealed that: 

1) The combined tension and torsion test’s mechanical behavior can be accu-
rately adjusted by using the polynomial hyperelastic models with a good agree-
ment with the Rivlin’s data for the torsionnal couple curve; 

2) The particle swarm optimization algorithm can be successfully used for 
hyperelastic characterization and for the generation of best material parameters; 

3) The models capable of better reproducing the mechanical behavior of rub-
ber materials from the combined tension and torsion test depend on the two in-
variants of Cauchy-Green 1I  and 2I . 
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