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Abstract 
Three aluminium channel sections of US standard extruded dimension are 
mounted as cantilevers with x-axis symmetry. The flexural bending and shear 
that arise with applied axial torsion are each considered theoretically and 
numerically in terms of two longitudinal axes of loading not coincident with 
the shear centre. In particular, the warping displacements, stiffness and stress 
distributions are calculated for torsion applied to longitudinal axes passing 
through the section’s centroid and its web centre. The stress conversions de-
rived from each action are superimposed to reveal a net sectional stress dis-
tribution. Therein, the influence of the axis position upon the net axial and 
shear stress distributions is established compared to previous results for each 
beam when loading is referred to a flexural axis through the shear centre. 
Within the net stress analysis is, it is shown how the constraint to free warp-
ing presented by the end fixing modifies the axial stress. The latter can be 
identified with the action of a ‘bimoment’ upon each thin-walled section. 
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1. Introduction 

A pure torsion applied to the longitudinal axis of a thin closed section is referred 
to the St Venant torsion theory when the ends of a beam are free to carry equal 
but opposing torques. Here the shear stress in a thin wall and the angular twist 
between the ends are found from a torsion theory which simplifies to three-part 
formula: T = GJdθ/dz = 2Aq, when the section is uniform in a single material. 
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There is no requirement to specify the axis of torsion in that A refers to an area 
enclosed by the mean wall closed perimeter and the St Venant torsion constant 

24 / d /J A s t= ∫  is a property of the cross-section. In the case of a thin-walled 
open section a different theory applies in which the St Venant torque is supple-
mented by the Wagner Kappus torque. The latter arises with the change that 
occurs to the natural warping displacements for the closed tube when the section 
has an opening. A further alteration to the warping occurs when as, in this paper, 
torsion is applied to an open section cantilever beam in which one end is 
clamped to prevent any axial warping displacement from occurring at that end. 
Moreover, the influence of the clamped fixing extends over the full length to 
modify the ‘free’ warping displacements that would otherwise be found under 
torsion of an open section beam with unclamped ends. The influence of the axis 
of torsion upon a clamped-end cantilever beam is investigated here following 
previous analysis [1] of this beam where the torsion was applied at the free end 
about the beam’s flexural axis. Where the beam section is uniform throughout 
the length the flexural axis refers to a straight longitudinal axis through the shear 
centre at every section of the beam. The analyses are complicated by the fixing 
involving: (1) the location of the position of the beam section’s shear centre; (2) 
calculation of the axial stress distribution in the thin walls due to the beam’s 
fixed-end constraint and (3) accounting for the corresponding increase in tor-
sional stiffness between the ends due to the end fixing. No flexure (bending and 
transverse shear) occurs with torsion applied to the axis at E provided that axis 
coincides with the length axis at the section’s centre of twist. The latter axis re-
fers to points in the cross-section that do not rotate. The assumption of coinci-
dence between axes at the centres of twist and shear is often made [2] but has 
been questioned from a minimal energy condition imposed by an absence of ro-
tation. Other approaches might test the assumption of co-incidence more di-
rectly, as here, when the axis of torsion is deliberately shifted away from E. Here, 
two further torsion axes are considered: one through the section’s centroid G 
and the other through the web centre O. By implication points along torsion 
axes passing through G and O will rotate and thereby influence the behaviour 
listed above in (1)-(3). The many equations required to reveal the trends that 
each shift involves are summarised below. These are applied to three standard 
US channel sections mounted with the web in a vertical disposition carrying two, 
equal length, horizontal flanges. 

Equation Summary 
The equations listed below are used for the calculations that follow. The deri-

vations of all equations can be found in [1]. Here certain equations have been 
adapted often in non-dimensional form to the specific US Imperial dimensions 
of the three channel sections investigated. For example, (GJ/Td 2)w appears as 
the chosen non dimensional measure of small warping displacements allowing 
the physical displacement w to be calculated from material and sectional constants: 
G, J, and d, under a given torque T. Similarly, the primary warping constant ΓI 
takes a normalised form: ΓI/(ta2d 3) in which a, d and t are section dimensions. 
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 i iAX A X′ = ∑   

 2 2
I d d

s
y t s t syΓ = − ∫∫

   

 31
3

J bt= ∑   

 2
IGJ Eµ Γ=   

 ( )( ) ( ) ( ) ( )1 exp 2 1 1 exp 2T G J L L L Lθ µ µ µ µ µ = + − − + + −      

 ( ) 2o EGJw T y Ay= − − = −   

 ( )1 cosh coshow w L z Lµ µ= − −     

 ( )1 1 coshow w Lµ= − , for z L=   

( )( ) ( )2o Ew yT GJ y A T GJ= − − = −  

Rate of Twist 

 ( ) ( )d d 1 cosh coshz T GJ L z Lθ µ µ= − −     

Integrating w. r. t. z for θ(z): 

 ( ) ( ) ( ){ }sinh sinh coshz T GJ z L z L Lθ µ µ µ µ= + − −     

For z = L, this will result 
( ) ( ) ( ) 11 tanhL T GJ L Lθ µ µ− = −   

 
( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

2 2

2 2

1 1 e 1 e

1 1 e 1 e

L L

L L

L TL GJ L L L

T GJ L L

µ µ

µ µ

θ µ µ µ

µ µ µ

− −

− −

 = − + + + 
 = − + + + 

  

Stress Constraint 

( )d d d 2 d d dz EE w z E A z zσ θ= = − ×  

in which, from Equation (8a) 

( ) ( )2 2d d sinh coshz T GJ L z Lθ µ µ µ= −    

( )
( ) ( )

2 22 d d 2

2 sinh cosh

z E E

E

A E z A E

A ET GJ L z L

σ θ θ

µ µ µ

′′= − = −

= − −  
 

Alternatively, with 2
IGJ Eµ Γ= : 

 ( ) ( )I2 sinh coshz EA ET L z Lσ µΓ µ µ= − −     

( ) ( )2 sinh coshz EA ET GJ L z Lσ µ µ µ= − −    

and from Equation (7b): 

 ( )sinh coshz oEw L z Lσ µ µ µ= −     

Equation (8a) applies to 0 z L≤ ≤  

( ) ( )I2 sinh coshz EA T L z Lσ µΓ µ µ= − −    

which attains its maximum for z = 0 

( )I2 tanhz EA T Lσ µΓ µ= −  
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( ) ( ) ( )2 2
I2 1 e 1 eL L

z EA T µ µσ µΓ − −= − × − +  

( ) ( ) ( )2 2
I 1 e 1 eL L

z Tyy µ µσ µΓ − −= − − × − +  

 ( ) ( ) ( )2 2
I 1 e 1 eL L

z Ty y µ µσ µΓ − −= × − +−   

2. Channel Section—Axial Torsion at Centroid G 

This section and the next examine the effect of a shift in the axis of torsion, away 
from the shear centre, upon the unconstrained warping displacements. Firstly, 
the axis is shifted from the shear centre E to pass through the channel’s centroid 
G. The position X’ of G from the web centre in the X direction (see Figure 1) 
follows from Equation (1) given above as: 

 i iAX A X′ = ∑  (1) 

( ) ( )2 2 2dt at X at a′+ = ×  

( )2 2X a d a′ = +  

Here (twice) the swept areas GA  are required between G and the section’s 
perimeter points 1, 2, 3, ∙∙∙, 7 in Figure 1(a). 
 

 
Figure 1. Channel section with swept areas taken from centroid G. 

 
Three calculations are sufficient to construct the swept area plot given in Fig-

ure 1(b). Starting from the free edge at position 1, the three triangular areas are 
identified: 

( ) ( )13 2 2 2 2GA a d ad= × =    

( ) ( ) ( )2
34 2 2 2 2GA X d a d a d′= × × = +  

( )( ) ( )134 13 34 2 2 3 2G GA A A ad d a d a= + = + +  

from which the mean co-ordinate y  for Figure 1(b) follows: 

d d
s s
y s sy=∫ ∫
  

( ) ( ) ( )( ) ( ) ( )2 2 2 2 2 2 2 3 2 4a d ad a ad ad d a d a dy+ = × + + + +  
  

( )( ) ( )22 24 7 4 2 2ad ad a ay d d= + + +  

( )( ) ( ) ( ) ( ) 222 1 4 7 4 2 1 2d a d a d a dy a d = + + +   
  
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The straight-line equations: y = y(s), describing the sides of the plot in Figure 
1(b) and the integrals 2d

s
y s∫  for the warping constant, in Equation (2) are  

evaluated, with t constant, as follows: 
1-3 for 0 s a≤ ≤  

( ) ( )2 3 3 32 2 22; d 2 d 2 3 12
s s
yy ds s d ss d a a d= = = × =∫ ∫  

3-4 for 2a s a d≤ ≤ +  

( ) ( )( ) ( ) ( )2 22 2 2 2 2y ad a d a d d s a ad a s a d a= + + × − = + − +  

( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

22

22 2 33 2

2d 2 2 d

2 2 2 2 2 1 3 2 2

s s
s ad a s a d a s

ad d a d d a d a d a d

y  = + − + 

   = + + + +   

∫ ∫
 

Hence, for the whole cross-section, the two terms appearing in the primary 
warping constant ΓI follow from the summary Equation (2) given above 

 2
I

2 d d
s s
y t sts yΓ = −∫ ∫

  (2a) 

where: 

 

( ) ( ) ( ) ( ){
( ) ( ) ( ) }

( ) ( )( ) ( )( ) ( )

( )( ) ( )

2 23 3 3

2 32

2 3

2 2

2 d 2 12 2 2 2 2 2

1 3 2 2

2 1 3 1 2 1 2 1 2

1 6 1 2

s
s t a d ad d a d d a d

a d a d

ta d a d a d a d

a d a d

y t  = + + + 

 + + 

= + + +
+ + 

∫

 (2b) 

 ( ) ( )( ) ( ){ } ( )
222 2 2 2d 2 4 7 4 2 2 2

s
s a d t ad ad a d a dt ty a dy = + = + + + × +∫

   (2c) 

Equations 2(a)-(c) are applied to the three channel geometries as follows: 
Section A: ( )1 2'', 1'', 1 16'', 300 mm 11.81''a d t L= = = =  

1 2, 1 16, 25.4 mm, 300 mma d t d d L= = = = . 210 GPaE = , 70 GPaG =  

( ) ( )( ) ( )( ) ( ) ( )( ) ( )

( )

2 22 3

2

2

4

d 2 1 3 1 2 1 2 1 2 1 2 1 1 1 6 1 2 1 1

77 192
s

s ta d

ta

t

d

y  = + + + + + 
=

∫  

( )( )( ) ( )22 2 1 4 1 2 7 2 4 4 1 2 1 1 13 64y d = + + + =  

( ) ( ) ( )
22 2 2 32 13 64 2 169 512a d t d a d t ty a d+ = + =  

1) Constants 
The following constants are calculated for this Section A. 

 ( ) ( )2 3 2 3 5
I 77 192 169 512 109 1536 0.5677ta d ta d taΓ = − = =  (2) 

( ) 2 3 5 6
I 109 1536 1.5875 12.7 25.4 2.9775 10 mmΓ = × × × = ×  

 ( )( ) ( )( )3 3 3 42 3 4 3 2 12.7 25.4 1.5875 3 67.746 mmJ a d t at= + = = × + =  (3) 

 ( )3 5 2
I 4 9 0.5677 0.8848GJ E at ta t aµ Γ= = × =  (4) 
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( ) ( )3 3 5 3 170 10 67.746 210 10 2.9775 10 8.71 10 mmµ − −= × × × × × = ×  

( )( ) ( )( )0.8848 0.8848 1 8 300 12.7 2.613L t a L aµ = = =  

( ) ( ) 3exp 2 exp 5.226 5.375 10Lµ −− = − = ×  

cosh cosh 2.613 6.857Lµ = =  

( )cosh 2 cosh1.307 1.983Lµ = =  

2) Torsional Stiffness 

 
( )( ) ( ) ( ) ( )

( ) ( )2 3 4

1 exp 2 1 1 exp 2

0.8848 4 0.6159 0.72663

T G J L L L L

t a at t a

θ µ µ µ µ µ = + − − + + −   

= × × =
 (5) 

3

3

0.7266 70 10 1.58754 12.7
25.436 10 N mm rad 25.436 N m rad

T θ∴ = × × ×

= × ⋅ = ⋅
 

3) Unconstrained Warping Displacements 
These displacements wo, which are independent of length, follow from 

( )oGJw T y y= − −                   (6) 

Equation (6) gives at each median point. 1, 3 and 4: 

( ) ( )1 7o oGJ T w GJ T w y= =   

( ) ( )3 5 2o oGJ T w GJ T w ady= = −  

( ) ( )( ) ( )4 2 3 2oGJ T w ad dy d a a= − + +  

At 1, ( ) ( )2
1 10 : 0 13 64oy GJ T w d= = − −  

( )2
1 13 64oGJ Td w∴ =  

At 3, ( ) ( )2 2
3 32 : 2 13 64oy ad GJ Td w ad d= = − −  

( ) ( ) ( )2
1 2 13 64 1 4 13 64oGJ Td w a d= − − = − −  

( )2
1 3 64oGJ Td w∴ = −  

At 4, ( )( ) ( )3 2 3 2y ad d a d a= + +  

( ) ( )( ) ( ) 2
4 2 3 2 13 64oGJ T w ad d a d a d = − + + −   

( ) ( )( )( ) ( )
( )( )( ) ( )
( )

2
4 1 2 1 3 1 2 13 64

1 2 1 2 1 3 2 1 1 13 64

5 16 13 64

oGJ Td w a d a d a d= − + + −  

= − + + −  
= − −

 

( )2
4 7 64oGJ Td w∴ = −  

4) Constrained Warping Displacements 
With one end fully constrained these displacements w = w(z) follow from Eq-

uations (7a), (7b): 

 ( )1 cosh coshow w L z Lµ µ= − −    (7a) 

for which, with z = L at the free-end, the constrained warping displacements be-
come: 
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 ( )1 1 coshow w Lµ= −  (7b) 

in which the multiplication factor ( )1 1 cosh Lµ−  in Equation (7b) modifies the 
unconstrained warping displacement wo at the free end 

( )1 1 6.857 0.854o ow w w= − =  

The warping constraint increases towards the fixing. At the fixed-end the 
cross-section becomes fully constrained in that there are no warping displace-
ments. At the mid-length position Equation (7a) shows for z = L/2 

( )1 cosh 2 coshow w L Lµ µ= −    

( )1 1.983 6.857 0.711o ow w w= − =  

Table 1 applies the coefficients 0.854 and 0.711 to wo giving the constrained 
warping displacements at the end and centre lengths at points 1, 2 and 3 in this 
section. 
 
Table 1. Warping displacements at the free-end and centre lengths with torque at G for 
Section A. 

↓ Position/Point → 1 3 4 

Unconstrained Free End: (GJ/Td 2)wo = 13/64 −3/64 −7/64 

at z = L, 0.854(GJ/Td 2)wo = (GJ/Td 2)w = 0.1735 −0.040 −0.0934 

at z = L/2, 0.711(GJ/Td 2)wo = (GJ/Td 2)w = 0.1444 −0.0333 −0.0778 

 
To read from Table 1 if, say, the constrained displacement is required for 

point 1 at mid length under an axial torque of 1 Nm then the coefficient of 
0.1444 appears within the conversion of the normalised displacement as follows 

( )
( ) ( )

2
1

3 2 3

3

0.711 13 64

0.1444 1 10 25.4 70 10 67.746

1.965 10 mm

w Td GJ

−

= × ×

 = × × × × × 
= ×

 

The constrained warping distribution for this section is examined further in 
the summary that follows in § 3. 

Section B: a/d = 4/7, t/d = 1/14, d = 44.45 mm, L = 1 m 

( )31'', 1 '', 1 8'', 1 m 39.37 ''
4

a d t L= = = =  

( )( ) ( ) ( ) ( )2 22 1 4 4 7 7 4 7 4 4 7 2 1 8 7 358 1575dy  = + + + = 
  

( ) ( ) ( ) ( )( )
2 22 2 2 32 358 1575 2 105 16 358 1575a d t d a d t ta dy + = + =  

( ) ( )( ) ( )( ) ( )

( )( ) ( )

( )( )

2 2 3

2 2

2 3

d 2 1 3 4 7 1 2 1 2 4 7 1 8 7

1 6 4 7 1 8 7

7897 9450 2

s
y t s ta d

ta d

= + + +

=






+ +

∫
 

( ) ( )( ) ( )2 2 3 2 3
I 7897 9450 105 8 358 1575 2 0.07877ta d ta dΓ  = − =   
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1) Constants 
2 3 6 6

I 0.07877 3.175 25.4 44.45 14.17 10 mmΓ = × × × = ×  

( )( ) ( )( )3 3 42 3 2 25.4 44.45 3.175 3 1016.19 mmJ a d t= + = × + =  

( ) ( )
I

3 3 6

3 1

70 10 1016.19 210 10 14.17 10

4.889 10 mm

GJ Eµ Γ

− −

=

= × × × × ×

= ×

 

34.889 10 1000 4.889Lµ −= × × =  

( ) ( ) 6exp 2 exp 9.778 56.68 10Lµ −− = − = ×  

cosh cosh 4.889 66.414Lµ = =  

( )cosh 2 cosh 2.445 5.809Lµ = =  

2) Torsional Stiffness 

( )( ) ( ) ( ) ( )

( ) ( ) ( )( ) ( )3 3

3

1 exp 2 1 1 exp 2

4.889 10 70 10 1016.89 1 exp 9.778 3.889 5.889exp 9.778

89.42 10 N mm rad 89.42 N m rad

T GJ L L L Lθ µ µ µ µ µ

−

 = + − − + + −   
 = × × × × + − + −   

= × ⋅ = ⋅

 

3) Unconstrained Warping Displacements wo 
From Equation (6): 

( )oGJw T y y= − −   

giving at each ‘corner’ position: 

( ) ( )1 5o oGJ T w GJ T w y= =   

( ) ( )2 4 2o oGJ T w GJ T w ady= = −  

( ) ( )3 2oGJ T a eyw d= − +   

At 1, ( ) ( )2
1 10 : 0 358 1575oy GJ T w d= = − −  

( ) 1 0.2273oGJ T w∴ =  

At 3, ( ) ( )2
3 32 : 2 358 1575oy ad GJ T w ad d= = − −  

( ) ( ) ( )2
3 2 358 1575 2 7 358 1575oGJ Td w ad= − − = − −  

( )2
3 0.0584oGJ Td w∴ = −  

At 4, ( )( ) ( )4 2 3 2y ad d a d a= + +  

( ) ( )( ) ( ) 2
4 2 3 2 358 1575oGJ T w ad d a d a d = − + + −   

( ) ( )( )( ) ( )2
4 1 2 1 3 1 2 358 1575oGJ Td w a d a d a d= − + + −    

( ) ( )( )( ) ( )
( )

2
4 1 2 4 7 1 12 7 1 8 7 358 1575

0.3619 0.2273
oGJ Td w = − + + −  
= − −

 

( )2
4 0.1346oGJ Td w = −  
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4) Constrained Warping Displacements 
Again, these follow from Equation (7a) as: 

 ( )1 cosh coshow w L z Lµ µ= − −    (7a) 

for which, with z = L at the free-end, the constrained warping displacements be-
come (Equation (7b)): 

 ( )1 1 coshow w Lµ= −  (7b) 

in which the factor ( )1 1 cosh Lµ−  modifies the unconstrained warping dis-
placements at the free end according to: 

( )1 1 66.414 0.9849o ow w w= − =  

showing the 1 m length almost preserves wo at the free-end. However, the con-
straint increases towards the fixing. At the fixed end the cross-section becomes 
fully constrained in that there are no warping displacements. At the mid-length 
position Equation (7a) shows, for z = L/2: 

( ) ( )1 cosh 2 cosh 1 5.809 66.414 0.9125o o ow w L L w wµ µ= − = − =    

The coefficients 0.9849 and 0.9125 for the end and centre lengths are applied 
to the free warping displacements wo at median points 1, 3 and 4 in the section. 
Table 2 gives the constrained warping displacements within the cross-section at 
the end and centre lengths at each position. 
 
Table 2. Free-end and centre warping displacements for channel Section B with torque at 
G. 

↓ Position/Point → 1 3 4 

Unconstrained Free End: (GJ/Td 2)wo = 0.2273 −0.0584 −0.1346 

at z = L, 0.9849(GJ/Td 2)wo = (GJ/Td 2)w = 0.2239 −0.0575 −0.1326 

at z = L/2, 0.9125(GJ/Td 2)wo = (GJ/Td 2)w = 0.2074 −0.0533 −0.1228 

 
To read from Table 2, say the constrained displacement at point 3 is required 

at mid-length for a torque of 1 Nm then the coefficient of −0.0533 appears in 
calculating w3 as follows: 

20.0584ow Td GJ= − ×  

3 0.9125 ow w=  

2
3 0.9125 0.0584w Td GJ= − × ×  

( ) ( )3 2 3 3
3 0.0533 1 10 44.45 70 10 1016.19 1.48 10 mmw −= − × × × × × = − ×  

Section C: a/d = 1/3, t/d = 1/40, d = 47.625 mm, L = 340 mm 

( )75 8'', 1 '', 3 64'', 340 mm 13.39''
8

a d t L= = = =  

( ) ( ) ( ) ( ) ( )2 22 1 4 1 3 7 1 3 4 1 3 2 1 2 3 43 300dy  = + + + = 
  
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( ) ( ) ( ) ( ) ( )2 22 2 2 32 43 300 2 45 3 43 300a d t d a d t ay t d+ = + =  

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

2 2 3

2 3

d 2 1 3 1 3 1 2 1 3 10 3 1 9 9 6 25

323 450 2
s
y t s ta d

ta d

= + + + × ×  

=

∫
 

1) Constants 

( )2 2 3 2 3
I 323 450 30 43 300 2 0.05072ta d ta dΓ  = − =   

2 3 6 6
I 0.05072 1.1906 15.875 47.625 1.644 10 mmΓ = × × × = ×  

( ) ( ) ( ) ( )3 3 42 3 2 15.875 47.625 1.1906 3 44.654 mmJ a d t= + = × + =  

( ) ( )3 3 6
I

3 1

70 10 44.654 210 10 1.644 10

3.009 10 mm

GJ Eµ Γ
− −

= = × × × × ×

= ×
 

33.009 10 340 1.023Lµ −= × × =  

( ) ( )exp 2 exp 2.046 0.1292Lµ− = − =  

cosh cosh1.023 1.5705Lµ = =  

( )cosh 2 cosh 0.5115 1.1337Lµ = =  

2) Torsional Stiffness 

( )( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )3 3

1 exp 2 1 1 exp 2

3.009 10 70 10 44.654 1 0.1292 1.023 1 1.023 1 0.1292

T GJ L L L Lθ µ µ µ µ µ
−

 = + − − + + −   
 = × × × × + − + +     

337.35 10 N mm rad 37.35 N m radT θ = × ⋅ = ⋅  

3) Unconstrained Warping Displacements 
From Equation (6): 

( )oGJw T y y= − −   

giving at each median= point 1, 3 and 4: 

( ) ( )1 7o oGJ T w GJ T w y= =   

( ) ( )3 5 2o oGJ T w GJ T w y ad= = −  

( ) ( )4 2oGJ T w y d a e= − +  

At 1, ( ) ( )2
1 10 : 0 43 300oy GJ T w d= = − −  

( )2
1 43 300oGJ Td w∴ =  

At 3, ( ) ( )2
3 32 : 2 43 300oy ad GJ T w ad d= = − −  

( ) ( ) ( ) ( )2
1 2 43 300 1 2 1 3 43 300oGJ Td w a d= − − = − −    

( )2
1 7 300oGJ Td w∴ = −  

At 4, ( ) ( ) ( )4 2 3 2y ad d a d a= + +  

( ) ( ) ( ) ( ) 2
4 2 3 2 43 300oGJ T w ad d a d a d = − + + −   
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( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( )

2
4 1 2 1 3 1 2 43 300

1 2 1 3 1 1 1 2 3 43 300

1 5 43 300

oGJ Td w a d a d a d= − + + −  

= − + + −  
= − −

 

( )2
4 17 300oGJ Td w = −∴  

4) Constrained Warping Displacements 
Equation (7a) provides w from knowing wo in 3 above 

( )1 cosh coshow w L z Lµ µ= − −    

for which, with z = L at the free-end, the constrained warping displacement Eq-
uation (7b) becomes: 

( )1 1 coshow w Lµ= −  

in which the factor ( )1 1 cosh Lµ−  modifies the unconstrained warping dis-
placements at the free end to 

( )1 1 1.5705 0.3633o ow w w= − =  

showing that fixing one end of the 340 mm length constrains the free-end warp-
ing to 0.3633wo. The constraint increases further towards the fixing where there 
is no warping when the cross-section becomes fully constrained. At the 
mid-length position Equation (7a) shows for z = L/2 

( )1 cosh coshow w L z Lµ µ= − −    

( )1 1.1337 1.5705 0.2781o ow w w= − =  

The coefficients 0.3633 and 0.2781 for the end and centre lengths are applied 
to the free warping displacements wo at points 1, 3 and 4 in section C. Table 3 
gives the constrained warping displacements within the cross-section at the end 
and centre lengths at each position. 
 
Table 3. Free-end and centre warping displacements for channel Section C with torque at 
G. 

↓ Position/Point → 1 3 4 

Unconstrained Free End: (GJ/Td 2)wo = 43/300 −7/300 −17/300 

at z = L, 0.3633(GJ/Td 2)wo = (GJ/Td 2)w = 0.0521 −0.0085 −0.0206 

at z = L/2, 0.2781(GJ/Td 2)wo = (GJ/Td 2)w = 0.0399 −0.0065 −0.01576 

 
To read from Table 3, say if the constrained displacement at point 4 is re-

quired at mid-span for a torque of 1 Nm then the coefficient of −0.01576 appears 
in calculating w4 as follows 

( )
( ) ( )

2
4

3 2 3

3

0.2781 0.2781 17 300

0.01576 1 10 47.625 70 10 44.654

11.436 10 mm

ow w Td GJ

−

= = × − ×

= − × × × × ×

= − ×
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2.1. Torsional Axis Shift from E to G 

Figure 2 shows the typical distribution of unconstrained (free) warping dis-
placements for each of the three channel Sections A, B and C per unit torque (1 
Nm) applied about the longitudinal centroidal axis through G. The ordinates to 
the diagram as applied to each section are given in Table 4. it will be seen these 
displacements are different from those with the torque applied at the shear cen-
tre E (see here Figures 3(a)-(c)). 
 

 
Figure 2. Unconstrained warping for channel cantilever 
with torque applied about longitudinal centroidal axis. 

 
Table 4. ‘Unconstrained’ warping displacements for channel Sections A, B and C with 
torque at G. 

↓ Section/Point → 1 3 

A: (GJ/Td 2)wo = 13/64 −3/64 

B: (GJ/Td 2)wo = 0.2273 −0.0584 

C: (GJ/Td 2)wo = 43/300 −7/300 

 
To read from Table 4, say if the unconstrained displacements at points 1, 3 

and 4 are required for a torque of 1 Nm applied to Section C, then the corres-
ponding coefficients in Table 4 appear in the respective calculations: 

( ) ( )2 3 2 3
1

3

43 / 300 43 300 1 10 47.625 70 10 44.654

104 10 mm

w Td GJ
−

= × = × × × × ×

= ×
 

( ) ( )2 3 2 3
3

3

7 / 300 7 300 1 10 47.625 70 10 44.654

16.93 10 mm

w Td GJ
−

= − × = − × × × × ×

= − ×
 

( ) ( )2 3 2 3
4

3

17 / 300 17 300 1 10 47.625 70 10 44.654

41.1 10 mm

w Td GJ
−

= − × = − × × × × ×

= − ×
 

It is seen that the free warping at point 4 has been reduced from −0.0411 mm 
to −0.0114 mm by constraining one end (see example from Table 3 above). 
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The difference in unconstrained warping wo arising from a shift in T from E 
to G cannot be explained from static force equilibrium. That is, the torque, when 
constituted as a couple, may be centred at any position along the horizontal axis 
including both E and G and the web centre (to follow). It is the change to the 
in-plane displacements u and v that the shift involves which explains the differ-
ence in wo. With the exception of the centre point of twist, every other point in 
the section is displaced by u and v in the directions of x and y respectively [2] [3] 
[4]. Taking the shear centre to coincide with the centre of twist [5] [6] then E 
does not rotate under T but all other points including G do. Therefore, a rota-
tion applies when T is applied at G. With T applied at E, also identified as the 
section’s principal pole position, the swept areas refer to pure torsion [7] [8]. 
When T is applied at G the swept areas refer to torsion combined with bending 
displacements u and v. Thus, it is the contribution from bending that alters 
warping with the shift in T from E to G. The corresponding differences between 
the free warping displacement distributions for each of the three channel sec-
tions may be calculated from subtracting the ordinates (see Figure 2 and Table 
4) with T applied at G from those with T applied at E [1]. These differences are 
shown for three positions 1, 3 and 4 in each section A, B and C in Table 5 be-
low. 
 
Table 5. Differences between ‘unconstrained’ warping displacements (GJ/Td 2)wo for 
channel sections A, B and C with torque applied at E and G. 

↓ Section/Point → 1 3 4 

A: 
27/128 − 13/64 = 

1/128 
−5/128 + 3/64 = 

1/128 
−17/128 + 7/64 = 

−3/128 

B: 
0.235 − 0.2273 = 

0.008 
−0.0504 + 0.0584 = 

0.008 
−0.161 + 0.135 = 

−0.026 

C: 
27/180 − 43/300 = 

0.0067 
−3/180 + 7/300 = 

0.0067 
−13/180 + 17/300 = 

−0.0156 

 
Figure 3(a) applies to unconstrained warping with the torque applied at E. 

Figure 3(b) applies to unconstrained warping with the torque applied at G. Ta-
ble 5 shows that similar difference distributions appear for all sections, as in Fig. 
3c, when distribution G is subtracted from distribution E. The symmetry in (a) 
and (b) reveals, from their difference in (c), a uniform equal displacement along 
both flanges (points 1, 2 and 3 and 4, 5 and 6). These connect linearly to linear 
distributions in the web giving a negative maximum displacement at the neutral 
axis point 4. Positive ordinates in (c) indicate where unconstrained displace-
ments under a torsion applied at E exceed those from torsion at G. 

2.2. Fixed-End Stress Distribution 

The shift in the axis of torsion from E to G will also influence the fixed-end axial 
stress distribution. For torque T, concentric with the centroidal axis G, the stress  
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Figure 3. Differences (c) between unconstrained displacements from applying torsion 
about (a) axes E and (b) axis G. 
 
constraint in channel section a is found from substitutions appropriate to y  
and ΓI [9] [10]. That is: 

 
( ) ( ) ( )( ) ( )( )I0 1 exp 2 1 exp 2z y y T L Lσ µΓ µ µ=   − × − − + −  (8) 

( ) ( ) ( ) ( )
( )( ) ( )( )

2 50 0.8887 0.5677

1 exp 5.428 1 exp 5.428

z y y T t a a tσ  = − × 
× − − + −



 

which is written as: 

( ) ( )3 2 21.9615 13 64za t T d yσ = −  

where y is taken from the swept area diagram (see Figure 1) for perimeter points 
1, 3 and 4: 

( ) ( )3 2 2
1 10, 1.9615 13 16zy a t T aσ= =  

( )2
1 1.5937zat T σ =∴  

( ) ( )3 2 2
3 32 , 1.9615 13 16 2zy ad a t T a adσ= = −  

( )2
3 0.3678zat T σ = −∴  

( ) ( ) ( ) ( ) ( )3 2 2 2
4 42 3 2 , 1.9615 13 16 5 4zy ad d a d a a t T a aσ= + + = −  

( )2
4 0.8582zat T σ = −  

A comparison is made in §2.3 between the end-constrained stress distribu-
tions with the axes of torsion at E, G and O. 

3. Channel Section—Axial Torsion at Web Centre O 

Here the axial torque is applied to an arbitrary point O along an x-axis of sym-
metry. This point is taken to pass through the web centre (point 4 in Figure 
4(a)). Warping displacements at points 1, 2, 3, ∙∙∙, 7 are to be compared with 
those found previously with the torque axis through the shear centre E [1] and 
through the centroid G, given in §1 above. 

3.1. Primary Warping Constant 

One calculation is sufficient to construct the swept area plot given in Figure 4(b): 

https://doi.org/10.4236/wjm.2024.145005


D. W. A. Rees, A. M. S. Alsheikh 
 

 

DOI: 10.4236/wjm.2024.145005 87 World Journal of Mechanics 
 

 
Figure 4. Channel with swept areas taken from web centre O. 

 

( )2 2 2 2 2oy A a d ad= = × =  

from which the mean co-ordinate y  follows: 

d d
s s

y s sy=∫ ∫


 

( ) ( ) ( ) ( )2 2 2 2 2 2a d y ad a ad d a d ad+ = × + × = +  

( ) ( ) ( )2 2y ad a d a d= + +  

( ) ( ) ( ) ( )2 1 2 1 1 2y d a d a d a d= + +      
  

The straight-line equations: y = y(s), describing the sides of the plot in Figure 

4(b) and the integrals 2d
s
y s∫ , are as follows: 

1-3 for 0 s a≤ ≤  

( ) ( )2 22 2 3 3 32; d 2 d 2 3 12
s s

y ds y s d s s d a a d= = = × =∫ ∫  

3-4 for 2a s a d≤ ≤ +  

( )22 2 32; d 2 d 8
s s

y ad y s ad s a d= = =∫ ∫  

4-5 for 2a d s a d+ ≤ ≤ +  

( )22 2 32; d 2 d 8
s s

y ad y s ad s a d= = =∫ ∫  

5-7 for 2a d s a d+ ≤ ≤ +  

( ) ( ) ( ) ( ) 222 3 22 2 ; d 2 d 12
s s

y ad d s a d y s d a d s s a d= − − + = + − =      ∫ ∫  

Hence, for the whole cross-section the two terms defining the primary warp-
ing constant follow from Equation (2): 

( ) ( )( ) ( ) ( )

2 2
I

23 2 2 3 8

d d

2 12 2 2 2
s s
y t s y t s

t a d a d ad a d a d t a d

Γ = −

= + − + + × +  

∫∫


 

( )( ) ( )( ) ( )( ) ( )2 22 3
I 2 1 12 1 8 2 1 4 1 2ta d a d d a d a a d a dΓ = + − + × +    

3.2. Unconstrained Warping 

The warping displacement w is found in Equation (6) 

( )oGJw T y y= − −   
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giving at each of the ‘corner’ position 1 and 3: 

( ) ( )1 7GJ T w GJ T w y= =   

( ) ( ) ( )3 4 5 2GJ T w GJ T w GJ T w y ad= = = −  

The following constants and equations are applied to each channel that fol-
lows: 

Section A: a/d = 1/2, t/d = 1/16, d = 25.4 mm, L = 300 mm 
1) Constants 

( ) ( )( )( ) ( )( )2 3
I 2 1 24 1 8 1 4 1 4 1 4 2 2 2 9 4ta dΓ = + − +  

( ) 2 3 3 6
I 5 96 218.535 10 mmta dΓ = = ×  

( )3 3 1
I 67.746 3 218.535 10 10.17 10 mmGJ Eµ Γ − −= = × × = ×  

310.17 10 300 3.051Lµ −= × × =  

( ) ( ) 3exp 2 exp 6.102 2.25 10Lµ −− = − = ×  

2) Torsional Stiffness 

( )( ) ( ) ( ) ( )

( ) ( ) ( ) ( )3 3 3 3

3

1 exp 2 1 1 exp 2

10.17 10 70 10 67.746 1 2.25 10 2.051 4.051 2.25 10

23.457 10 N mm rad 23.48 N m rad

T GJ L L L Lθ µ µ µ µ µ
− − −

 = + − − + + −   
   = × × × × + × + × ×   

= × ⋅ = ⋅

 

3) Unconstrained Warping 

( ) ( ) ( ) ( )2 1 2 1 2 1 2 1 2 1 2 1 3 16y d = + + =  
  

( ) 2
1 3 16GJ T w y d= =  

( )2
1 3 16GJ Td w∴ =  

( ) 2
3 2 3 16 2GJ T w y y d ad= − = −  

( ) ( ) ( )3 3 16 1 2 1 2 1 16GJ T w = − = −∴  

Section B: a/d = 4/7, t/d = 1/14, d = 44.45 mm, L = 1 m 
1) Constants 

( ) ( ) ( )( )( )( )( ) ( )2 3
I 2 4 84 1 8 1 4 7 4 15 4 16 49 121 49 225 49ta dΓ = + −  

( )2 3 6 6
I 0.0571 10.28 10 mmta dΓ = = ×  

( )6 3 1
I 1016.19 3 10.28 10 5.7402 10 mmGJ Eµ Γ − −= = × × = ×  

35.7402 10 1000 5.7402Lµ −= × × =  

( ) ( ) 6exp 2 exp 11.4804 10.33 10Lµ −− = − = ×  

2) Torsional Stiffness 

( )( ) ( ) ( ) ( )

( ) ( ) ( ) ( )3 3 6 6

1 exp 2 1 1 exp 2

5.7402 10 70 10 1016.19 1 10.33 10 4.7402 6.7402 10.33 10

T GJ L L L Lθ µ µ µ µ µ
− − −

 = + − − + + −   
   = × × × × + × + × ×   
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386.138 10 N mm rad 86.138 N m radT θ = × ⋅ = ⋅  

3) Unconstrained Warping 

( ) ( ) ( ) ( )2 1 2 4 7 4 7 1 2 4 7 1 22 105y d = + + =  
  

( ) 2
1 22 105GJ T w y d= =  

( )2
1 22 105GJ Td w =∴  

( ) 2
3 2 22 105 2GJ T w y y d ad= − = −  

( ) ( ) ( )2
3 22 105 1 2 4 7 0.0762GJ Td w = − = −∴  

Section C: a/d = 1/3, t/d = 1/40, d = 47.625 mm, L = 340 mm 
1) Constants 

( ) ( ) ( ) ( )( )( ) ( )22 3
I 2 1 36 1 8 1 4 3 2 3 1 9 4 3 25 9ta dΓ = + − × +  

2 3 6 6
I 0.0389 1.2605 10 mmta dΓ = = ×  

( )6 3 1
I 44.657 3 1.2605 10 3.436 10 mmGJ Eµ Γ − −= = × × = ×  

33.436 10 340 1.168Lµ −= × × =  

( ) ( )exp 2 exp 2.336 0.0967Lµ− = − =  

2) Torsional Stiffness 

( )( ) ( ) ( ) ( )

( ) ( ) ( ) ( )3 3

3

1 exp 2 1 1 exp 2

3.436 10 70 10 44.657 1 0.0967 0.168 2.168 0.0967

31.203 10 N mm rad 31.2 N m rad

T GJ L L L Lθ µ µ µ µ µ
−

 = + − − + + −   
 = × × × × + + ×   

= × ⋅ = ⋅

 

3) Unconstrained Warping 

( ) ( ) ( ) ( ) ( )2 1 2 1 3 4 3 2 3 1 2 4 7 1 2 15y d = + + =      
  

( ) 2
1 2 15GJ T w y d= =  

( )2
1 2 15GJ Td w =∴  

( ) ( )( )2
3 2 2 15 2 2 15 1 2 1 3GJ T w y y d ad= − = − = −  

( )2
3 1 30GJ Td w = −∴  

With the torque applied at O, the free (unconstrained) warping displacement 
is constant in the web. Comparisons between free warping displacements from 
torsion applied about axis E and from torsion applied about axes G and O are as 
shown for all sections in Figures 5(a)-(c). 

The ordinates for points 1, 3 and 4 in each section with the torque applied at E, 
G and O are given in non-dimensional form in Table 6. Here the non-dimensional 
displacements appear in multiples of the square dimension a2, these allowing the 
physical displacements to be calculated for points 1, 3 and 4 in channel sections 
A, B and C as required. For example, at the neutral axis (point 4) the warping 
displacement under a torque of 1 Nm applied to section B (a/d = 4/7) are found 
from Table 6 as follows: 
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Figure 5. Influence of the longitudinal axis of torsion upon the unconstrained warping 
displacements for all channel sections: Axes: (a) shear centre E, (b) centroid G and (c) 
web centre O. 

 
at E: 20.493GJw T a= −  

( ) ( )2 2 3 3

3

0.493 0.493 25.4 1 10 1016.2 70 10

4.475 10 mm

w a T JG
−

= − = − × × × × ×

= − ×
 

at G: 20.414GJw T a= −  

( ) ( )2 2 3 3

3

0.414 0.414 25.4 1 10 1016.2 70 10

3.758 10 mm

w a T JG
−

= − = − × × × × ×

= − ×
 

at O: 20.233GJw T a= −  

( ) ( )2 2 3 3

3

0.233 0.233 25.4 1 10 1016.2 70 10

2.115 10 mm

w a T JG
−

= − = − × × × × ×

= − ×
 

3.3. Fixed-End Stress Distributions 

The shift in the axis of torsion from E to O influences the fixed end axial stress 
distribution. For torque T, concentric with the web centre axis O, the stress con-
straint is found from Equation (8) with a change appropriately to y  and ΓI. For 
example, these give for channel section A: 

( ) ( )( ) ( )( )
( ) ( ) ( ) ( )( ) ( )( )

I

2 5

1 exp 2 1 exp 2

0.8887 0.4166 1 exp 5.248 1 exp 5.248

z y y T L L

y y T t a a t

σ µΓ µ µ = − × − − + −

 = − × × − − + −













 

which is re-arranged as: 

( ) ( )3 2 22.6726 3 4za t T a yσ = −  

where y is taken from the swept area diagram (see Figure 4(b)) for perimeter 
points 1, 3 and 4: 

( ) ( )3 2 2
1 10, 2.6726 3 4zy a t T aσ= =  

2
1 2.004zat σ =∴  

( ) ( )3 2 2
3 32 , 2.6726 3 4 2zy ad a t T a adσ= = −  

2
3 0.6682zat σ = −∴  
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( ) ( )3 2 2
4 32 , 5.345 3 4 2zy ad a t T a adσ= = −  

( )2
3 0.6682zat T σ = −∴  

which shows that the compression in the web is uniform, this repeating the flat 
swept area feature in the diagram of Figure 4(b). Because similar constrained 
stress distributions will apply to the channel sections B and C it is sufficient to 
reveal their common trend in Figure 6 for section A only below 
 

 
Figure 6. Influence of the longitudinal axis of torsion upon the fixed-end stress state for 
channel section A. Axes: (a) shear centre E, (b) centroid G and (c) web centre O. 
 

The non-dimensional plots (a)-(c) in Figure 6 appear in three oblique views 
which show points of maximum tension and compression at the flange ends 
(point 1 and 7) and web centre (point 4) respectively. Distribution (c) differs in 
showing uniform compression in the web. The stress magnitudes may be 
checked for the non-dimensional co-ordinate calculated for a unit torque (1 Nm) 
below. Thus, the greatest tension and compression at points 1 and 4 across the 
three diagrams are converted to stress magnitudes as follows: 

a) ( )2
1 1.53zat T σ = , ( ) ( )2

1 1.53 1000 12.7 1.5875 47.8 MPazσ∴ = × × =  

( )2
4 0.9634zat T σ = − ,  

( ) ( )2
4 0.9634 1000 12.7 1.5875 30.1 MPazσ∴ = − × × = −  

b) ( )2
1 1.5937zat T σ = ,  

( ) ( )2
1 1.5937 1000 12.7 1.5875 49.79 MPazσ∴ = × × =  

( )2
4 0.8582zat T σ = − ,  

( ) ( )2
4 0.8582 1000 12.7 1.5875 26.81 MPazσ∴ = − × × = −  

c) ( )2
1 2.004zat T σ = , ( ) ( )2

1 2.004 1000 12.7 1.5875 62.61 MPazσ∴ = × × =  

( )2
4 0.6682zat T σ = − ,  

( ) ( )2
4 0.6682 1000 12.7 1.5875 20.88 MPazσ∴ = − × × = −  

which all appear as elastic stresses for the stated unit torque value. 

4. Summary of Constrained Behaviour 

Here the trends made apparent from the specific calculations given above are 
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assembled. To understand the full effect of the fixed-end constraint, first, the 
unconstrained torsional warping displacements are required. When that warp-
ing is constrained, in this case by one end fixing, there are three influences that 
have appeared under an axial torsion. The fixing serves to: (i) modify the free 
warping displacement distribution, (ii) induce axial stress and (iii) alter the tor-
sional stiffness. Moreover, it has been shown that (i), (ii) and (iii) are sensitive to 
the axis of that torque as demonstrated above for axes through the shear centre E, 
the centroid G and web-centre O. 

4.1. Unconstrained Warping 

Figures 5(a)-(c) showed the warping displacement distribution at the free end 
of each channel section. Consistently, for w3 = w4 = w5, the full web depth dis-
places inwardly by a constant compression for an axis at O. This displacement is 
matched by a linear warping distribution with each flange at corners 3 and 5 
where an outward displacement applies to the section’s free ends 1 and 7. With 
the symmetry that appears in warping displacements it is sufficient to refer dis-
tributions in each section to points 1, 3 and 4 for when the torque is shifted from 
a longitudinal axis passing through the shear centre E to one through the web 
centre O and then to another axis through the centroid G. Table 6 summarises 
the normalised unconstrained displacements given as: GJw/Ta2, for sections A, B 
and C from the calculations given above. 
 
Table 6. Dependence of unconstrained normalised warping displacements GJw/Ta2 upon 
the torsion axis. 

 Section A, Axes ↓ Section B, Axes ↓ Section C, Axes ↓ 

↓ Point E O G E O G E O G 

1 27/32 3/4 13/16 0.721 0.642 0.696 27/20 1.2 1.29 

3 −5/32 −1/4 −3/16 −0.154 −0.233 −0.179 −3/20 −0.3 −0.21 

4 −17/32 −1/4 −7/16 −0.493 0.233 −0.414 −13/20 −0.3 −0.51 

 
Table 6 shows that warping displacements in each section do not increase 

with axis shift from the shear centre. In fact, the displacements are the greatest 
for points 1 and 4 and the least for point 3 with torque applied at the shear cen-
tre. Minimum displacement applies to corner points 3 in all sections. 

Note: Unconstrained warping displacements, calculated from swept areas, are 
independent of the beam length. 

4.2. Constrained Axial Stress 

The constrained axial stress is induced when one end is prevented from warping 
but with the other end free to warp partially. There is a similarity in the free 
warping displacement distribution when a torque is applied about axes E, G and 
O for the three different channel sections given above. Therefore, it is sufficient 
to refer the constrained axial stress distribution to the axis E [1] given in Table 7. 
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It follows that axial stress will be distributed similarly to Fig. 6 but with a change 
to its magnitude following a shift in the axes of torsion from E to G and from E 
to O. 
 
Table 7. Conversion of normalised axial stress (at 2/T)σz at median points 1, 3 and 4 to 
(MPa) for three channel cross-sections A, B and C with torque applied at E. 

Section (a × t) → 
Position ↓ 

A: 1/2'' × 1/16'' B: 1'' × 1/8'' C: 5/8'' × 3/64'' 

1 1.530 (47.80) 1.5978 (6.24) 1.004 (44.61) 

3 −0.2834 (−8.85) −0.3421 (−1.34) −0.1171 (−5.20) 

4 −0.9634 (−30.10) −1.093 (−4.27) −0.5076 (−22.55) 

 
The entries given in Table 7 along with the section dimensions (a × t) allow a 

calculation of the stress magnitude (given as MPa in brackets). For example, if a 
‘unit’ torque of 1 Nm is applied across the top line, then the normalised stress 
entries of 1.530, 1.5978 and 1.004 at position 1 for channel sections A, B and C 
are converted to MPa as follows: 

( ) ( ) ( )( )2 2 31.53 1.53 1000 1 2 1 16 25.4 47.8 MPaz T atσ = = × × × =  

( ) ( )22 31.5978 1.5978 1000 1 1 8 25.4 6.24 MPaz T atσ = = × × × =  

( ) ( )( )22 31.004 1.004 1000 5 8 3 64 25.4 44.61 MPaz T atσ = = × × × =  

Under this unit torque such stress magnitudes may be borne by an aluminium 
alloy channel at the fixing without yielding occurring, given that they diminish 
to zero at the free end. 

4.3. Torsional Stiffness 

Table 8 compiles the torsional stiffness for the three sections with the axis of 
torsion passing through points E, G and O. It is seen that an axis shift alters the 
Wagner-Kappus stiffness [11] [12] but not the St Venant stiffness [9] [10]. Pure 
torsion (St Venant’s) applies to each axis in the case of unconstrained ends. That 
is, pure torsion arises from an end couple placed anywhere along the horizontal 
x-axis of symmetry. In the case of constraining one end fully to prevent twist 
then a free-end torque provides a maximum torsional stiffness (Wagner-Kappus) 
only when applied through the axis E. 

Table 8 shows that torsion applied about any other axis (e.g. G and O) in-
volves a contribution from bending with reduced stiffness. The interplay be-
tween section geometry and beam length appears in the central column in which 
every stiffness with an end fixing can be seen to exceed the St Venant’s stiffness 
for a beam with both ends free. 

4.4. Constrained Warping 

The influence of fixing one end upon the warping displacements at the ends and  

https://doi.org/10.4236/wjm.2024.145005


D. W. A. Rees, A. M. S. Alsheikh 
 

 

DOI: 10.4236/wjm.2024.145005 94 World Journal of Mechanics 
 

Table 8. Comparison between Wagner-Kappus and St Venant Torsional Stiffness (Nm/rad). 

Section Axes (T/θ)W-K (T/θ)StV 

A: 1 2'' 1'' 1 16'' 300 mm× × ×  

E 26.67 

15.81 G 25.44 

O 23.48 

B: 31'' 1 '' 1 8'' 1 m
4

× × ×  

E 91.18 

71.18 G 89.42 

O 86.14 

C: 75 8'' 1 '' 3 64 '' 340 mm
8

× × ×  

E 39.79 

9.19 G 37.32 

O 31.20 

 
centre of the beam has been considered with the torque applied through points E, 
G and O of each channel section. For each application it is clear that the dis-
placement is eliminated at the fixing and reduced elsewhere in the length. The 
end constraint extends to the free end where warping under torsion is less than 
that found with both ends free. Table 9 establishes the hyperbolic distribution of 
constrained warping for channel section a with torque applied about axis E. Eq-
uation (7) is applied as follows 

( )1 cosh 2.618 1 6.857ow w z L= − −    

giving w/wo for eleven length positions z/L as in Table 9. 
 
Table 9. Constrained warping for channel section A at one tenth length positions. 

z/L 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

w/wo 0 0.227 0.401 0.534 0.635 0.711 0.767 0.807 0.833 0.849 0.854 

 
The coefficients w/wo are section-dependent. Those given for section a in Ta-

ble 9 are to be multiplied by the free warping displacements wo for points 1, 3 
and 4 etc. at the corresponding length position. The conversion to physical dis-
placement w for the three sections at these positions for end and centre has been 
outlined earlier from Tables 1-3. 

4.5. Trans-Moment 

Some analyses express the constrained axial stress in terms of a bimoment [4] 
but here this stress has been calculated directly from any one of Equations 
9(a)-(c). The net stress given in Figs should agree by either approach but there is 
one further contribution to this net stress that might be influential. That is where 
a moment transfer is introduced in providing a possible further contribution to 
the net axial stress. The trans-moment has its counterpart within the static equi-
valence that applies when a vertical transverse force Fy is shifted from its posi-
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tion within the cross section, say from G, to the shear centre E [1]. That force 
transfer must be accompanied by a torque that is the product ( )y xT F e X ′= + , 
where in a channel section, ( )xe X ′+ , is the horizontal perpendicular distance 
between parallel vertical axes through G and E Here distances X’ and ex lie on 
either side of the web centre respectively. So too, when a bending moment My is 
shifted from acting about its vertical axis y through G to a vertical axis through 
E, that moment must be accompanied by a corresponding trans-moment 

( )y xeM M X= ′+  [2] [3] [4]. This trans-moment is examined in more detail 
[13] where it is suggested how it is converted into a uniform axial stress that is to 
be superimposed upon the axial stress distributions arising from flexural bend-
ing and from the constrained warping. 

5. Conclusions 

The position of the shear centre E in an x-symmetric channel section lies upon 
the x-axis and is separated from the centroid G by a known distance upon the 
same axis. Both E and G are properties of the channel as defined by its geometry. 
With an axis of torsion taken at G and then at the web centre O, the results show 
that respective unconstrained warping displacements differ from applying tor-
sion about the axis at E in channel section cantilever beams with free ends. 
Moreover, with one beam end fixed to eliminate axial warping, the constrained 
axial stress distribution diagrams at the fixing differ between the three axes. 
These constrained stress mirrors in proportion the unconstrained warping dis-
placement that would arise when the constraint is released. Differences between 
these distributions are attributed to rotating axes of torsion passing through G 
and O over the length. It is believed that the displacements at a point in the cross 
section, as they arise from its rotation in the section and warping in the length, 
are attributed to bending under a moment that varies with the beam length. 
With that moment variation, it is suggested that transverse shear arises as the 
moment’s derivative with respect to length. 

Thus, torsion applied to any arbitrary longitudinal axis is likely to introduce a 
bending contribution that would otherwise be absent for torsion applied to the 
flexural axes. 

Conflicts of Interest 

The authors David Rees, and Abdelraouf Alsheikh, have received research sup-
port from the Department of Design. The authors declare that they have no con-
flict of interest. 

References 
[1] Rees, D.W.A. and Alsheikh, A.M.S. (2024) Theory of Flexural Shear, Bending and 

Torsion for a Thin-Walled Beam of Open Section. World Journal of Mechanics, 14, 
23-53. https://doi.org/10.4236/wjm.2024.143003 

[2] Vlasov, V.Z. (1961) Thin-Walled Elastic Beams. Oldbourne Press. 

[3] Al-Sheikh, A.M.S. (1985) Behaviour of Thin-Walled Structures under Combined 

https://doi.org/10.4236/wjm.2024.145005
https://doi.org/10.4236/wjm.2024.143003


D. W. A. Rees, A. M. S. Alsheikh 
 

 

DOI: 10.4236/wjm.2024.145005 96 World Journal of Mechanics 
 

Loads. Ph.D. Thesis, Loughborough University of Technology. 

[4] Alsheikh, A.M.S. and Rees, D.W.A. (2021) General Stiffness Matrix for a Thin-Walled, 
Open-Section Beam Structure. World Journal of Mechanics, 11, 205-236.  
https://doi.org/10.4236/wjm.2021.1111015 

[5] Hoff, N.J. (1943) Stresses in Space-Curved Rings Reinforcing the Edges of Cut-Outs 
in Monocoque Fuselages. The Journal of the Royal Aeronautical Society, 47, 35-83. 
https://doi.org/10.1017/s0001924000100818 

[6] Gjelsvik, A. (1981) The Theory of Thin-Walled Beams. Wiley. 

[7] Williams, D. (1960) Theory of Aircraft Structures. E. Arnold. 

[8] Bleich, F and Bleich, H.H. (1952) Buckling Strength of Metal Structures. McGraw- 
Hill. 

[9] Rees, D.W.A. (2016) Mechanics of Solids and Structures. 2nd Edition, IC Press. 

[10] Megson, T.H.G. (1972) Aircraft Structures for Engineering Students. E. Arnold. 

[11] Wagner, H. (1936) NACA, US. T.M. No. 807. 

[12] Boresi, A.P., Schmidt, R.J. and Sidebottom, O.M. (1993) Advanced Mechanics of 
Materials. John Wiley and Sons. 

[13] Rees, D.W.A. and Al-Sheikh, A.M.S. (2024) The Longitudinal Axis of Loading 
Thin-Walled Beams of Open Section: Combined Flexural Shear, Bending and Tor-
sion of a Cantilever Channel. Engineering, in press. 

 
 
 
 

List of Symbols 

a, d, t cross-section dimensions 
A  cross-sectional area 
X'  centroid position 
ΓI  primary warping constant 
J  St Venant torsion constant 
μ  warping constant 
θ  angular twist 
T  axial torque 
G  shear modulus, G = 70 GPa 
E  modules of elasticity, E = 210 GPa 
w  constrained warping displacement 
wo  unconstrained warping displacement 
σz  axial stress 
y  swept area ordinate 
y   swept area centroid 

z  length co-ordinate 
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