
World Journal of Engineering and Technology, 2023, 11, 965-975 
https://www.scirp.org/journal/wjet 

ISSN Online: 2331-4249 
ISSN Print: 2331-4222 

 

DOI: 10.4236/wjet.2023.114063  Nov. 30, 2023 965 World Journal of Engineering and Technology 
 

 
 
 

Complete Coverage Path Planning Based on 
Improved Area Division 

Lihuan Ma1, Zhuo Sun1*, Yuan Gao2 

1Transportation Engineering College, Dalian Maritime University, Dalian, China 
2School of Maritime Economics and Management, Dalian Maritime University, Dalian, China 

 
 
 

Abstract 
It is difficult to solve complete coverage path planning directly in the ob-
structed area. Therefore, in this paper, we propose a method of complete 
coverage path planning with improved area division. Firstly, the boustrophe-
don cell decomposition method is used to partition the map into sub-regions. 
The complete coverage paths within each sub-region are obtained by the 
Boustrophedon back-and-forth motions, and the order of traversal of the 
sub-regions is then described as a generalised traveling salesman problem 
with pickup and delivery based on the relative positions of the vertices of each 
sub-region. An adaptive large neighbourhood algorithm is proposed to 
quickly obtain solution results in traversal order. The effectiveness of the im-
proved algorithm on traversal cost reduction is verified in this paper through 
multiple sets of experiments. 
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1. Introduction 

With the development of the field of artificial intelligence in recent years, robot-
ics as its representative product has been applied to various industries. Complete 
coverage path planning (CCPP) [1] is an important part of robot path planning 
research, which is the design of a path that traverses all areas of the environ-
ment, based on a priori information obtained from a map of the coverage area. It 
has a wide range of applications, such as maritime waste cleaning and patrolling, 
and path planning for floor sweeping robots. 
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There are three main 3 types of complete coverage path planning algorithms: 
traditional method, grid method and cell decomposition method. Among them, 
the boustrophedon cellular decomposition method (BCD) proposed by Choset 
[2] effectively reduces the complexity of the complete coverage planning prob-
lem. However, the selection of access order between subregions is not considered. 
For the selection of neighboring paths between subregions, Viet HH et al. [3] 
treat each subregion as a point and solve the inter-subregions path planning by 
solving the travelling salesman problem Zhou Lina et al. [4] traversed the adja-
cency graph with the DFS algorithm to find an exhaustive coverage path availa-
ble for traveling salesman. Huang Jiahao et al. [5] established a sub-region adja-
cency graph based on the ant colony algorithm to solve the problem, which can 
quickly and efficiently obtain the visiting sequence of each sub-region. The ex-
isting literatures are solved by establishing the adjacency graph through the rela-
tive location relationship of each sub-region to obtain the access order of 
sub-regions, without considering the impact of inter-subregions path planning 
on the cost of intra-subregions path planning. 

Unlike the existing literature, in this paper, we first partition the map into 
subregions according to BCD, and then treat the vertices of these subregions as 
entry and exit points. The robot can enter or leave the subregion from any ver-
tex, so the problem of obtaining the visiting sequence of each subregion can be 
converted into a problem of the route where the vertices are visited. The robot 
can enter or leave the subregion from any vertex, so the problem of obtaining 
the order in which the robot visits the subregion can be converted into a prob-
lem of the order in which it visits these vertices. Then this problem can be de-
scribed by the generalized traveling salesman problem with pickup and delivery 
(GTSPPD). 

Both generalized traveling salesman problem and traveling salesman prob-
lem with pickup and delivery are NP-hard problems. The solving algorithm 
mainly consists of two parts: the exact algorithm and the heuristic algorithm. 
In terms of exact solutions, VD Šarić et al. converted GTSP into a traveling sa-
lesman problem for solving [6], but the existing solvers for TSP as an NP-Hard 
problem are equally difficult to solve for large-scale cases [7]. Exact algorithms 
for directly solving the GTSP include branch-and-bound algorithms [8], and 
branch-and-cut algorithms [9]. In terms of heuristic algorithm solving, specif-
ic local search algorithms [10], adaptive large neighbourhood algorithms [11], 
genetic algorithms [12]. 

The main contributions of this study are as follows: Firstly, the GTSPPD 
model is developed and solved to improve the complete coverage algorithm based 
on area division. Secondly, the adaptive large neighborhood search (ALNS) al-
gorithm is designed for solving the GTSPPD model with respect to its characte-
ristics. Finally, the efficiency of the improved complete coverage path planning 
algorithm based on GTSPPD and the superiority of the ALNS algorithm is 
demonstrated by the comparison of arithmetic examples. 
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2. Problem Description and Mathematical Model 
2.1. Description of the Problem 

After decomposing the environment map into multiple accessible sub-regions 
by BCD, the complete coverage path includes the coverage path within the 
sub-region and the transfer path between the different sub-regions. The transfer 
path costs of the vertices between different sub-regions are different, while the 
different vertices of the sub-region start and end the coverage of the sub-region 
will also produce different complete coverage paths, so two different paths need 
to be jointly considered for optimization. Thus all vertices of each region are 
treated as a cluster. For each sub-region c C∈ , its internal CCPP can go from 
any point of the corresponding cluster to any point of that cluster. The set of 
start points is denoted as 1 2{ , , , }c cP p p p= …  and the set of end points is de-
noted as 1 2{ , , , }c cD d d d= … . The set of vertices of all subregions in the network 
is denoted as ( )c cc C

V P D
∈

′ = ∪∪ . The set of vertices, including the starting 
point, is denoted { }0V V ′= ∪ . Let {( , ), , }E i j i j V= ∈  be the set of all edges 
in the network, if an edge ( , )i j , 

1c
i P∈ , 

2cj D∈ , 1 2c c= , 1 2,c c C∈ , The edge 
is a complete coverage path within a subregion and the cost is obtained by the 
Boustrophedon back-and-forth motions; if an edge ( , )i j , 

1c
i D∈ , 

2cj P∈ , 

1 2c c≠ , the edge is the transfer edge between two subregions and the cost can be 
calculated by the A^* algorithm [13]. The transfer cost for both cases is denoted 
as dij. if an edge does not satisfy the above two cases, it is a redundant edge add-
ed for modelling convenience considerations and dij is an extreme value M. 

At this point the CCPP requires finding the transfer order that minimizes the 
total path cost between the scan start point and the scan end point for all 
sub-regions, and satisfies the following conditions: 

a) The robot starts from the depot 0 and eventually returns to the depot; 
b) When visiting a polygon c, one of the start vertices cp P∈  is visited and 

then one of the end points cd D∈  is visited afterwards; 
c) Each sub-region needs to be accessed once and only once. 

2.2. Mathematical Model 

This model belongs to the generalized traveling salesman problem with pickup 
and delivery, where the vertices of each subregion are treated as a cluster, the 
start vertex is the pickup point, and the end vertex is the delivery point, assum-
ing infinite carrier capacity and cargo size of 1. With ijx  as the decision varia-
ble indicating whether arc (i,j) is selected and iy  as a variable indicating 
whether vertex i is visited, the GTSPPD model is built as follows: 

,
minimize ij ij

i j V
d x

∈
∑                        (1) 

s.t. 

ij ji i
i V i V

x x y
′ ′∈ ∈

= =∑ ∑    j V∀ ∈      (2) 

1
c

i
i P

y
∈

=∑      c C∀ ∈      (3) 
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1
c

i
i D

y
∈

=∑     c C∀ ∈      (4) 

0 0 1j j
j V j V

x x
′ ′∈ ∈

= =∑ ∑         (5) 

( )1 1j i ijx Mµ µ≥ + − − ∗  , ,i j V i j′∀ ∈ ≠   (6) 

1
c c

ij
i P j D

x
∈ ∈

=∑ ∑     c C∀ ∈      (7) 

{ }0,1ijx ∈     ,i j V∀ ∈      (8) 

{ }0,1iy ∈     ,i j V∀ ∈      (9) 

0iµ ≥     i V ′∀ ∈      (10) 

The objective function (1) is to minimize the routing cost. Constraints (2) to 
(4) indicate that each subregion needs to have one point accessed for both the 
start and end point clusters species and only one point can be accessed. Con-
straint (5) indicates that the mobile robots all start from the starting point and 
return to the starting point. The purpose of constraint (6) is to eliminate sub-
tour. Constraint (7) ensures the continuity of those start and end points that are 
visited within the same cluster. Constraints (8) to (10) define the domains of the 
decision variables. 

3. Adaptive Large-Neighbourhood Search 

The generalized traveling salesman problem with pickup and delivery belongs to 
the NP-hard problem, and the running time of taking the exact algorithm to 
solve the large-scale cases is too long, so an Adaptive Large Neighborhood 
Search algorithm is proposed in this paper for fast solution of this problem [14]. 

3.1. ALNS Framework 

The ALNS algorithm flow is shown in Figure 1. 
A high quality initial solution can speed up the algorithm search efficiency, so 

that the optimization results can be obtained faster. Therefore, a heuristic algo-
rithm is designed to construct the initial solution in this paper. 

The algorithmic procedure of constructing the initial solution by greedy algo-
rithm is as follows: 

Step 1: Initialize an empty path S0. 
Step 2: Add the depot points to S0. Randomly select a cluster and choose the 

two points with the smallest distance to be added to S0. Repeat the process until 
all clusters are visited. 

Step 3: Add the depot points at the end of S0 to get the initial solution. 
Step 4: End. 

3.2. Destroy Operators and Repair Operators 

In this paper, three destroy operators and four repair operators are designed. 
According to the characteristics of GTSPPD, the designed destruction operator  
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Figure 1. Flow chart of ALNS algorithm. 

 
returns the customer point to its corresponding cluster after removing it ac-
cording to the specific destruction rules, and the cluster becomes the cluster to 
be selected as the object selected by the repair operator. The destroying process 
is shown in Figure 2, the first path in the figure indicates the path before de-
stroying, the red dashed line indicates the cluster selected by the destroying op-
erator, and the cluster enters into the area to be selected after removal (the el-
lipse area in the figure). Each destroy operator is described as follows: 

Random destroy operator: randomly select a certain number of clusters and 
remove both the pickup and delivery points belonging to the cluster in the path. 

Worst transfer destroy operator: Remove all the two pickup points and two 
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delivery points with the highest transfer cost between the two sub-areas. 
Complete destroy operator: destroys all vertices in a path. 
Depending on the rules, the repair operator can select a cluster from the re-

moved cluster, select the pickup and delivery points in it, and then repair it to 
the destroyed path. The repair process is shown in Figure 3. According to the 
repair operator, select a cluster from among the set which has the clusters need 
to be selected, select two points from the cluster as pickup and delivery points, 
and then insert them into the damaged path to form a new complete coverage 
path. Each repair operator is described as follows: 

Random repair operator: randomly selects the start and end points in the re-
moved cluster to be repaired to a random position in the path. 

Best repair operator: selects the start and end points of the removed cluster 
with the lowest internal search cost and inserts them as a whole into the location 
with the lowest total path cost change. 

Lowest cost repair operator: Selects the lowest cost start and end points of the 
path from the removed cluster and inserts these two points into the path at ran-
dom. This operator and the best path repair operator can be seen as weaker ver-
sions of the best repair operator, retaining more randomness and enhancing the 
ability of the ALNS algorithm to jump out of local optima. 

Best path repair operator: randomly selects the start and end points from the 
removed clusters and inserts them at the location where the total cost of the path 

 

 
Figure 2. The destroying process. 

 

 

Figure 3. The repairing process. 
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changes the least. 

3.3. Adaptive Strategy 

Adaptive weights: After a new path is obtained in each iteration using the de-
stroy and repair operators, the formula for calculating the score of the removal 
and placement operator used is as follows: 

( ) ( )
{ ,0}

( )
newdistance S distance S

score max
distance S

−
=             (11) 

The formula calculates the latest score of the used operator by the degree of 
improvement of the newly generated paths over the old ones, using a selection of 
0 with the maximum of the new scores to ensure that no negative values are 
generated. A new weight value is then calculated at the end of that round of ite-
rations based on the score, with the new weight value being the weight value of 

( (0,1))b b∈  plus the score of the operator of (1-b). In this paper the initial 
weights and the initial score are both 1. The choice of which destroy and repair 
operator to use is based on the weights in the form of a standard roulette wheel. 

Acceptance function: In addition to directly retaining the result that is better 
than the current optimal solution, the result can also be retained and used as the 
initial solution for the next operation when it satisfies the acceptance function. 
The probability of a new path being accepted is  

{ (( ( ) ( ) / ),1}newmin exp distance S distance S T− , T is the current temperature T in 
simulated annealing. 

4. Case Studies and Sensitivity Analysis 

In this section, different sized arithmetic cases are generated for solving and 
analyzing the results according to the different working environments that the 
mobile robot may encounter. Each algorithm is named by serial number— 
number of clusters—number of vertices—grid precision. All algorithms in this 
section are programmed and implemented in Python 3.9, with Win10 operating 
system, 2.90 GHz CPU and 16 GB RAM. 

4.1. Case Analysis 

In order to verify the effectiveness of the improved algorithm, first the results 
obtained by the improved algorithm were compared with the Boustrophedon 
completecoverage algorithm [5] with the generated paths in a small-scale case. 
After that, in order to verify the effectiveness of the model with the ALNS algo-
rithm, experiments with different scale cases were conducted. In this paper, the 
Gurobi algorithm is used to solve the GTSPPD model and the ALNS algorithm 
to solve the GTSPPD model with the Boustrophedon complete coverage algo-
rithm for different scale comparison experiments, respectively. 

4.1.1. Analysis of Results 
Firstly, experiments are conducted in a small-scale algorithm. In this paper, a 20 
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× 20 grid map with obstacles is randomly generated, and each grid has a length 
and width of 1, where black is the obstacle. The improved area decomposition 
algorithm based on the GTSPPD model with Boustrophedon complete coverage 
algorithm is based on the environment map after cell decomposition to solve the 
complete coverage path, and the map is decomposed by the swept string parti-
tioning method to obtain 11 subregions. The solution results of the improved al-
gorithm with Boustrophedon complete coverage algorithm are shown in Figure 4. 

The improved algorithm gives a total path distance of 393.1 and the Boustro-
phedon complete coverage algorithm gives a total path distance of 439.4. In 
complete coverage path planning, transfer paths used for other than coverage are 
often generated due to factors such as obstacle avoidance, and this part of the 
path includes both sub-region transfer paths and the part of repeated coverage 
within sub-regions, so this part of the path can be regarded as non-working 
paths. Compared with the paths obtained by Boustrophedon complete coverage 
algorithm, the improved algorithm results in 28.1 non-working paths transferred 
between different regions, while the non-working paths obtained by Boustro-
phedon complete coverage algorithm is 74.4, and the non-working path distance 
is reduced by 62.2%. 

4.1.2. Model and Algorithm Performance Validation 
In order to verify the effectiveness of the model and algorithm at different scales, 
this subsection generates 10 arithmetic cases of different scales from small to 
large on grid maps with different accuracies. And according to these 10 cases, 
experiments are conducted, in which the results obtained by the improved algo-
rithm of solving the GTSPPD model by Gurobi solver, the improved algorithm 
of solving the GTSPPD model by ALNS algorithm and Boustrophedon complete  

 

 
Figure 4. Comparison of Complete coverage path planning result. 
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coverage algorithm are compared for each case. The solution results are shown 
in Table 1. Time in the table indicates the time required for the algorithm to 
solve out the subinterval access order, and the solver's solution time is limited to 
1800 s, and bold indicates the minimum cost as well as the shortest solution time 
obtained by different solving methods. The ALNS algorithm in the table solves 
the algorithm when it is a large-scale algorithm, and the solution time is all within 
3 minutes, and the computation time is acceptable in the heuristic algorithm. 

The difference between the results obtained by the ALNS algorithm and those 
obtained by Gurobi is very small, and in some cases the results are even the 
same. As the size of the solution increases, the GTSPPD model solution is not 
guaranteed to be optimal in the required time, and even in the largest cases the 
results are inferior to those obtained by the ALNS algorithm. In terms of solu-
tion time, except for the smallest accuracy cases, the solution time of the ALNS 
algorithm is much smaller than that of the GTSPPD model. This proves the ef-
fectiveness of the ALNS algorithm: results with higher accuracy can be obtained 
in a shorter time. 

In all cases, the improved algorithm outperforms the Boustrophedon com-
plete coverage algorithm, except for the 1-4-16-10 cases where the results are the 
same as the Boustrophedon complete coverage algorithm, and the difference in 
results becomes more pronounced as the size of the cases increases. Although 
the time is longer compared to the Boustrophedon algorithm, this computation-
al time difference is negligible compared to the actual working time. 

The above results show the total path cost and the comparison results of the 
non-working path cost obtained by the improved algorithm with Boustrophedon 
complete coverage algorithm are shown in Table 2. 

The results for the non-working paths in the above 10 cases are shown in Ta-
ble 2, and the GAP calculation formulae in the table are as follows: 

Boustrophedon Boustrophedon( ) /GTSPGAP D D D= − . where DBoustrophedon is the non-working  
 

Table 1. Comparison of total path distances of different algorithms. 

Name Gurobi Time (s) ALNS Time (s) Boustrophedon Time (s) 

1-4-16-10 70.8 0.09 70.8 1.41 70.8 0.5 

2-7-26-20 348.2 1.13 348.2 2.58 367.4 0.39 

3-9-36-40 1417 29.79 1417 3.58 1446.9 0.75 

4-10-40-50 2163.8 20.25 2163.8 4.05 2216.6 0.76 

5-11-44-50 2077.6 1357.53 2077.6 5.89 2144.4 1.67 

6-12-48-100 10,117.3 1800 10,117.3 6.16 10,236.1 2.26 

7-15-60-100 8135 1800 8134.6 8.47 8312.8 2.13 

8-16-64-100 8299.5 1800 8299.5 9.59 8488 2.24 

9-27-108-100 8342.5 1800 8373.4 28.89 8730.2 3.80 

11-52-208-100 10,223.8 1800 10,143 169.89 10,755 11.37 
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distance of the complete coverage path obtained by Boustrophedon complete 
coverage algorithm. From the table, it can be seen that the non-working paths 
obtained by the improved algorithm are effectively reduced compared to the 
Boustrophedon complete coverage algorithm, and in general this trend becomes 
more pronounced as the case size increases, with a maximum reduction of 
63.95%. The results in Table 1 and Table 2 show that the results obtained by the 
GTSPPD model are significantly better than those obtained by Boustrophedon. 
These arithmetic examples fully demonstrate the superiority of the improved 
algorithm in this paper. 

 
Table 2. Comparison of non-working path distance results. 

Name GTSPPD Boustrophedon GAP (%) 

1-4-16-10 2.8 2.8 0 

2-7-26-20 22.2 41.4 46.38 

3-9-36-40 70 99 29.29 

4-10-40-50 92.8 145.6 36.26 

5-11-44-50 127.6 194.4 34.36 

6-12-48-100 203.30 322.1 36.88 

7-15-60-100 265.60 443.8 40.15 

8-16-64-100 250.50 439 42.94 

9-27-108-100 223.50 611.2 63.43 

11-52-208-100 345 957 63.95 

5. Concluding Remarks 

In this paper, to solve the complete coverage path planning problem, a genera-
lized traveling salesman problem model with pickup and delivery is proposed to 
jointly optimize the intra-traversal and inter-regional transfer paths for each 
sub-region according to the total cost. An ALNS algorithm for solving the prob-
lem is also developed for fast solution of the model. The effectiveness of the im-
proved algorithm for solving the complete coverage problem is demonstrated 
through case studies. 
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