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Abstract 
Pile foundations are challenging to build due to subsurface obstacles, con-
tractor ignorance, and difficulties with site planning. Given the unpredictable 
environment of the construction site, productivity losses during pile work are 
to be thought possible. Prior to finishing a site pre-investigation, a founda-
tion’s area is usually sampled for statistical reasons. There are studies on pile 
construction outside of Bangladesh that are supported by relevant empirical 
data in the literature. Since Bangladesh, which is regarded as a third-world 
country, is ignored in this regard, the literature currently available about pile 
building and the associated productivity loss is unable to provide adequate 
information or appropriate empirical data. Due to this pile-building sector in 
Bangladesh has been experiencing a decline in production for quite some 
time now. Before attempting to increase productivity in pile construction, it is 
essential to investigate the potential losses and the variables that might have 
an influence. This study aims to accomplish the following objectives: 1) iden-
tify the primary factors that have an impact on pile construction; 2) develop 
an SVR model that accurately predicts productivity loss; and 3) figure out the 
projected loss by basing it on the historical scenario that is the most compa-
rable to the current one. A Support Vector Regression (SVR) model was de-
veloped after a study of the relevant literature. This model enabled the collec-
tion of 110 pile building projects from five significant locations in Bangla-
desh. The model was constructed using a list of eight inputs in addition to a 
list of five macro elements (labor, management, environment, material, and 
equipment) (soil condition, pile type, pile material, project size, project loca-
tion, pile depth, pile quantity, and equipment quantity). Using 10-way cross 
validation, the SVR achieves an accuracy of 87.2% in its predictions. On the 
basis of what has occurred in the past, we are able to estimate that there will 
be a loss of around 18.55 percent of the total output. A new perspective for 
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engineers studying the delay factors with productivity loss is provided by the 
outcome of important tasks as it relates to loss in productivity and overall 
factors faced. In the building construction industry, effective management 
should place more emphasis on the correlation between productivity loss and 
the factors that cause it. Therefore, to represent the effect on productivity loss, 
real factors can be summed up as a decline in productivity loss. The findings of 
the study would urge specialists to concentrate on waste as a means of in-
creasing overall production. 
 

Keywords 
Productivity Loss, Macro-Effect Factor, Pile Construction, Regression Model, 
SVR Model 

 

1. Introduction 

Productivity can be defined as the connection that exists between a system’s 
output and the input required to produce that result. There are many different 
types of inputs, including laborers, money, energy, and materials. When these 
resources are used, outcomes like products and services are created. The con-
struction sector worldwide is extremely concerned about productivity loss in pile 
construction. It refers to the decline in productivity and efficiency observed 
during the construction of piles, which can cause project delays, increasing ex-
penses, and poor quality work. This review of the literature tries to examine 
current research on productivity loss in pile construction, both globally and in 
the context of Bangladesh. This review highlights the need for empirical data 
that is particular to the construction industry in Bangladesh by analyzing the 
present literature to highlight knowledge gaps. Numerous researches examined 
at productivity loss in pile construction, offering helpful details on the variables 
affecting effectiveness [1]. For instance, study in Singapore found that resource 
limitations, poor site management, and inadequate planning are the key contri-
butors to productivity loss in pile construction [2]. Similar to this study, produc-
tivity concerns elements in pile foundation construction in Indonesia, including 
weather, site accessibility, and equipment availability had a big impact on pro-
duction levels [3]. Research was conducted on additional international study to 
examine the connection between labor productivity and various variables in pile 
construction projects in Hong Kong. According to the research, the main causes 
of lost productivity in the construction industry were insufficient staff, supervi-
sion, and coordination. 

Developed nations have struggled with the issue of how to gauge productivity 
in the building sector since the 1960s. [4] evaluates earlier research on construc-
tion productivity and compares it to more modern methods of quality mea-
surement in order to give guidance for using performance data from construc-
tion projects. [5] claim that using a sample of industrial projects, productivity 
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measures can be created and should be useful in evaluating construction prod-
uctivity. In conclusion, based on the previous research, 19 variables are chosen 
and classified into the following 5 groups: labor, management, environmental, 
material, and equipment [6]. According to Huang, there are three distinct prod-
uctivity levels in the construction business: task level, project level, and industry 
level. According to Park [5], construction productivity rates vary between projects 
because of the various environments, characteristics, and project management 
efforts for each project. For this reason, the emphasis of our study will be on 
project level productivity. As a result, when examining construction productivi-
ty, one should take into account the factors that contribute to variations in 
productivity between jobs. Although strategic levels of management were essen-
tial in boosting building productivity, Chan and Kaka [7] proceeded further in 
their justification for project-based measurement of productivity by emphasizing 
the need to connect it to the projects themselves. In support of this, they cite 
Groak [8], who claims that industry failed by not acknowledging the project lo-
cation as the “defining locus of production organization.” This meant that the 
sector needed to refocus its efforts on improving output on the projects, and in 
order to do this, measurement is essential. 

Equipment damage was the main factor that had an impact on pile construc-
tion activities in Bangladesh. This led to idle time and significantly lower pro-
duction. The second element that greatly reduced productivity, according to [9], 
was labor because workers frequently take breaks outside of the designated break 
period, resulting in idle time. According to an impressive industry study by Winch 
[10], low worker morale led to lower production. In their research on productiv-
ity measurement, Santosh and Apte [11] also found that workers were motivated 
by receiving feedback on their performance. Operator effectiveness, weather, site 
conditions, work management, soil removal system, pouring system, mechanical 
challenges, owner and/or consultant issues, site inquiry, and productivity esti-
mate accuracy are the ten productivity variables that provide a quantitative as-
sessment. The impact of each of these ten factors can be broken down into a va-
riety of different categories or attributes. However, this analysis focuses only on 
the ten major factors without taking into account the supporting variables or 
attributes [12]. The macro environmental forces that impact an organization’s 
performance and strategies include the natural environment, political and legal 
environment, economic environment, demographic environment, and cultural 
environment [13]. 

The most popular statistical method for predicting output is the regression 
model [14]. Using this method, one can establish productivity predictions based 
on actual productivity data and determine the impact of different factors [15]. 
Regression models were used by Hanna et al. [16] to investigate how change or-
ders affect construction output. To describe how weather affects construction 
productivity, Koehn and Brown [17] developed non-linear equations. According 
to the learning curve theory, productivity will increase over time as a result of 
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increased familiarity with the task, better administration, and more effective tool 
and equipment use [18] [19] [20]. In order to forecast productivity, mathemati-
cal learning curve models have been created. For resolving classification and re-
gression issues in a variety of subjects, Support Vector Regression (SVM) has 
emerged as a major learning technique [21]. To maximize hyperplane and input 
data into a support vector is the idea behind SVR. Being able to avoid overfitting 
is the only benefit of SVR [22]. Meanwhile, SVM’s benefits include its capacity 
for generalization, dimensionality curve, feasibility, powerful implication ability, 
quick learning speed, and capacity for precise prediction [23]. 

Despite the fact that these studies from other countries offer insightful infor-
mation about productivity loss in pile construction, it is important to acknowl-
edge that the Bangladeshi context may bring particular difficulties that call for 
special consideration [24]. In contrast to other nations, Bangladesh’s construc-
tion sector operates under unique conditions, including varied labor laws, legal 
frameworks, and socioeconomic factors, all of which may have an impact on 
productivity. Unfortunately, there is limited research on productivity loss in pile 
construction in the context of Bangladesh. However, a few studies that focus on 
specific areas of productivity loss in Bangladesh’s building industry can provide 
initial insights. For instance, a study on the variables influencing productivity in 
Bangladesh’s construction industry was undertaken [25]. Despite the fact that 
the study did not focus solely on pile construction, it did identify labor shortage, 
inadequate project planning, and a lack of sophisticated construction techniques 
as major factors in productivity loss. While this study offers an initial guide, 
more investigation into pile construction in Bangladesh is necessary to acquire a 
better understanding of the difficulties encountered in this particular industry 
[26]. 

There are certain significant gaps that require filling in the existing research 
on productivity loss in pile construction, both internationally as well as in Ban-
gladesh. First off, there aren’t many empirical studies that focus on the Bangla-
deshi context. The majority of research either concentrates on difficulties related 
to general construction productivity or look at pile construction in other na-
tions. Research that explicitly examines productivity loss in pile construction 
within this environment is necessary due to the distinctive characteristics of the 
Bangladeshi construction industry, including local labour practices, cultural is-
sues, and legal frameworks. Additionally, a thorough research of the factors af-
fecting productivity loss in pile construction in Bangladesh is required. It is im-
portant to comprehend how these factors emerge and interact within the Ban-
gladeshi context, even though some worldwide studies have identified common 
reasons of productivity loss. To determine their effect on productivity, factors 
like regional labor practices, cultural dynamics, the accessibility of building sup-
plies, and site-specific difficulties need to be empirically investigated. In conclu-
sion, both generally and in the context of Bangladesh, productivity loss in pile 
construction is a significant concern. A lack of empirical studies that specifically 
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address pile construction in Bangladesh exists despite the fact that international 
studies have offered valuable data. To comprehend the particular difficulties and 
establish practical ways to increase productivity in the Bangladeshi construction 
industry, it is essential to close this gap. 

2. Data Collection and Analysis 
2.1. Research Framework 

According to the study’s mechanism, the research was centered on issues with 
the productivity inadequacies of pile construction projects in Bangladesh. The 
parameters influencing the productivity of pile construction projects in Bangla-
desh are then identified. These statistics were obtained after obtaining from 
multiple projects in Bangladesh. We may look for the baseline value of the 
productivity loss in pile construction using this data. The baseline is used to as-
sess how accurately pile construction output can be predicted. The 1st phase of 
this section is factor analysis, which yields a macro impact factor for the produc-
tivity of pile construction projects. 

The analysis of the data comes next. Data from the first phase are statistically 
analyzed and described at the outset. To convert qualitative data into quantita-
tive data, various factors and data were set up. This procedure was carried out as 
part of the data standardization process, in which all data are stated as a 0 if a 
factor does not occur during working hours and 1 if it does. The data are then 
transformed into a CSV file and added to the data processor in order to meet the 
model’s requirements. 

The third stage involves applying the support vector regression approach to 
generate the model prediction. This stage begins with loading a converted CSV 
file into R and selecting syntax as the classifier. Regression, more specifically 
Support Vector Regression, was used during the development of the model. Set-
ting the parameters that will impact the model’s accuracy is the most crucial step 
at this point. The parameters can be made up of x and y parameters, where y 
stands for the kernel. Root Mean Square Error was used in the validation test to 
examine test accuracy (error rate) and the degree to which the actual value and 
anticipated value correlated with one another. By lowering the factors, the 
process is repeated from the first step if the accuracy value is higher than the 
minimal value. The final phase continues until the greatest accuracy figure is de-
termined to validate the suggested model [27] (Figure 1). 

2.2. Data Analysis 
2.2.1. Overview Data 
110 data points from finished construction projects completed between 2018 and 
2021 were used in the study. All of the projects are construction-related and 
connect to the goal of this research in one way or another. The comparison es-
tablishes pile construction productivity as a macro impact element in Bangla-
desh. The data must meet the following requirements (Table 1). 
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Figure 1. Research procedure. 

 
Table 1. Location characteristics in Bangladesh. 

Characteristic 
LOCATION 

DHAKA SYLHET KHULNA NARAYANGANJ GAZI PUR 

SOIL 
CONDITTION 

Bad soil  
condition/peatland 

Clay + sand 
(mud/silt soil) 

Subgrade  
soil/rock soil 

Clay 
Clay + sand + 

gravel 

TYPE OF  
PILE/foundation 

Raft foundation 

Pre-stressed  
Precast piles 

Anchor  
foundation 

Bored Pile 
(cast in situ) 

Pre-stressed/precast 
piles 

micro piling or  
helical piling 

Pre-stressed/pre 
cast piles + 
bored pile 

Anchor  
foundation 

Size of the Project 
(average 864 m2 

– 
1548 m2) 

Grade 7  
Project of State Minister for State Owned Enterprises 

> 50 billion 

2.2.2. Project Characteristics 
This study used 110 projects from state-owned projects, with grade 7 building 
(highest grade). The projects’ areas ranged from 765 m2 to 1438 m2 (Table 2). 

The information in the table above is an example from a 110 projects from 
state-owned projects that took place from 2018 to 2021. According to the factor 
table, the number 0 denotes obstacle that was on site throughout the specified 
dates, whereas 1 denotes a lack of obstacle. 

For predicting the productivity of pile construction, it’s essential to take site 
characteristics into account. Conditions, environmental conditions, and the lo-
cation of the project site are examples of sub-factors that contribute to making 
up the location characteristic [28] (Figure 2). 

https://doi.org/10.4236/wjet.2023.114062


M. Ahmed, W. Xu 
 

 

DOI: 10.4236/wjet.2023.114062 938 World Journal of Engineering and Technology 
 

Table 2. Sample data collected. 

No. Date 

Pile 
Depth 

Number  
of Pile 

Finish/day 

Total 
Dept. 

Work 
Hour/day 

Equipment 
Sheet 

Total Work 
Hour of 

Equipment 

Daily  
Productivity 

Factor 

m qty m hour qty hour m/hour 
Env. Equip. Labor Material Manage 

1 2 3 = 1 × 2 4 5 6 = 4 × 5 7 = 3/(4*5) 

1 10/11/2021 13 6 78 12 4 48 1.63 0 0 1 0 0 

2 10/12/2021 12 5 60 14 3 42 1.43 1 0 0 1 1 

3 10/13/2021 14 5 70 13 3 39 1.79 0 0 0 0 0 

4 10/14/2021 12 6 72 15 2 30 2.4 0 0 1 0 0 

5 10/15/2021 14 4 56 10 2 20 2.8 1 0 0 1 0 

6 10/16/2021 14 3 42 10 2 20 2.1 0 0 0 0 0 

7 10/17/2021 14 5 70 11 4 44 1.59 0 1 0 0 0 

8 10/18/2021 13 6 78 15 3 45 1.73 0 0 1 0 0 

9 10/19/2021 12 8 96 18 3 54 1.78 0 0 0 0 0 

10 10/20/2021 12 6 72 15 3 45 1.6 1 0 1 0 0 

11 10/21/2021 13 4 52 18 3 54 0.96 0 0 0 0 0 

12 10/22/2021 11 4 44 12 3 36 1.22 0 0 1 0 0 

13 10/23/2021 11 3 33 10 3 30 1.1 0 0 0 1 0 

14 10/24/2021 10 3 30 14 2 28 1.07 0 1 0 0 0 

15 10/25/2021 13 3 39 11 3 33 1.18 0 0 1 0 0 

16 10/26/2021 14 4 56 15 3 45 1.24 1 0 0 0 0 

17 10/27/2021 14 4 56 16 4 64 0.88 0 0 1 0 0 

18 10/28/2021 15 4 60 11 4 44 1.36 0 
 

0 1 0 

19 10/29/2021 12 3 36 15 4 60 0.6 0 1 0 0 0 

20 10/30/2021 13 2 26 13 2 26 1 0 0 1 0 1 

21 10/31/2021 12 4 48 15 3 45 1.07 1 0 0 0 0 

22 11/1/2021 14 3 42 18 3 54 0.78 0 0 0 0 0 

23 11/2/2021 13 3 39 15 3 45 0.87 0 0 1 0 0 

24 11/3/2021 12 3 36 10 3 30 1.2 0 0 0 1 0 

25 11/4/2021 14 4 56 14 2 28 2 0 1 0 0 0 

26 11/5/2021 13 3 39 16 3 48 0.81 0 0 1 0 0 

27 11/6/2021 12 4 48 15 3 45 1.07 1 0 0 0 0 

28 11/7/2021 15 6 90 17 4 68 1.32 0 1 0 0 0 

29 11/8/2021 12 4 48 16 4 64 0.75 0 0 0 1 0 

30 11/9/2021 14 5 70 15 4 60 1.17 0 0 1 0 0 

31 11/10/2021 12 2 24 10 2 20 1.2 0 0 1 0 1 

32 11/11/2021 12 3 36 10 3 30 1.2 1 0 0 0 1 

33 11/12/2021 12 7 84 16 3 48 1.75 0 0 1 0 0 

Summary 
 

139 
   

1392 
 

7 5 13 6 4 
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Figure 2. Project location chart. 

 
In Bangladesh, traditional materials like concrete and steel are usually used as 

piles in construction projects. Because each form of foundation has a unique 
characteristic, they each have a differed impact on project productivity. Figure 
3, Figure 4 detail the different foundation types in each of Bangladesh’s cities. 

In summary, 19 elements are chosen and divided into 5 groups according to 
their characteristics, namely: labor, management, environmental, material, and 
equipment, as shown in Table 3, based on the previous research and data [28]. 

2.3. Factor Analysis 

Factor extraction is the analysis method used in this study [29]. Finding the least 
amount of factors that can be utilized to represent the relationships between the 
set of variables most accurately is known as factor extraction. To establish which 
factors are less likely to have an impact on the accuracy of project pile construc-
tion productivity, the insignificant factors will be identified and assessed. The 
information was gathered from construction projects located all around Bangla-
desh. SPSS software was used to do a factor analysis on the factors that were ob-
tained. Data from the project is inputted to start this process [30] (Table 4, Ta-
ble 5). 

Depending on the sites soil conditions, several projects with the same function 
and attributes might use a different foundation type. Building coverage ratio 
does not accurately reflect the requirements for all projects as the ground floor 
area is standardized while each project’s floors differ. However, in this scenario, 
almost all of the locations are in easily accessible urban areas, making geography 
a negligible concern. This is because Bangladeshi contractors will almost cer-
tainly choose concrete as the structural material for all types of buildings. 

2.4. Macro Impact Factors for Pile Construction Productivity 

The value of the model coefficient multiplied by the binary number of factors 
that happened on each study average day from the first day until the 40th day is  
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Figure 3. Type of pile chart. 

 

 
Figure 4. Soil condition chart. 

 
Table 3. Impact factors affecting productivity. 

Group Factors 

Labor 

Lack of labor skills 

Increase of laborer age 

Labor absenteeism 

Lack of training 

Labor personal problem 

Management 

Poor site management 

Poor communication 

Misunderstanding between labor and supervisor 

Lack of periodic meeting with labors 
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Continued 

Management 

Quality inspection delay 

Weather changes 

Project location 

Environmental 
Working with confined place 

Large project size 

Material 

Material shortage 

Unsuitable material storage location 

Low quality raw materials 

Equipment 
Old and inefficient equipment 

Tools and equipment shortages 

 
Table 4. Macro impact factors input data sample. 

Project 
Data 

Impact Factor Pile  
Construction 
Productivity 

Total 
Factor Env Equip Labor Material Management 

1 7 10 14 5 11 26 47 

2 6 9 10 6 9 21 40 

3 5 8 8 7 8 19 36 

4 7 7 9 7 10 20 40 

5 14 16 20 15 18 41 83 

6 16 8 20 19 12 30 75 

7 16 6 20 17 12 28 71 

8 16 6 20 17 12 28 71 

9 16 8 23 20 11 31 78 

10 11 10 19 14 7 26 61 

11 11 10 18 13 7 26 59 

12 12 6 11 16 10 21 55 

 
Table 5. Demonstrates a data sample that was inserted into the SPSS program me to determine the correlation between 12 of the 
110 components. 

 
Environment Equipment Labor Material Management 

Environment 

Pearson Correlation 1 0.382** 0.807** 0.896** 0.556** 

Sig. (1-tailed) 
 

0 0 0 0 

N 110 110 110 110 110 

Equipment 

Pearson Correlation 0.382** 1 0.467** 0.289** 0.624** 

Sig. (1-tailed) 0 
 

0 00.001 0 

N 110 110 110 110 110 
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Continued 

Labor 

Pearson Correlation 0.807** 0.467** 1 0.779** 0.555** 

Sig. (1-tailed) 0 0 
 

0 0 

N 110 110 110 110 110 

Material 

Pearson Correlation 0.896** 0.289** 0.779** 1 0.483** 

Sig. (1-tailed) 0 00.001 0 
 

0 

N 110 110 110 110 110 

Management 

Pearson Correlation 0.556** 0.624** 0.555** 0.483** 1 

Sig. (1-tailed) 0 0 0 0 
 

N 110 110 110 110 110 

Environment 

Pearson Correlation 1 0.382** 0.807** 0.896** 0.556** 

Sig. (1-tailed) 
 

0 0 0 0 

N 110 110 110 110 110 

Equipment 

Pearson Correlation 0.382** 1 0.467** 0.289** 0.624** 

Sig. (1-tailed) 0 
 

0 00.001 0 

N 110 110 110 110 110 

Labor 

Pearson Correlation 0.807** 0.467** 1 0.779** 0.555** 

Sig. (1-tailed) 0 0 
 

0 0 

N 110 110 110 110 110 

Material 

Pearson Correlation 0.896** 0.289** 0.779** 1 0.483** 

Sig. (1-tailed) 0 00.001 0 
 

0 

N 110 110 110 110 110 

Management 

Pearson Correlation 0.556** 0.624** 0.555** 0.483** 1 

Sig. (1-tailed) 0 0 0 0 
 

N 110 110 110 110 110 

**Correlation is significant at the 0.01 level (1-tailed). 

 
Correlations 

  
Environment Equipment Labor Material Management 

Kendall’s tau_b 

Environment 

Correlation 
Coefficient 

1 0.285** 0.626** 0.754** 0.369** 

Sig. (1-tailed) . 0 0 0 0 

N 110 110 110 110 110 

Equipment 

Correlation 
Coefficient 

0.285** 1 0.320** 0.190** 0.048 

Sig. (1-tailed) 0 . 0 0.004 0.262 

N 110 110 110 110 110 

https://doi.org/10.4236/wjet.2023.114062


M. Ahmed, W. Xu 
 

 

DOI: 10.4236/wjet.2023.114062 943 World Journal of Engineering and Technology 
 

Continued 

Kendall’s tau_b 

Labor 

Correlation 
Coefficient 

0.626** 0.320** 1 0.630** 0.141* 

Sig. (1-tailed) 0 0 . 0 0.026 

N 110 110 110 110 110 

Material 

Correlation 
Coefficient 

0.754** 0.190** 0.630** 1 0.242** 

Sig. (1-tailed) 0 0.004 0 . 0 

N 110 110 110 110 110 

Management 

Correlation 
Coefficient 

0.369** 0.048 0.141* 0.242** 1 

Sig. (1-tailed) 0 0.262 0.026 0 . 

N 110 110 110 110 110 

Spearman’s rho Environment 

Correlation 
Coefficient 

1 0.362** 0.771** 0.882** 0.488** 

Sig. (1-tailed) . 0 0 0 0 

N 110 110 110 110 110 

 

Equipment 

Correlation 
Coefficient 

0.362** 1 0.393** 0.228** 0.078 

Sig. (1-tailed) 0 . 0 0.008 0.208 

N 110 110 110 110 110 

Labor 

Correlation 
Coefficient 

0.771** 0.393** 1 0.762** 0.254** 

Sig. (1-tailed) 0 0 . 0 0.004 

N 110 110 110 110 110 

Material 

Correlation 
Coefficient 

0.882** 0.228** 0.762** 1 0.402** 

Sig. (1-tailed) 0 0.008 0 . 0 

N 110 110 110 110 110 

Management 

Correlation 
Coefficient 

0.488** 0.078 0.254** 0.402** 1 

Sig. (1-tailed) 0 0.208 0.004 0 . 

N 110 110 110 110 110 

**Correlation is significant at the 0.01 level (1-tailed). *Correlation is significant at the 0.05 level (1-tailed). 

 
Assumption 2: KMO must be > 0.5 (satisfied) 
KMO and Bartlett’s Test 

Kaiser-Meyer-Olkin Measure of Sampling Adequacy 0.780 

Bartlett’s Test of Sphericity Approx. Chi-Square 397.197 

 df 10 
 Sig. 0.000 
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the measure of productivity loss. Work hours lost refers to the amount of time 
spent working that is lost due to events that happen during the day [31] (Table 
6, Table 7). 

The next stage is to calculate the amount of productivity loss after calculating 
the model coefficient using the SPSS programmed based on the earlier research 
[32]. This table displays anticipated loss productivity, which is the amount of 
loss productivity multiplied by the model coefficient, when a factor occurred. 
Additionally, work is a value that describes the effectiveness of work hours when 
disruptive factors happened, multiplying the amount of productivity loss by the 
number of hours worked. 

Working hours multiplied by productivity loss and then divided by produc-
tivity at baseline, show the value of work hours lost [33]. Table 8 shows the cal-
culations for the value of lost output and work hours from 110 projects, and 
Figure 5 shows the percentage. 

Out of 11.82490 hours, 175.601 hours were lost working hours. Equipment 
was the element that affected productivity the most because it was likely on some 
of the working days to have some damaged equipment, which resulted in idle 
time and significantly decreased project productivity [34]. 

The second element is labor, as they frequently took breaks outside of break 
times, increasing idle time and lowering productivity. Researchers advise the 
contractor to establish a stricter regulation with a more obvious punishment to 
reduce idle time and lost work hours, improve productivity, and ensure on-time 
project completion. 

3. Model Development 

A machine learning technique called Support Vector Regression (SVR) extends 
the idea of Support Vector Machines (SVM) to carry out regression tasks [35]. 
The goal of SVR is to create a model that, given a collection of input features, 
can forecast continuous output values. 

3.1. Input Selection 

• Identify the problem: Choose the problem that you wish to use SVR to ad-
dress. Any continuous variable prediction problem, such as forecasting stock 
prices or home prices, could be involved. 

• Specify the input attributes: Pick the relevant features that are most likely to 
be related to the target variable. These characteristics, which may be numeri-
cal or categorical, should to offer useful data for forecasting [36]. 

3.2. Data Collection 

• Collect relevant information: Create a dataset that consists of the predicted 
variable (the target variable) and the appropriate input characteristics. A 
broad range of potential input values and target variable variations should be 
covered by the dataset, ideally. 

https://doi.org/10.4236/wjet.2023.114062


M. Ahmed, W. Xu 
 

 

DOI: 10.4236/wjet.2023.114062 945 World Journal of Engineering and Technology 
 

Table 6. Predictions sample model coefficient of each factors. 

Total Work 
Hours (hour) 

Factor Affecting Pile Productivity Loss of Productivity (m/hour) 

     
Env. 

(0.11) 
Equip. 
(0.89) 

Labor 
(0.51) 

Material 
(0.09) 

Manage 
(0.77) 

Env. Equip. Labor Material Manage 
     

32 0 0 0 0 1 0 0 0 0 0.77 

22 1 0 1 0 0 0.11 0 0.51 0 0 

0 0 0 0 0 0 0 0 0 0 0 

68 0 0 1 1 0 0 0 0.51 0.09 0 

42 0 1 1 0 0 0 0.89 0.51 0 0 

45 0 1 0 0 0 0 0.89 0 0 0 

48 1 1 0 0 0 0.11 0.89 0 0 0 

8 0 0 0 0 1 0 0 0 0 0.77 

SUMMARY 

265 2 3 3 1 2 0.22 2.67 1.53 0.09 1.54 

 
Table 7. Predictions findings sample. 

Work Hours Lost (hour) 

Environment Equipment Labor Material Management 

0 0 0 0 4.47 

0.44 0 2.04 0 0 

0 0 0 0 0 

0 0 6.30 1.11 0 

0 6.79 3.89 0 0 

0 7.27 0 0 0 

0.96 7.76 0 0 0 

0 0 0 0 1.12 

SUMMARY 

1.40 21.82 12.23 1.11 5.59 

 
Table 8. Lost working hour from 110 project caused by macro impact factors. 

Factor Lost Working Hours 

Equipment 7.82807 

Labor 2.42275 

Management 1.57414 

Total Work Lost Hour 11.82490 

Total Workday (Hour) 175.601 
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Figure 5. Macro impact factor (Cause of Productivity Loss). 

 
• Ensure high-quality data: Deal with missing values, outliers, and inconsisten-

cies to tidy up the dataset. Depending on the data’s qualities, preprocessing 
techniques like data normalization or standardization may also be used [37]. 

3.3. Data Preprocessing 

• Split the data: Create an initial set of data and a test set by dividing the data-
set into two halves. The SVR model is trained using the training set, and its 
performance is assessed using the test set [38]. 

• Feature scaling: To ensure that the input features are on a similar scale, nor-
malize or standardize them. The SVR model’s performance and convergence 
can be enhanced via scaling [38]. 

3.4. SVR Model Training 

• Kernel selection: Pick a kernel function that works well with the SVR model. 
The linear, polynomial, radial basis function (RBF), and sigmoid kernel func-
tions are frequently used. The SVR model looks for the best-fitting hyper-
plane by transforming the input characteristics into a higher-dimensional 
space, which is defined by the kernel function. 

• Model training: The SVR model is trained using the training set. The regula-
rization parameter (C) and kernel-specific parameters (such as gamma for 
the RBF kernel) are among the model parameters that must be optimized 
throughout the training phase. 

• Hyper parameter tuning: Use grid search or cross-validation to determine the 
best settings for the model’s hyper parameters. This stage tries to enhance the 
generalization of the model and avoid overfitting [39]. 

3.5. Model Evaluation 

• Predictions: Use the test set as input for the trained SVR model to forecast 
values for the target variable. 

• Metrics for measuring model performance include mean squared error 
(MSE), root mean squared error (RMSE), mean absolute error (MAE), and 
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coefficient of determination (R-squared). These metrics express the precision 
and accuracy of the predictions made by the SVR model [40]. 

• Model refinement: If the model’s performance is unsatisfactory, repeat the 
training and tuning procedures. You may also need to make changes to the 
hyper parameters or the feature selection. 

• Excel data is transformed to a CSV file for the demonstration, which is then 
entered into the program using the syntax for calling the data and the SVM 
can be executed. (SVR part of SVM, which is a tool to predict the parameter 
of SVR). RMSE values are the average value of this error and correlation, ac-
cording to the modelling findings. If a model has a high correlation value and 
a low RMSE value, it can be considered to be excellent. The plot clearly shows 
that there is a high productivity number that differs greatly from the other. 
The prediction outcome does, however, follow a trend, so the correlation has 
remained very strong. The three SVR factors in that model are cos, gamma, 
and epsilon. Using the y formula, each project’s statistics can be predicted. In 
the graph, the project’s time is represented by x, and the y-axis represents the 
value of output loss. The prediction’s overall outcomes actually have a high 
correlation value, so it is appropriate to forecast the subsequent time. Future 
programmers could incorporate current parameters and elements that influ-
ence the outcomes of predictions [40]. 

3.6. Arranging the Datasets 

The normalized datasets for a particular modelling construct were organized 
using an appropriate random selection basis. Because the data is divided into 
nominal factors and quantitative factors, standardization is required within the 
updated data. Nominal variables, like the location’s type, are entered into the ur-
ban as 0 or 1 for a sub-urban. Table 9 describes the other nominal variables [41]. 

The project’s size, pile depth, number of completed piles, and equipment 
quantity are just a few examples of the characteristics that use normalized num-
bers. These attributes are converted to nominal within a nominal factor of 0 to 1 
(Table 10). 

Because the unstandardized data consists of both qualitative and quantitative 
data, a data normalization process involving 8 variables is necessary in order to 
input the data into the SVR model. Table 11 and Table 12, which show the data 
before and after normalization, respectively, provide an overview of the data 
normalization procedure. 

In order to determine the greatest correlation between data classes after cate-
gorizing the data, it is possible to insert the converted data into an SVR model 
using a 10-fold cross validation model. 

The results of the training and testing data without normalization are shown 
in Table 13’s first calculation, which has a large Mean Square Error of 57.24 
but still has an acceptable Squared Correlation Value of 0.875. The results of 
the training and testing data with normalization are shown in the second  
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Table 9. Inputs and the corresponding labels for the model. 

Attribute Label Explanation 
 

Type of soil  
condition 

0 Bad Soil Condition 
These labels using 

normalized number, 
divide by total label 
each attributes, and 
converted to normal 

within a factor of 
normal of 0 to 1 

0.14 Peatland 

0.29 Clay + Sand (mud/silt soil) 

0.43 Rock Soil 

0.57 Subgrade Soil 

0.71 Clay 

0.86 Clay + Sand + Gravel 

Size of the project 

These attributes use normalized number, then converted to 
nominal within a factor of nominal 0 to 1 

Pile depth 

Number of pile 
finish 

Number of  
equipment 

 
Table 10. Examples of normalized nominal numbers ranging from 0 to 1 are given. 

Pile 
Depth 

Number 
of pile 

Size of 
project 

Number of 
equipment 

Pile 
Depth 

Number 
of pile 

Size of 
project 

Number of 
equipment 

26 5 130 4 0.83 0.25 0.43 1 

26 6 156 3 0.83 0.5 0.67 0.5 

26 5 130 3 0.83 0.25 0.43 0.5 

24 5 120 2 0.5 0.25 0.33 0 

24 6 144 2 0.5 0.5 0.56 0 

24 6 144 2 0.5 0.5 0.56 0 

23 5 115 4 0.33 0.25 0.29 1 

24 5 120 3 0.5 0.25 0.33 0.5 

24 6 144 3 0.5 0.5 0.56 0.5 

26 5 130 3 0.83 0.25 0.43 0.5 

26 5 130 3 0.83 0.25 0.43 0.5 

27 5 135 3 1 0.25 0.47 0.5 

27 6 162 3 1 0.5 0.72 0.5 

22 4 88 2 0.17 0 0.04 0 

24 5 120 3 0.5 0.25 0.33 0.5 

23 4 92 3 0.33 0 0.07 0.5 

22 5 110 4 0.17 0.25 0.24 1 

22 4 88 4 0.17 0 0.04 1 

25 5 125 4 0.67 0.25 0.38 1 

25 5 125 2 0.67 0.25 0.38 0 
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Continued 

21 4 84 3 0 0 0 0.5 

21 6 126 3 0 0.5 0.39 0.5 

22 5 110 3 0.17 0.25 0.24 0.5 

24 5 120 4 0.5 0.25 0.33 1 

24 8 192 4 0.5 1 1 1 

25 5 125 4 0.67 0.25 0.38 1 

23 5 115 3 0.33 0.25 0.29 0.5 

24 4 96 3 0.5 0 0.11 0.5 

22 5 110 3 0.17 0.25 0.24 0.5 

21 5 105 3 0 0.25 0.19 0.5 

23 4 92 4 0.33 0 0.07 1 

24 6 144 4 0.5 0.5 0.56 1 

25 5 125 4 0.67 0.25 0.38 1 

26 5 130 3 0.83 0.25 0.43 0.5 

24 5 120 3 0.5 0.25 0.33 0.5 

 
Table 11. Sample data input before normalization. 

Project no. Pile Depth 
Number of 

pile 
Size of 
Project 

Number of 
Equipment 

Location 
Soil  

condition 
Type of pile City 

52 13 139 1786 3.03 1 0 0 0 

102 23 223 5163 3.14 0 3 3 1 

99 21 246 5052 3.1 0 1 1 2 

98 21 244 5035 3.1 0 1 1 2 

90 21 266 5428 3.1 0 1 1 2 

70 23 227 5281 3.06 0 3 3 3 

69 21 262 5352 3.1 0 1 1 2 

64 22 215 4672 3.06 0 2 2 3 

59 21 229 5021 3.03 0 1 1 0 

58 22 214 4651 3.06 0 2 2 3 

57 24 237 5516 3.14 0 4 4 1 

38 21 230 4713 3.1 0 1 1 2 

36 24 232 5401 3.14 0 4 4 1 

26 32 210 6651 3.06 0 5 5 3 

22 21 260 5357 3.1 0 1 1 2 

16 24 213 5112 3.29 0 4 4 4 

14 22 206 4480 3.06 0 2 2 3 

13 22 223 4902 2.95 0 2 2 3 

12 21 236 4843 3.1 0 1 1 2 

11 13 234 3000 3.14 1 0 0 1 

10 33 224 7376 3.14 0 6 0 1 
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Table 12. Sample data input after normalization. 

Project no. 
Pile 

Depth 
Number 
Of pile 

Size of 
Project 

Number of 
Equipment 

Location 
Soil 

condition 
Type of pile City 

52 0 0.52 0.23 0.08 0.5 0 0 0 

102 0.5 0.84 0.7 0.18 0 0.43 0.5 0.2 

99 0.38 0.92 0.68 0.14 0 0.14 0.17 0.4 

98 0.38 0.92 0.68 0.14 0 0.14 0.17 0.4 

90 0.38 1 0.73 0.14 0 0.14 0.17 0.4 

70 0.5 0.85 0.71 0.1 0 0.43 0.5 0.6 

70 0.5 0.85 0.71 0.1 0 0.43 0.5 0.6 

69 0.38 0.98 0.72 0.14 0 0.14 0.17 0.4 

64 0.44 0.81 0.63 0.1 0 0.29 0.33 0.6 

59 0.38 0.86 0.68 0.08 0 0.14 0.17 0 

58 0.44 0.8 0.63 0.1 0 0.29 0.33 0.6 

57 0.53 0.89 0.74 0.18 0 0.57 0.67 0.2 

38 0.38 0.86 0.63 0.14 0 0.14 0.17 0.4 

36 0.53 0.87 0.73 0.18 0 0.57 0.67 0.2 

26 0.93 0.79 0.9 0.1 0 0.71 0.83 0.6 

22 0.38 0.98 0.72 0.14 0 0.14 0.17 0.4 

16 0.53 0.8 0.69 0.32 0 0.57 0.67 0.8 

14 0.44 0.77 0.6 0.1 0 0.29 0.33 0.6 

13 0.44 0.84 0.66 0 0 0.29 0.33 0.6 

12 0.38 0.89 0.65 0.14 0 0.14 0.17 0.4 

11 0 0.88 0.4 0.18 0.5 0 0 0.2 

10 1 0.84 1 0.18 0 0.86 0 0.2 

 
Table 13. Comparison Result between SVR Model with Normalization and without Normalization. 

 
Total Mean 

Squared 
Error 

Squared 
Correlation 
Coefficient 

Number of 
Support 
Vectors 

 0 1 2 3 4 

1 57.24 0.875 22 Cos = 1 
Gamma = 0.125 

Epsilon = 0.1 

7.98 6.57 26.21 18.19 29.78 

32.12 15.96 15.56 37.12 14.09 

2 0.011 0.872 22 
0.01 0.03 0.00 0.00 0.00 

0.00 0.03 0.02 0.00 0.00 

 
calculation. It produced positive results, having a low Mean Square Error of 
0.011 and a high Squared Correlation Value of 0.872. 

3.7. Interpretation Prediction Result and Discussion 

A SVM model called the SVR Model can be used to forecast productivity over a 

https://doi.org/10.4236/wjet.2023.114062


M. Ahmed, W. Xu 
 

 

DOI: 10.4236/wjet.2023.114062 951 World Journal of Engineering and Technology 
 

period of time to observe the model’s performance in this research [42]. The 
RMSE (Root Mean Square Error) was applied. The quality of the generated 
model increases with decreasing RMSE performances. The best performance or 
the smallest RMSE from 110 data pile construction productivity was determined 
by this research. There are many instances of productivity that differs from the 
others because it has a large margin but also has a large RMSE number (more 
than 1). Even though the RMSE is high, the correlation value is still high because 
the predicted outcomes still follow the pattern of the real data. Because the ex-
pected results continue to match the pattern of the actual data, correlation stays 
high. The pattern of the predicted data matches that of the real data, making the 
model suitable for prediction [42]. The SVR parameters are used in the same 
model for the entire range of output (1 - 110). 

c = 1. 
Gamma = 0.125. 
Epsilon = 0.1. 
Consequently, it can be said that the model is adequate for use in making pre-

dictions tools. 
Out of 110 projects, 100 projects’ data—or 90% of the total—were used to 

train the network, and the final 10 projects’ data—or 10%—were used for test-
ing. The network predicts production rates during training with reduced MSE 
values and follows the same trend and pattern of target values as shown in Fig-
ure 6. Because of the high correlation value, the prediction graph in the results 
with higher RMSE value continues to follow the pattern of the real value graph. 
The value of productivity loss caused by a factor during construction, which was 
measured over a 40-day period, is represented by the Y-axis, and the duration is 
indicated by the X-axis. 

As shown in Figure 7, productivity rate values predicted during testing also 
have reduced error values and follow a nearly identical trend and pattern with a 
small variation at the conclusion. 

The MSE of training and testing predicted rates have been determined for 
training and testing as shown in Table 14 and Table 15. Average values of each 
project’s predicted rates have then been computed. (Table 16) 

The pattern and correlation between the actual value and the forecast are 
shown in Figure 6 and Figure 7, which demonstrate the prediction’s accuracy. If 
the model had a high association value and a low MSE value, it would be suita-
ble. In order to conduct further study, it is possible to add impacting factors and 
existing parameters to the model, which will produce a prediction. Cost, gamma, 
and epsilon are the three factors that were used for SVR. The error rate can be 
used to determine success rate, but it is impossible to calculate the error rate be-
cause the actual y-axis includes a value of 0 [43]. 

Response variable (y) and prediction variable made up the research variable. 
(x). X and Y variables were first grouped in Microsoft Excel for initial data 
processing. The future/target (y) pile output loss was measured using support 
vector machine data processing, and 110 data sets were used as input. 
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Figure 6. Curve output training error. 

 

 
Figure 7. Prediction testing curve result. 

 
Table 14. Model result training data. 

Combination 10-fold cross 
validation with Data 

Training 

Total Mean Squared 
Error 

Squared Correlation  
Coefficient (Accuracy Rate) 

1 0.11 0.68 

2 2.06 0.07 

3 2.15 0.42 

4 2.1 0.41 

5 0.06 0.75 

6 0.00 0.99 

7 0.07 0.73 
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Continued 

8 0.01 0.72 

9 0.01 0.73 

10 2.17 0.8 

AVERAGE 0.87 0.63 

 
Table 15. Model result testing data. 

Combination 10-fold cross 
validation with Data Testing 

Total Mean Squared Error 
Squared Correlation 

Coefficient  
(Accuracy Rate) 

1 0.01 0.74 

2 0.02 0.83 

3 0.01 0.87 

4 0.01 0.94 

5 0.01 0.91 

6 0.01 0.87 

7 0.02 0.82 

8 0.01 0.92 

9 0.01 0.89 

10 0.01 0.9 

AVERAGE 0.011 0.868 

 
Table 16. Difference result. 

 
Total Mean 

Squared Error 

Squared Correlation 
Coefficient 

(Accuracy Rate) 
Note 

Combination 10-fold   The model is 

cross-validation with 
Data Training 

0.87 0.63 
adequate if it had 
high correlation 

   value and smaller 

Combination 10-fold   MSE value 

cross-validation with 
Data Testing 

 0.868  

 0.011   

Difference 0.859 −0.238  

 
For parameter setting using SVM algorithm, it is known that productivity loss 

configuration prediction was by using data input of the previous project for 
k-fold 10, C (cost) = 1 and kernel type radial. Configuration design to predict the 
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productivity loss for the future was calculated, and the result is: 
The best result or smallest Mean Square Error in Table 17 is 0.01 with a 

Squared Correlation Coefficient of 0.87 and 22.00 support vectors [44]. The 
SVM algorithm was used in this study’s data processing along with data calcula-
tion construction, which involved entering training data (10 data combinations), 
choosing the kernel type, the C (cost) number, and the k-fold. The reason for 
calculating the SVR parameter is as follows: 
 

1 cost of constraint violation (default: 1). This is the ‘C’-constant of 

The regularization term in the Lagrange formulation 

0.125 parameter needed for all types of kernels except linear, 

Default: 1/(data dimension), Data dimension: 8 factor 

0.1 (Default) 

 
The operating system used for training and forecast is defined by kernel. The 

choices include sigmoid, radial basis, polynomial, and linear. The used kernel 
type was radial, with a C (cost) value of 1, and a k-fold number of 10. The testing 
outcomes, which were performed using various kernel functions and inserting C 
(cost) and range (k-fold) values chosen based on each data collection, are shown 
below. After determining k-fold validation, c (cost) and kernel type, smallest 
MSE (mean square error) were found. The smallest MSE mentioned is the one 
that served as both an accuracy benchmark and a design to forecast benchmark 
[45]. 

The potential input loss that the project may experience is predicted by SVR 
models in Table 18. The model shows the potential amount of prediction loss. 
40 times of looping are used to find the most comparable figure. The prediction 
itself and the influence of the 8 factors used in this study linked to the effect of 
pile construction productivity performance itself have the smallest and most re-
peatable potential values for measuring excellent productivity loss. Euclidean 
distance is one technique for measuring similarity. 

The formula is as follows: 

( ) ( ) ( ) ( ) ( )

( )

22 2
1 1 2 2

2

1

, ,

                            

n n

n

i i
i

d p q d q p q p q p q p

q p
=

= = − + − + + −

= −∑

�
 

The scenario with the smallest number of Euclidian distances from the model, 
according to Table 18, is case number 16. 

This model can be used to predict the productivity loss of a project in the fu-
ture, and forecasting using SVR method has the smallest standard error value 
and the results are close to the original data. Potential loss prediction aims to 
reduce lost work hours caused by factors occur in the project. This can be seen 
from the results in Table 19. The potential loss prediction is 0.1855 (equivalent 
to 18.55%). It intends to raise output in the future. 
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Table 17. Prediction result recapitulation with 8 factors. 

No. 

Total 
Mean 

Squared Number of 

Parameter K = 10 fold 
Squared 

Error 

Correlation 
Coefficient 
(Accuracy 

Rate) 

Support 
Vectors 

1 0.01 0.74 16 

Cos = 1 

Gamma = 0.125 

Epsilon = 0.1 

0.105 0.002 0 0.001 0 

    
3 

    
0 

0.001 0.002 0 0 0 

2 0.02 0.83 23 
 

    
0 

0.13 0.001 0.006 0.022 1 

    
0 

0.001 0.006 0.007 0.012 1 

3 0.01 0.87 22 
 

    
0.01 

0.022 0.001 0.001 0.037 0 

    
0 

0.006 0.004 0.005 0.002 4 

4 0.01 0.94 21 
 

    
0 

0.001 0.005 0.012 0.001 5 

    
0 

0.019 0.004 0.001 0 5 

5 0.01 0.91 20 
 

    
0.01 

0.001 0.001 0.001 0.009 4 

    
0 

0.037 0.004 0.004 0.007 1 

6 0.01 0.87 18 
 

    
0 

0.005 0.022 0.008 0 1 

    
0.01 

0.01 0.004 0.038 0.002 0 

7 0.02 0.82 23 
 

    
0.01 

0.001 0.006 0.14 0.014 0 

    
0 

0.001 0.001 0.006 0.002 1 

8 0.01 0.89 20 
 

    
0 

0.005 0 0.006 0.017 1 

    
0 

0.013 0.019 0.001 0.008 2 
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Continued 

9 0.01 0.92 23 

Cos = 1 

Gamma = 0.125 

Epsilon = 0.1 

    
0 

0.006 0.004 0.004 0.013 6 

    
0 

0.007 0.005 0.008 0.007 6 

10 0.01 0.9 20 
 

    
0 

0 0.001 0.02 0.001 4 

    
0 

0.044 0.016 0.001 0.003 2 

 
Table 18. Sample of prediction potential loss result. 

Comparison Work Hour Lost in Work Hour Lost from Euclidean 

Data Data Model Comparison Data Distance 

Number    

16 76.61 76.65 0.04 

53 76.61 76.89 0.28 

24 76.61 76.26 0.35 

97 76.61 76.18 0.43 

60 76.61 76.18 0.43 

66 76.61 76.06 0.55 

99 76.61 77.76 1.15 

4 76.61 77.80 1.20 

35 76.61 75.33 1.28 

9 76.61 75.24 1.37 

 
Table 19. Recapitulation of potential loss result. 

Lost Productivity (hour) 

Environment 12.91 

Equipment 66.68 

Labor 58.21 

Material 16.18 

Management 76.65 

Total Work Hour Lost 230.65 

Overall work hour 1243 

Productivity Loss Percentage 0.1855 (18.55%) 

 
The quantity of work created per unit of input or effort is referred to as prod-

uctivity. Contractors typically experience loss in output, which involves com-
pleting work at a slower pace than anticipated. Numerous studies have been 
conducted on the factors that contribute to productivity loss. Typical factors in-
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clude acceleration (either positive or negative), unfavorable or unusually severe 
weather, the cumulative effect of numerous changes and revisions, site or work 
area access restrictions, site conditions, untimely approvals, and responses to 
labor market conditions [46]. 

Acceleration: When work must be completed by contractors more quickly 
than anticipated, this is referred to as acceleration. This might take place as a 
result of unanticipated events, project delays, or changes in the timetable. Con-
tractor productivity may suffer if they are required to complete their work more 
quickly since they may have to use more resources or compromise quality to 
meet the tighter deadlines. 

Unfavorable or abnormally severe weather: The weather can have a big effect 
on building projects. Weather that is unfavorable, such as severe thunderstorms, 
snowstorms, or intense heat, can hinder construction efforts and impede progress. 
Because contractors may need to reschedule work or take extra care to maintain 
safety and quality, delays brought on by unfavorable weather conditions can lead 
to lower production. 

Cumulative effect of changes and revisions: Throughout the duration of a 
project’s life, modifications and revisions are frequently made. These alterations 
may be brought on by alterations in the design, demands from the client, or un-
anticipated problems found during the construction process. Multiple changes 
taken together can have a disruptive effect on workflow, require more coordina-
tion work, and take more time and money to implement. Productivity loss may 
result from these interruptions. 

Restrictions on access to the construction site or work areas: Contractors may 
encounter difficulties as a result of the sites or the work areas’ restricted access. 
Access restrictions may be necessary for site management, safety reasons, or to 
coordinate with other ongoing activities. Access restrictions can make it difficult 
for people to move about and access equipment and materials, which reduces 
production. 

Delayed clearances and answers: Maintaining productivity depends on timely 
approvals from the appropriate authorities and quick responses to contractor 
concerns. The construction timetable may be disrupted and progress hampered 
by delays in receiving required permits, approvals, or answers to questions. 
Contractors might be forced to wait for decisions, alter their plans, or halt work, 
all of which could reduce production. 

Site conditions: Productivity can be impacted by the environment at the con-
struction site. Contractors may encounter difficulties and have their productivity 
impacted by elements like uneven terrain, poor soil quality, the presence of ha-
zardous materials, or inadequate infrastructure. It might take more time and 
money to address the site’s problems and put essential mitigation measures in 
place, which could negatively impact productivity. 

Labor market conditions: Changes in the labor market, such as labor shortag-
es or salary changes, can have an impact on the construction industry’s produc-
tivity. Reduced workforce availability, greater competition for competent work-
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ers, and significant delays in hiring and training new employees are all effects of 
labor shortages. Project timeframes and general productivity may be affected by 
these variables. 

A new perspective for engineers studying the delay causes with productivity 
loss is provided by the outcome of key activities as it relates to loss in productiv-
ity and overall factors incurred. In the building construction industry, effective 
management should place more emphasis on the correlation between productiv-
ity loss and the factors that cause it. Therefore, to represent the effect on produc-
tivity loss, real factors causes can be summed up as a loss in productivity prob-
lem. 

Loss of Productivity by category [46]: 
Environment: The test results indicate that 12.91 hours of productivity were 

lost due to environmental factors. Environmental factors can include adverse 
weather conditions, noise, vibrations, or other external influences that hinder 
construction progress. 

Equipment: The test results show that 66.68 hours of productivity were lost 
due to equipment-related issues. Equipment problems can range from break-
downs or malfunctions to inadequate availability or performance, all of which 
can impact the efficiency of construction activities. 

Labor: The test results indicate that 58.21 hours of productivity were lost due 
to labor-related factors. This could include issues such as labor shortages, skill 
gaps, absenteeism, or inefficiencies in workforce management. 

Material: The test results show that 16.18 hours of productivity were lost due 
to material-related factors. Material issues could include delays in material deli-
very, inadequate quality or quantity of materials, or problems with material han-
dling and storage. 

Management: The test results indicate that 76.65 hours of productivity were 
lost due to management-related factors. This may involve issues such as poor 
planning, ineffective communication, inadequate coordination, or inefficient 
decision-making processes. 

Based on these results, it is evident that productivity loss has occurred across 
various categories, including environment, equipment, labor, material, and 
management. The overall productivity loss percentage of 18.55% indicates a sig-
nificant impact on the efficiency of the construction activities during the tested 
period. Understanding and addressing the underlying causes of productivity loss 
can help improve project planning, resource allocation, communication, and 
management practices to enhance overall productivity in future construction 
endeavors. 

3.8. Limitations and Assumptions of SVR 

• SVR makes the assumption that there is a continuous link between the input 
characteristics and the target variable, which can be illustrated by a hyper-
plane or non-linear decision boundary. 

• SVR makes the assumption that the data is independent and identically dis-
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tributed (i.i.d.), which means that there is no interdependence between the 
observations in the dataset. 

• The kernel function and model hyperparameters can have an impact on SVR 
performance. It can be difficult to choose the right parameters. 

• Therefore grid searches or experimentation may be needed. 
• Due to the possibility of overfitting, SVR may not perform well on datasets 

with a lot of features or when the dataset size is minimal. 
• SVR can be expensive to compute [47]. 

4. Conclusions 

Because each construction job is unique and because this sector is inherently 
complex, establishing the dynamic indexes of performance used for each unique 
work is essential. Most productivity evaluation tools and benchmarking tech-
niques take a comprehensive approach. These techniques use a subset of project 
performance as their foundation because they don’t consider net sources when 
setting policy and benchmarks. The removal of resource losses from base value 
determination is its main benefit over other currently used methods. Additional 
benefits include the introduction of the net baseline productivity index and its 
comparison with the project’s macro productivity, objective-based access to and 
definition of productivity measurement methods, and more. The framework’s 
true qualities and advantages are also demonstrated when it is fully implemented 
as the suggested course of action in the circumstances under investigation. 

There are several similarities and variations between productivity loss in pile 
construction especially and productivity loss in other types of construction. 

Similarities: Environmental Factors: Adverse weather circumstances, includ-
ing intense rain or extremely high temperatures, can have an impact on pile 
construction, just like they can on other building activities. These circumstances 
may slow down the process, create delays, and reduce productivity. 

Factors associated with labor: Pile building necessitates the use of skilled labor 
for activities like driving piles, digging, and strengthening. Productivity can be 
impacted by labor-related issues such as labor shortages, skill gaps, or unavaila-
bility in both general construction and pile construction. 

Differences: Pile construction requires the use of specialized machinery that 
may not be as common in other types of construction, such as pile drivers, drill-
ing rigs, and cranes. Productivity in pile construction can be significantly im-
pacted by equipment-related variables including failures, insufficient availability, 
or improper maintenance. 

Pile construction sometimes takes place in difficult site circumstances, such as 
unsteady soil, marshy locations, or crowded metropolitan settings. Dealing with 
these site-specific difficulties can make pile construction more complicated and 
may result in further lost productivity. 

Material handling: Concrete, reinforcing, and piles are only a few of the mate-
rials used in pile construction. Delays or issues related to the delivery, availabili-
ty, or quality of these materials can impact productivity specifically in pile con-
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struction projects. 
Planning projects, managing risks, and allocating resources can all be affected 

by understanding the similarities and variations between productivity loss in pile 
construction and general construction. It emphasizes the necessity of specialized 
training in pile construction methods, tools, and material management. Project 
stakeholders can create focused strategies to reduce risks and increase produc-
tivity by recognizing the particular elements specific to pile construction that 
contribute to productivity loss. This could entail putting in place efficient ma-
terial management and delivery systems, making sure equipment is properly 
maintained and available, and taking proactive actions to mitigate weather-related 
delays. 

This study also produced a novel method for creating productivity baselines, 
which is presented in depth with an emphasis on the macro impact factors in-
fluencing pile building productivity. This method’s potential and scientific ap-
plications are demonstrated by using it experimentally on case studies; it can be 
applied to the tools, materials, and apparatus. 

Future research may focus on gathering changing net baseline output values 
from various project components and comparing those values to benchmarks 
offered by formal systems. In subsequent works, it might be essential to assess 
how this strategy performs and has an impact on the relevant stakeholders, such 
as the client or governing body. For the 110 project, where the total workday was 
175.601 hours, the following details are how we determined the lost productivity 
and labor hours: 

Work hours loss due to equipment factors increase by 7828, 07 hours. Work 
hours loss due to labor factors increase by 2422, 75 hours. 

Work hours loss due to management factors increase by 1574, 14 hours. 
The tools used are the single most crucial element when it comes to the gener-

al productivity and efficiency of a construction job. Since the aforementioned 
standards weren’t always reliable, only economic variables could be used to gen-
erate an approximation. By determining the component that is limiting or an-
ticipating the loss of output, SVR (Support Vector Regression) can be used to 
forecast it. Everything is governed by rules, including how the site is placed and 
how the different components interact. 

On-site tally sheets have been used to keep track of arbitrary variables like the 
weather, the availability of supplies and tools, the location of the project, and the 
specifics of the site. Severity indices have been created in order to allow for the 
impartial assessment of each element’s effects. One of the most important factors 
affecting the precision of output rate estimations is the regularity with which 
materials and equipment are made available. 

The SVR model has successfully predicted exact values for the production rate 
using these characteristics. We calculated the percentage error and Mean Square 
Error (MSE) of the expected output to evaluate the model’s accuracy. An SVR 
model for predicting productivity loss in Bangladeshi pile construction was built 
using 110 data from the study’s assessment and the implementation of 10-fold 
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cross validation. In contrast to their correlations of 0.011 and 0.866, the MSE for 
training and assessment outputs is 0.87 and 0.63, respectively. The ideal perfor-
mance (or least Mean Square Error) is 0.01 with 22.00 support vectors, an accu-
racy rate of 87, 25931%, and a potential output loss of 18.55 percent. According 
to these findings, the SVR model correctly predicted concrete column output 
rates with a tolerable degree of error. 

In a building project, concentrating on waste reduction and productivity in-
crease techniques may have various advantages. First off, by detecting and eli-
minating waste, resources may be used more effectively, which reduces costs. 
Lower project costs can be achieved by cutting out wasteful stages, minimizing 
rework, and maximizing material use. Second, a shorter project timeline and 
lower overhead expenses are the benefits of increased production. Additionally, 
greater efficiency raises the standard of work as a whole, resulting in happier 
clients and perhaps even repeat business or positive recommendations. Finally, 
by putting productivity improvement techniques into practice, contractors can 
develop a competitive edge, attracting new customers and landing higher-paying 
contracts. In the long run, these strategies will help the construction sector be 
more profitable and successful. 

Research Recommendation 

The research has produced the best and most accurate forecasts; however, the 
following areas need to be improved in the following study to produce better re-
sults: 

More observational data must be used for simulation in order to generate 
more data for the model’s training process, which will lead to predictions with 
greater precision. According to Furey (2021), the validity of the comparison 
finding cannot be questioned because, with more data, SVM can be tested in ex-
periments of greater scale. 

Using a linear function within a feature space and adding learning bias to the 
SVM model is necessary for improved prediction. 
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