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Abstract 
In this work, austenitic stainless steel screws employed in a locking compres-
sion plate for veterinarian use were investigated. These types of implants are 
widely utilized in bone fractures healing. Two surgical screws were extracted 
due to the observation of slight superficial red rust colorizing on one of the 
screw implants, visual evidence of probable screw rusting. From the same im-
plant, another screw was extracted simultaneously without visual evidence of 
rusting. In order to characterize and analyze the different behavior of both 
screws, the chemical composition was characterized by atomic absorption and 
energy dispersive X-ray spectroscopy (EDS) coupled to a scanning electron mi-
croscope (SEM). Also, the screws were studied by metallography, optical mi-
croscopy (OM), Vickers microhardness tests, and SEM analysis. On the other 
hand, a prospection for alloy chemical composition limits of these types of im-
plants was performed based on the Schaeffler-Delong diagram and the ASTM 
F-138 standard. To analyze the effect of the chemical composition, heat treat-
ment, microstructure, pitting resistance equivalent number (PRE) and stack-
ing fault energy (SFE), a genetic algorithm (GA) and an artificial neural net-
work (ANN) were used. In accordance with the elemental analysis, the surgical 
screws do not fulfill the ranges of the chemical composition established by the 
ASTM F-138 standard. Furthermore, there were found differences between the 
microstructures of the screws. In regard to the prospection, the results of GA 
and ANN support the proposed chemical composition region on the Schaeff-
ler-Delong diagram. The corrosion failure was associated with severe plastic 
deformation and the presence of precipitates. The proposal can minimize the 
cause of failures in these types of austenitic stainless steel implants. 
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1. Introduction 

The austenitic stainless steel is commonly employed in surgical field applications 
as implants, tools, and prostheses. Customarily these implants are manufactured 
of 300 type austenitic stainless steel due to its resistance to intergranular and pit-
ting corrosion. Some types of implants are produced under the ASTM-F 138 
standard, such control must be fulfilled to avoid intergranular corrosion, high 
magnetic susceptibility, unwanted microstructural phases, and pitting corrosion 
[1]-[7]. Several studies have been carried out on this type of steel, such as the ef-
fect of heat treatment on microstructural properties, the grain size evolution, 
and their sensitization response [5] [6] [7] [8] [9]. In addition, the chemical com-
position and the plastic deformation modify the stacking fault energy (SFE) be-
havior. The SFE value is an important parameter to consider within the design of 
austenitic stainless steels due to its direct influence on phase changes, crystal lat-
tice defects and magnetic susceptibility [10]-[15]. On the other hand, artificial 
intelligence (AI) is a powerful tool capable to provide predicting support to com-
plex behavior in several fields of science and engineering. The genetic algorithm 
(GA) is a technique within the AI for parametric optimization by the search of 
solutions based on natural selection, wherewith a given environment the most 
optimal solution must be adapted and eventually improved. Some GA variations 
have been employed in several stainless steel’s applications, such as machining 
and heat treatment process, mechanical properties optimization, among others 
[16] [17] [18]. Also, within AI, artificial neural networks (ANNs) are widely used 
in several science and technology areas. The ANNs are nonlinear predictive 
models based on biological neuronal activity, being implemented to predict sev-
eral properties and behavior based on different parameters [19] [20] [21]. Some 
authors incorporate applications of GA and ANNs for the optimization of sever-
al processes such as thermomechanical, hot and cold compression, welding, etc. 
[22] [23]. In the present work, screws of a locking compression plate of veterina-
rian application were studied. Such plating systems are employed to provide sta-
bility and fixation to bone fracture healing. The screws used were chirurgical re-
trieved due to visual rusting evidence reported. Further analysis indicated the 
presence of localized corrosion and some microstructural features that lead to 
determining the necessary surgical removal to avoid an infection process. Moreo-
ver, based on artificial intelligence (GA and ANNs), a prospection of chemical 
composition considering the ASTM F-138 SS standard and the Schaeffler-Delong 
diagram was proposed. The GA was developed to establish ranges of chemical 
composition that can assist the SS manufacture, to avoid corrosion issues similar 

https://doi.org/10.4236/wjet.2022.101006


A. M. Román-Sedano et al. 
 

 

DOI: 10.4236/wjet.2022.101006 100 World Journal of Engineering and Technology 
 

to the studied in the present work. On the other hand, the ANNs were trained 
using available database; subsequently the predictive model was employed to 
evaluate the ranges of chemical composition obtained by the GA. The latter was 
performed to predict the SFE and relate the possible behavior of the alloys man-
ufactured within the range of chemical composition obtained. 

2. Material and Methods 
2.1. Implant Screws Extracted 

Locking compression plates are widely used to treat bone fracture. Usually, the 
implant consists of a plate, and the locking and compression screws. The screws 
studied in this work had a thread profile with special features for fixation cortical 
type for osteosynthesis [2] [3] [4]. Originally the reason for the extraction of the 
screws was the observation of a thin red colored layer in one of them, which may 
indicate a possible corrosion failure and a probably risk of infection process. 
Figure 1(a) and Figure 1(b) show the removed screws, and a SEM observation 
is also presented in Figure 1(c) and Figure 1(d), showing the surface image ob-
tained. It was not possible observe any difference due to the thickness of the 
rusted layer formed and the regenerative property of the passive layer of chro-
mium oxide, an inherent characteristic of stainless steels (SS). Hence, it was neces-
sary perform a deeper analysis of the material to observe the cause of its failure. 

2.2. Material Characterization 

The material characterization of extracted implants screws has been carried out.  
 

 
Figure 1. Cortical screws extracted ((a), (c)) large cortical screw with apparent corrosion fail-
ure ((b), (d)) short cortical screw uncorroded. 
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These implants were reported to be made of AISI 316L stainless steel (ASTM 
F-138). Characterizations and the failure analysis were performed on corroded 
and uncorroded screws. The chemical composition was obtained via energy dis-
persive x-ray spectroscopy (EDS, Oxford INCA) and atomic absorption by in-
duced coupled plasma (ICP, Perkin Elmer), respectively. The results obtained of 
both techniques are presented in Figure 4 and Table 1. Furthermore, the initial 
characterization was performed through metallographic analysis; the samples 
were prepared up to a polished condition and analyzed by OM in light and dark 
fields. Also, second phase particles (precipitates) were measured over an area of 
0.25 mm2 using Image J software. Subsequently, microstructure was revealed 
using electrochemical etching with 10% oxalic acid in aqueous solution. On the 
other hand, a morphologic analysis was performed using the scanning electron 
microscopy (SEM JEOL, 5900 LV) coupled with EDS detector for elemental 
mapping. Finally, the Vickers microhardness of the screws was performed, and 
the selected load used was 200 gf in a microhardness tester Matsuzawa. 

2.3. Prospection of Chemical Composition 
2.3.1. Genetic Algorithm Conditions 
On the Schaeffler-Delong diagram, as shown in Figure 2 was delimited a region 
that comply the elemental chemical range established by the ASTM-F 138 standard.  

 

 
Figure 2. Schaeffler-Delong diagram. 
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This diagram is composed by two hyperplane Equations: (1) the chromium 
equivalent (CrE) and Equation (2) nickel equivalent (NiE). The Equation (1) in-
volves chemical elements (Cr and Mo), necessary for the calculus of pitting re-
sistance equivalent (PRE) number, which is required in the standard (see Equa-
tion (3)) [3]. A genetic algorithm was performed in order to develop and to find 
an optimal solution for the chemical composition range using the hyperplane 
equations and PRE values. The equations used for establishing the restrictions of 
the genetic algorithm are shown. 

( ) ( )ECr %Cr %Mo 1.5 %Si 0.5 %Nb= + + ∗ + ∗             (1) 

( ) ( ) ( )ENi %Ni 30 %C 0.5 %Mn 30 %N= + ∗ + ∗ + ∗           (2) 

( )PRE %Cr 3.3 %Mo= + ∗                     (3) 

Equations (1), (2) and (3) were taken as objective functions under the im-
posed restrictions by ASTM-F-138 standard and the austenitic region defined by 
Schaeffler-Delong diagram. The aforementioned consideration was selected in 
an ideal condition, which the steel must be composed of a completely austenitic 
phase due to the required corrosion resistance properties [3] [4] [5]. The used 
genetic operators are shown below: 
• Population size: 1000. 
• Search range: established considering the ASTM F-138 standard (individual 

range for each chemical element was selected considering the Schaeffler-Delong 
diagram and PRE values). 

• Number of generations limit: 1000. 
• Limit value of fitting function: 1E−3. 
• Crossing probability: 90%. 
• Mutation probability: 2%. 

2.3.2. Mapping of the Proposed Chemical Composition Using ANNs 
An ANN was developed to mapping the region obtained through GA. Based on 
three heat treatments and the chemical composition studied by [5], the ANN 
was trained and reported previously [3]. In the present work, heat treatment ef-
fect on the SFE value was analyzed for three microstructural conditions: solubi-
lization heat treatment water/cooling (SHTWC), solubilization heat treatment 
furnace/cooling (SHTFC) and aging treatment (AGG) based on the above men-
tioned authors. Figure 3 shows the designed architecture for the predictive model 
consisting of an input layer composed by nine chemical elements, one hidden 
layer and an output layer for a SFE value prediction of SHTWC, SHTFC and 
AGG conditions. Each neuron is constituted by the hyperbolic activation func-
tion (Equation (4)) and input values (Xi), see Equation. 5. The weights and bi-
ases are represented as Wi and θ respectively. In order to accomplish the training 
process, the database was normalized from 0 to 1. The error was calculated using 
the mean square error (MSE) and for the ANN training the Levenberg-Marquardt 
algorithm was implemented [24]. 
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3. Results 
3.1. Energy Dispersive X-Ray Spectroscopy 

The qualitative analysis via energy dispersive x-ray spectroscopy (EDS) showed 
the same main alloy elements (Fe-Cr-Ni-Mo) in both implant screws corres-
ponding to an austenitic stainless steel 316. In Figure 4(a) and Figure 4(b) are  

 

 
Figure 3. Architecture of the ANN. 

 

 
Figure 4. EDS spectra a) corroded implant screw, b) uncorroded implant screw. 
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the spectra obtained of the two implants. The initially suspected failure cause 
was a misusage of a similar material like SS 304 instead SS 316, however, the EDS 
analysis confirmed that both screws correspond to the SS 316. It is clear from the 
EDS results that are not suitable to analyze very thin surface layers, which do not 
distinguish between corroded and uncorroded samples, it was necessary to per-
form further analyses using other characterization techniques. 

3.2. Atomic Absorption 

The Once confirming the presence of alloy elements, a quantitative chemical 
analysis was performed. Table 1 shows the atomic absorption results, showing 
that the chemical composition of the screws is out of ASTM F-138 standard 
range (bolded in Table 1). It can be seen that the corroded implant screw has 
higher content of the main elements of the austenitic SS alloy as established in 
the ASTM F-138 standard. Additionally, PRE values were calculated for both 
screws as shown in Table 1. It was found that the corroded screw provides 
higher PRE value than uncorroded, which according to the standard must depict 
better corrosion resistance. However, if there are higher amounts of alpha phase 
stabilizer elements such as Cr, thus the PRE value does not guarantee that the SS 
has greater corrosion resistance because a probable formation of fine precipitates 
and α phase [3] [4] [5]. Thereby, the atomic absorption results confirmed the 
lower resistance to pitting corrosion of the corroded screw even it has higher Cr 
equivalent number value. 

 
Table 1. Results of the quantitative elemental analysis of the uncorroded and corroded 
screws. 

Alloy element 
ASTM F-138 standard 

Range (%wt) 
Uncorroded  
screw (%wt) 

Corroded  
screw (%wt) 

Cr Min 17.00; Max 19.00 ± 0.20 14.808 25.779 

Ni Min 13.00; Max 15.00 ± 0.15 9.144 15.496 

Mo Min 2.25; Max 3.00 ± 0.10 1.765 3.154 

Mn Max 2.00 ± 0.04 0.979 1.922 

Co - 0.188 0.276 

Cu Max 0.50 ± 0.03 0.240 0.738 

Ti - 0.006 0.009 

C Max 0.030 ± 0.005   

Si Max 0.75 ± 0.05 
 

 

N Max 0.10 ± 0.01   

P Max 0.025 ± 0.005 
 

 

S Max 0.010 ± 0.005 
 

 

PRE = %Cr + 3.3 * % Mo PRE ≥ 26 20.632 36.187 
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3.3. Optical Microscopy Analysis 

Figure 5(a) and Figure 5(b) show the bright field images of the screws polished 
samples where it can be observing a fine massive precipitation throughout the 
corroded sample. In Figure 6(a) and Figure 6(b) are the dark field images of the 
as polished surfaces, and it shows the confirmation of a significant precipitation. 
On the other hand, the microstructures of the corroded and uncorroded screws 
are presented in Figure 7(a) and Figure 7(b), respectively. It is observed in Figure 
7(a) the failed screw shows a microstructure with a severe plastic deformation. 

 

 
Figure 5. OM bright field images (a) corroded screw; (b) uncorroded screw. 

 

 
Figure 6. OM dark field images (a) corroded screw; (b) uncorroded screw. 

 

 
Figure 7. Microstructures OM bright field images (a) corroded screw; (b) uncorroded 
screw. 
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In addition, by considering the higher Cr content, the formation of rich Cr pre-
cipitates is possible, as shown in Figure 5(a) and Figure 6(a), therefore higher 
corrosion susceptibility is possible. 

In addition, the precipitation was evaluated by measuring its distribution and 
average size, using dark field images by OM and ImageJ software. Figure 8(a) 
and Figure 8(b) show the results obtained of the precipitates area measure-
ments, having an average diameter of 2.7 µm and 2.4 µm respectively, imply that 
there is not a substantial size difference. Furthermore, the measured precipitate 
fractions ratios were 1.1E−3 and 1.4E−3 for uncorroded and corroded samples, 
which validate the previous optical observations regarding fine precipitation. 

3.4. Scanning Electron Microscopy 

Due to the severe plastic deformation a cavity formation and a massive precipi-
tation is induced throughout the entire sample, as shown in Figure 9(a) and 
Figure 9(b). Detailed images are shown in Figure 9(c) and Figure 9(d), it can 
be observed the deformations bands and the interactions of precipitates with the 
cavities (arrow point out). This suggests that the screws manufacturing process 
was cold wiredrawing. From all the results obtained in previous sections, it is 
possible to relate the corrosion failure to the severe deformation and the massive 
precipitation; this may be caused by cold wire-drawing process and the excessive 
stabilizing α alloying elements. 

3.5. Microhardness Test 

The Vickers microhardness test was performed on both screws in longitudinal 
(L) and transversal (T) direction. From the results obtained, the corroded sam-
ple showed higher values on both directions having 401 HV T and 387 HV L, 
compared with uncorroded sample 269 HV T and 254 HV L. There is a clear 
difference among the samples tested, as shown in Table 2 and as it was observed  

 

 
Figure 8. Precipitate size distribution as measured area (a) uncorroded screw, (b) corroded screw. 
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Figure 9. SEM images (a), (b), (c) and (d) of the corroded screw at different magnifications 
sizes. 

 
Table 2. Results of the quantitative elemental analysis of the uncorroded and corroded 
screws. 

Direction 
Corroded screw 

(average) 
Standard 
deviation 

Uncorroded screw 
(average) 

Standard 
deviation 

Longitudinal 387 23.7 254 11.6 

Transversal 401 6.78 269 7.8 

 
in the microstructure characteristics. The ASTM F-138 standard establishes for 
SS in annealing state a hardness of 250 HB (263 HV), in the case of cold de-
formed steel, it does not stipulate a hardness value; the failed screw shows 401 
HV due to severe plastic deformation. 

3.6. Results of the Prospection of Chemical Composition 
3.6.1. Genetic Algorithm 
The implementation of heuristic methods such as GA in the material science 
field is important and its application lies in the possibility of optimizing manu-
facturing processes using parameters that affect the performance of the mate-
rials. Considering the restrictions of chemical composition stipulated by ASTM 
F-138 standard and the Schaeffler-Delong diagram a squared area was consi-
dered, as shown in Figure 11. The area proposed was found by genetic algo-
rithms; the purpose was to obtain a fully austenitic alloy for better corrosion re-
sistance properties. The restrictions applied in the genetic algorithm for Equa-
tions i.e. (1), (2) and (3) are presented below: 
• CrE and PRE number condition established by ASTM F-138 standard, where 
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the CrE and PRE are correlated. 

( ){ }
{ }
{ }

ASTM F138 ASTM F138

ASTM F138 ASTM F138

ASTM F138 ASTM F138

PRE %Cr 3.3 %Mo 26

Min %Cr Max ,

Min %Mo Max

  

  

  

+ ∗ ≥

≤ ≤

≤ ≤

            (6) 

( )
{ } { }
{ }

E

PRE PRE PRE PRE

DB ASTM F138

Cr %Cr %Mo 1.5 Si

Min %Cr Max , Min %Mo Max ,

Min Si Max  

= + + ∗

≤ ≤ ≤ ≤

≤ ≤

        (7) 

• NiE conditions 

( ) ( ) ( )
{ } { }
{ } { }

E

ASTM F138 ASTM F138 DB ASTM F138

DB ASTM F138 DB ASTM F138

Ni %Ni 30 %C 30 %N 0.5 %Mn

Min %Ni Max , Min %C Max ,

Min %N Max , Min %Mn Max
   

  

= + ∗ + ∗ + ∗

≤ ≤ ≤ ≤

≤ ≤ ≤ ≤

   (8) 

The Where DB is related with the minimal value of the data base used [5]. 
Figure 10 shows the performance of the genetic algorithm applied to the latter 
restrictions. The black squares correspond to the best fitness value. 

The resulting solutions were found being the best values obtained for the α 
and γ stabilizing elements from the Equations (2) and (3); the minimum (■) and 
maximum (●) values are as follows: 

E20.265 Cr 22< <                        (9) 

E18 Ni 20.43< <                        (10) 

The blue area of Figure 11 comprises the restrictions of alloy elements stipu-
lated by ASTM F-138 standard. In Figure 11 the proposed area (green area) is 
shown, considering the earlier mentioned restrictions. The alloying contents 
were restricted to ensure a fully austenitic alloy (proposed area). 

 

 
Figure 10. Genetic algorithm performance. 
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Figure 11. Area of the chemical composition proposed. 

 
Table 3. Proposed chemical composition ranges. 

Element 
(%wt) 

C N Si Mn P S Ni Cr Mo 

Maximum 0.035 0.107 0.400 2.04 0.025 0.002 15.15 18.70 2.70 

Minimum 0.025 0.060 0.010 1.50 0.004 0.0002 14.70 17.75 2.50 

 
Table 3 shows the ranges obtained by GA for the alloy content that accom-

plishes the restrictions of standard. Also, this proposal is in the austenitic zone 
on the Schaeffler-Delong diagram. It would be expected that the alloy conditions 
meet the requirements of corrosion resistance and finally avoid the failure due to 
the massive formation of precipitates. 

3.6.2. Mapping of the Proposed Chemical Composition Ranges 
The SFE was mapped using artificial neural networks over the selected area by 
genetic algorithms. It has been reported that an increase in SFE indicates an ac-
cumulation of defects on the crystal lattice particularly in SS alloys where sensi-
tization is induced [5] [9]-[15]. Therefore, obtaining the predicted values of SFE 
on the proposed area is a very useful tool to analyze its behavior as a function of 
the proposed alloy content ranges. The prediction performance of the ANN as 
shown in Figure 12 was used for the SFE mapping. 
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Figure 12. Comparison between predicted and characterized SFE values. 

 
Because the ANN was trained for the prediction of SFE for three different heat 

treatments, it is feasible to observe the behavior of each one and additionally 
propose an adequate, subsequent to the manufacturing process. The following 
Figures show the SFE behavior of the three different heat treatments. The 
SHTWC and SHTFC exhibit different behaviors but similar SFE maximum val-
ue, as shown in Figure 13(a) and Figure 13(b). The main difference lies on the 
formation of defects due to the thermal process which is enclosed in a chemical 
composition range. Finally, the results for AGING treatment are presented in 
Figure 13(c), there is an increase in SFE that can be related to the formation of 
small precipitates; this has been experimentally reported [5]. The thermal process 
suggested is SHTWC due to its effect on SFE and its correlation with micro-
structure, precipitates, and mechanical properties, these confirms previously re-
sults published [1] [3] [5]. The predictive model by ANN can provide support 
for the design and optimizations of the surgical austenitic stainless steel. 

4. Discussion 

Initially, it was found a deviation from the ASTM F-138 standard in relation di-
rectly to the screws involved with their chemical composition as shown in Table 
1. It is clear that the difference is related to the chemical composition, specifical-
ly in Cr, Ni and Mo contents. It is well known that these elements have great in-
fluence on the corrosion resistance [1] [2] [4]-[9]. However, the screws analyzed 
did not fulfill the chemical composition required, but despite this statement, on-
ly one screw failed, mainly related to its manufacturing process that induced se-
vere plastic deformation. On the other hand, the hardness difference obtained 
between screws is considerable possibly due to the manufacturing process and 
the induced precipitation [5] [6] [7] [8] [9]. According to Perumal et al. 2020 
[25], several techniques for severe plastic deformation have been reported such  
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Figure 13. Mapping of SFE (a) SHTWC, (b) SHTFC, and (c) AGING. 

 
as friction stir processing (FSP), severe shot peening, warm multi-axial forging, 
equal channel angular pressing (ECAP) and high-pressure torsion (HPT). Con-
sequently, this process modifies the microstructure through the formation of the 
martensitic phase (ε) and the fracture behavior of the passive layer formed 
(Cr2O3). Also, it has been reported that the deformation process may induce the 
possibility of improving mechanical properties and corrosion resistance through 
grain refinement [25] [26] [27] [28]. However, in the present study, the defor-
mation process was not controlled, but a highly deformed microstructure was 
observed, and higher microhardness values were obtained, in conjunction with 
the breakdown of the passive Cr2O3 layer. Additionally, it is likely that the trans-
formation of the austenitic phase into two different phases has been induced, as 
the reaction: γ1 → ε → α', which causes a localized difference in corrosion poten-
tials, forming an anode and cathode reaction, reducing corrosion resistance [29] 
[30]. This is because the ε and α' phases are stable at low temperature, so it can 
be induced by thermomechanical treatments processes [29] [30] [31] [32]. On 
the other hand, based on the deformation bands shown in Figure 9 and the re-
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sults obtained by Chen et al. 2021 [33], the formation of “patchy heterogeneous 
regions” is possible, which generates localized variations in the electrochemical 
potentials on the surface, inducing micro-galvanic cell corrosion. Despite the 
inevitable plastic deformation during the manufacturing process, recently Ku-
mar et al. 2020 [34], reported a more protective passive layer derived from the 
application of solution annealing heat treatments after plastic deformation. 
Therefore, the proposal presented in the present work considers the manufac-
ture of the alloy from its chemical composition and the deformation process. 
Suggesting in the case of being inevitably the necessary severe plastic deforma-
tion derived from the corresponding manufacturing process, further treatment 
processes as solubilization and rapid cooling must be performed to induce the 
microstructure recrystallization as shown in Figure 15. In addition, according to 
recent works, it dissolves the martensitic phases and obtains a more protective 
passive layer [34]. 

Regarding the GA and ANNs employed, a potential proposal of chemical 
composition on the performance of stainless steel as a function of the ASTM 
F-138 standard and the microstructure predicted by the Schaeffler-Delong dia-
gram was performed. The chemical composition ranges proposed are based in 
the standard and the diagram; however, it is also correlated with the formation 
of second-phase particles such as precipitates at the grain boundaries. The preci-
pitates formed are related to carbides produced as a consequence of the rapid 
diffusion of Cr at the grain boundaries and its interaction with C. The most 
common carbides found in this type of alloys are M7C3 and M23C6 (structures 
D101 and D84 of the Pnma and Fm (−3) m space groups, respectively) either in 
transgranular form and/or along the grain boundaries [35] [36]. If massive pre-
cipitation is formed, intergranular corrosion or sensitization is induced [37] [38] 
[39]. Therefore, the control of the chemical composition in regard to Cr and C is 
very important. On the other hand, the solidification in the manufacturing 
process directly affects the formation of precipitates. Based in the work of Wiec-
zerzak et al. 2016 [40] and in calculated phase diagrams using the CALPHAD 
software (see Figure 14(a) and Figure 14(b)), the precipitation sequence for the 
manufacture of surgical components similar to the studied in this work can be as 
follows: Liquid (≈1500˚C) → Liquid + α1 (≈1450˚C) → α1 (≈1350˚C) → γ2 + α1 

(≈1200˚C) → γ1 + α1 + σ (≈1100˚C) → γ1 + σ (≈1000˚C) → γ2 + M23C6 + σ 
(≈700˚C) → γ1 + α1 + M23C6 + σ (≈500˚C) → γ2 + α1 + α2 + M23C6 + P (≈400˚C) → 
γ1 + α1 + α2 + M23C6 + P (≈200˚C). Where the formation of the σ phase generally 
occurs at ≈1100˚C and above 20% weight of Cr, it must be avoided because it is a 
detrimental phase [40]. According to the ranges established by the ASTM F-138 
standard related to the main system (Fe-Cr-Ni-Mo-C), the predominant phase is 
A1 (γ1). It can be assumed that the phases present in the alloy manufactured in 
agreement with the standard are: γ1 + α1 + M23C6, although due to the carbon 
content, the amount of M23C6 precipitates can be minimum, moreover, the α1 
phase is expected to be practically undetectable. As a result, the material must be  
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Figure 14. Ternary phase diagrams at 800˚C (a) Fe-Cr-C, (b) Ni-Cr-C. 
 

composed by entirely austenitic microstructure, having the benefits of NiO and 
Cr2O3 compounds as protective agents against corrosion. Where the NiO forms 
a continuous layer while the Cr2O3 is formed mainly at grain boundaries due to 
the rapid diffusion rate of Cr [41]. Regarding to Mo, it does not form detrimen-
tal phases; it is added to increase corrosion resistance. On the other hand, heat 
treatment is crucial in the resulting microstructure, in this type of alloy, the 
massive distribution of structures D101 and D84 can be formed with an isother-
mal treatment at ≈800˚C from an extended period of time. Usually in similar 
systems which are not for surgical use and require excellent mechanical proper-
ties, an aging treatment is applied at an appropriate temperature for the forma-
tion of precipitates on the grain boundary [35] [39]. Nevertheless, this type of 
treatment should be avoided in the system studied in this work, that is, is man-
datory to avoid the exposition of the alloy to the precipitation temperature, 
hence, the rapid cooling is the best option. It has been reported that the precipi-
tates distribution and the increase along grain boundaries can be controlled em-
ploying heat treatments methods [36]. Experimentally, the effect of carbide for-
mation on the microstructure can be observed as shown in Figure 15. In Figure 
15(a) and Figure 15(b) it is feasible to observe a microstructure with lower 
concentration of micrometric precipitates. In the case of furnace cooling, it is 
possible that a greater number of precipitates will form at the grain boundary 
(indicated by red arrows). On the other hand, Figure 15(c) shows a sensitized 
microstructure, formed by applying an aging heat treatment for 1 hour at 800˚C. 
Thus, based in the former analysis, the control of the chemical composition and 
heat treatment is very important. The implementation of GA in the prospection 
of chemical composition was useful to obtain an ideal area on the Schaeff-
ler-Delong diagram and for the modification of the chemical composition 
ranges. In the present work, the resulting proposal comprises the austenitic area 
of the Schaeffler-Delong diagram, the chemical composition established in  
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Figure 15. Ternary Microstructures of 316 stainless steel (a) solubilization-water cooling, (b) 
solubilization-furnace cooling, (c) solubilization-aging treatment. Where the solubilization 
and aging treatments were applied at 1000˚C and 800˚C, respectively. 

 
the ASTM F-138 standard and the phase analysis that would mainly contain the 
γ1 + α1 + M23C6 phases, being the A1 phase corrosion protected by NiO and 
Cr2O3. In consideration to the predictive model, performed by ANNs, this can 
provide reinforcement for the design and optimization of surgical austenitic 
stainless steel; however, it is necessary to conduct experimental tests for this 
proposal which would complement the results obtained. 

5. Conclusions 

The corrosion failure was associated with severe plastic deformation and the 
presence of precipitates. The quantitative elemental analysis by atomic absorp-
tion confirmed that both implants contain the same alloy elements but different 
concentrations. Based on the ASTM F-138 standard, both screws did not ac-
complish the chemical composition restrictions which justifies that the corrosion 
failure could be generated. The Vickers microhardness test showed that the cor-
roded screw had greater mechanical properties than the uncorroded screw. 

On the other hand, using genetic algorithms, considering the chemical com-
position and thermal analysis regarding the established restriction by the ASTM 
F-138 standard and the Schaeffler-Delong diagram, new chemical composition 
ranges were proposed. It was possible to outline the ranges propose to predict 
the SFE values for the three thermal process conditions using ANN. The range 
proposed must avoid the massive precipitates formation and α phase. 
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