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Abstract 
Modeling, predictive and generalization capabilities of response surface me-
thodology (RSM) and artificial neural network (ANN) have been performed 
to assess the thermal structure of the experimentally studied catalytic combus-
tion of stabilized confined turbulent gaseous diffusion flames. The Pt/γAl2O3 
and Pd/γAl2O3 disc burners were located in the combustion domain and the 
experiments were accomplished under both fuel-rich and fuel-lean conditions 
at a modified equivalence (fuel/air) ratio (Ø) of 0.75 and 0.25, respectively. 
The thermal structure of these catalytic flames developed over the Pt and Pd 
disc burners was scrutinized via measuring the mean temperature profiles in 
the radial direction at different discrete axial locations along with the flames. 
The RSM and ANN methods investigated the effect of the two operating pa-
rameters namely (r), the radial distance from the center line of the flame, and 
(x), axial distance along with the flame over the disc, on the measured tem-
perature of the flames and predicted the corresponding temperatures beside 
predicting the maximum temperature and the corresponding input process 
variables. A three-layered Feed Forward Neural Network was developed in 
conjugation with the hyperbolic tangent sigmoid (tansig) transfer function 
and an optimized topology of 2:10:1 (input neurons:hidden neurons:output 
neurons). Also the ANN method has been exploited to illustrate the effects of 
coded R and X input variables on the response in the three and two dimen-
sions and to locate the predicted maximum temperature. The results indi-
cated the superiority of ANN in the prediction capability as the ranges of 

2
adjR  & F_Ratio are 0.9181 - 0.9809 & 634.5 - 3528.8 for RSM method com-

pared to 0.9857 - 0.9951 & 7636.4 - 24,028.4 for ANN method beside lower val-
ues for error analysis terms. 
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1. Introduction 

Catalytic combustion or heterogeneous combustion had been extensively inves-
tigated in recent years. The catalytic oxidation of hydrocarbons became the focus 
of much basic and applied catalysis research because of its increasing importance 
for burner’s design of industrial furnaces and the techniques of power-generating 
gas turbines [1] [2]. For these applications, high temperature catalytic combus-
tion was regarded as a highly efficient and clean energy system. It had been rec-
ognized that noble metals possessed the highest catalytic activities that initiated 
the catalytic oxidation of fuels at relatively lower reaction temperatures [3] [4]. 
Catalytic combustion methodologies are greatly enhancing flames stability limits 
at very fuel-Lean equivalence ratios [5] and resulting in ultra-low NOx emissions 
[6]. Fuel-rich catalytic combustion does not only have a prime catalytic partial 
oxidation function but also acts as a preheater and stabilizer for subsequent ho-
mogeneous combustion zone, [7] [8]. The thermal structure of stabilized con-
fined turbulent gaseous diffusion flames using Pt/Al2O3 and Pd/Al2O3 catalytic 
disc burners situated in the combustion domain was experimentally investigated 
under both fuel-rich and fuel-lean conditions at the modified equivalence ratio 
Φ = 0.75 and 0.25, respectively [9]. The thermal structure of the catalytic flames 
developing over Pt disc indicates higher activity at the early upstream region of 
the main reaction zone compared to the flame developing over Pd disc burner 
under the fuel-rich condition. Also under the fuel-lean condition, flame operating 
over Pd catalytic disc burner indicates higher temperature values very near within 
the flame core compared to the flame developing over Pt catalytic disc burner. 

Wierzbicki, et al. [10] presented a review of progress in catalytic conversion of 
JP-8 fuel and its surrogates made over the last decade. The effect of different 
types of catalyst, support materials and preparation methods on reforming was 
discussed. Sulfur tolerant catalysts and mechanisms of catalyst poisoning were 
understood while the role of hydrocarbon present in jet fuel during fuel reform-
ing remains a challenge. High fidelity numerical simulations limited to gas phase 
non-catalytic reforming were examined. The combustion characteristics and 
stability of methane-air mixtures over platinum in catalytic micro-combustors 
were studied by Chen, et al. [11] using a two-dimensional computational fluid 
dynamics model with detailed chemistry and transport. It was shown that the 
combustor dimensions are vital in determining the combustion stability of the 
system. The investigation revealed that the optimal combustor length depends 
on the wall thermal conductivity. Shorter combustors increase the stability against 
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blowout for high conductivity, whereas longer combustors increase the stability 
against blowout for low conductivity walls. 

Progress in catalytic combustion depends on advances in catalyst technology 
and in multi-dimensional modeling for reactor design [12] investigated the pre-
mixed combustion of methane/air mixture in heat recuperation micro-combustors 
made of different materials. The effects of wall parameters on the combustion 
characters of a CH4/air mixture under Rhodium catalyst were explored using 
numerical analysis methodology. The results show that with a decrease of ther-
mal conductivity of wall materials, the temperature of the reaction region in-
creases and hot spots becomes more obvious. Arani et al. [13] carried out three 
dimensional direct numerical simulations (DNS) with detailed heterogeneous 
and homogenous chemistry and transport to investigate the turbulent combus-
tion of fuel-lean hydrogen/air mixtures over a platinum coated channel where 
catalytic reactions occurred. The homogeneous ignition, gas-phase combustion, 
was concentrated close to the walls. Hydrogen was incompletely converted within 
the gaseous combustion zones and the leaking fuel reacted on the catalytic walls 
leading to combined hetro-/homogenous combustion over the entire post-ignition 
domain. Furthermore, Arani et al. [14] performed another investigation of three- 
dimensional direct numerical simulation of turbulent catalytic and gas-phase 
H2/air combustion at a fuel-lean equivalence ratio Φ = 0.18 in platinum-coated 
planar channels at two Rynolds number, Re = 182 and 385 using detailed he-
tro-/homogeneous chemical reaction mechanism. It was observed that the high-
er turbulence intensity at Re = 385 resulted in larger near-wall hydrogen excess 
yielding shorter homogeneous ignition distances compared to the lower Re. The 
coupling of catalytic and gas-phase chemistry inhibited homogenous ignition, 
was characterized by intense catalytic reaction rates which could be applied in 
practical catalytic reactors. 

Recently, Pan et al. [15] investigated experimentally and numerically the he-
tero/homogeneous reaction for H2/Air mixture in a micro catalytic combustor. 
The distribution of OH radicals in the combustor was observed by plane laser 
induced fluorescence. Measurement of temperature variation in the combustor 
was determined for revealing the transition process of reaction types. The critical 
equivalence ratio from coupled hetero-/homogeneous reaction transforming in-
to pure heterogeneous reaction is ФA, while that from pure heterogeneous reac-
tion to coupled hetero-/homogeneous reaction is ФB. At different combustor 
heights and mixed gas flow rate, ΦA is always less than ΦB. The critical equiva-
lence ratios ΦA decreases while the critical equivalence ratio ΦB increases, when 
the height of combustor increases. ΦA and ΦB both decrease with the increase of 
mixed gas flow rate. Heat loss of the combustor outer wall has an important ef-
fect on the transformation of reaction type. The research introduced by Zang, et 
al. [16] clarified the hazards of volatile organic compounds (VOCs) which now 
become a kind of harmful environmental pollutants that cannot be overlooked 
with the rapid development of industry. In the common catalytic combustion 
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catalysts, noble metal catalysts and non-noble metal catalysts researches achieved 
progress for the elimination of VOCs. Perovaskite catalysts as one of the non- 
noble catalysts play an important role in the field of catalytic combustion in re-
cent years. This work analyzed and elaborated the reaction kinetics and the 
QSAR/QSPR (Quantitative structure-activity relationship/Quantitative structure- 
property relationship) models for the introduction of structural properties and 
reaction mechanisms. 

More recently, He et al. [17] presented a literature review on the catalytic me-
thane combustion. This study revealed that the presence of catalysts enables 
complete oxidation of methane at much lower temperatures, typically 500˚C, so 
that the formation of pollutant can be largely avoided. Various aspects were dis-
cussed including the catalyst types, the reaction mechanism, kinetic characteris-
tics, effects of various influencing operation factors and different reactor types 
proposed and tested. The study may serve as an essential reference to realize the 
performance, for future applications and propagation in different industrial sec-
tors. Moreover a catalyst preparation method, consisting of slurry wash coating 
with γAl2O3 followed by impregnating platinum on the micro-reactor wall, had 
been investigated by He, et al. [18]. The effect of various factors in the preparation 
procedures on the adhesion of the wash coat γAl2O3 was studied. Well-adhered 
Pt/Al2O3 catalysts were applied in a micro-reactor and investigated in terms of 
their performance in catalytic methane combustion. It was shown that the reac-
tion temperature had a greater influence on the methane conversion than the 
flow rate, and favorable coverage of methane and oxygen on the catalyst surface 
is essential to obtain a good catalytic performance besides achieving the favora-
ble methane conversion, as well as, the sufficient heat release for the potential 
uses of such micro-reactors for energy related applications. 

Artificial neural networks (ANNs) and response surface methodology (RSM) 
are significant attitudes in the field of processes modeling and optimization. 
These methods of modeling assess the relations between the output (response or 
target variable) and input variables (experimental operating factors) of the 
process by means of experimentally derived data. Subsequently, derived models 
are used to approximate the optimum situations to minimize or maximize the 
target variable (dependent variable) along with the involved corresponding in-
dependent variables [19]. Both RSM and ANN do not need the accurate expres-
sions or the physical meaning of the system under exploration so they have been 
enormously employed in diverse fields [20] [21].  

Several researchers have implemented the collective analysis on RSM and 
ANN to investigate the various aspects of these processes [22].  

Ahmadpour et al. [19] evidenced the higher accuracy of ANN than the re-
sponse surface model in their investigation of spent caustic wastewater treat-
ment in a photocatalytic reactor. Comparing ANN and some classical modeling 
techniques such as RSM [23] showed the supremacy of ANN as a modeling 
technique in analyzing non-linear relationships of data sets, which consequently 
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provides good fitting for data as well as better predictive ability. They stated that 
ANN is suitable in engineering research since most problems are non-linear in 
nature. 

The multi-layer perceptron (MLP_ANN) models were superior to the regres-
sion model achieving a relatively lower prediction error for modeling Al6082-T6 
alloy drilling [24] and better modeling accuracy than RSM for prednisone release 
from a multipartite System [25], in addition to the superiority for predicting and 
optimizing the process of ultrasound-assisted extraction [26]. 

RSM and ANN were studied and compared for modeling highly nonlinear 
responses found in impact-related problems. Despite the computation cost of 
ANN, these studies concluded the supremacy of ANN over RSM in such opti-
mization problems [27]. Also, Qadir et al. [28] mentioned that ANN is a more 
valuable tool to interpret the relationship between the input and output data of 
augmented experimentations and ANN is an efficient algorithm to identify any 
function with limited number of discontinuities. Moreover, Habeeb et al. [29] 
found the application of ANN for predictive modeling of the adsorption process 
will help the understanding of the non-linear relationship between the input and 
output variables besides enhancing monitoring the process variables for opti-
mum performance. 

Recently, Cisternas et al. [30] in their study of Trends in Modeling stated that 
ANN and RSM models substantially reduce the computational cost involved in 
simulation and sensitivity analyses. Ayodele et al. [31] demonstrated the robust-
ness of back propagation artificial neural network for predictive modeling of 
photodegradation of organic pollutants beside the determination of the level of 
importance of the process parameters. Also, Srinidhi et al. [32] stated that ANN 
is showing promise for tackling multivariate and complex modeling problems. 
The ANNs algorithms are employed for their high sensitivity to change in va-
riables, accommodation for a large number of variables, flexibility, ease in net-
work construction, and the diverse availability of adjustable functions for preci-
sion modeling and prediction. Moreover, Agu et al. [33] in the modeling and 
optimization of Terminalia Catappa L. Kernel Oil (TCKO) extraction designated 
that ANN was a better and more effective tool than RSM indicated in its higher 
R2 and F_Ratio beside lower error analyses parameters. Mohd Zin et al. [21] in 
the microbial decolorization process optimization declared that over a compara-
tive scale, ANN model has higher prediction and accuracy in the fitness com-
pared to the RSM model proven by approximated R2 and AAD values. Beigzadeh 
and Rastegar [34] indicated the high accuracy of the ANN modeling in estimat-
ing the target variable in their assessment of Biosorption process. This will re-
duce the need for more laboratory data, allowing the determination of the op-
timal parameters for designing equipment. 

There have been many works in the literature about the catalytic combustion, 
however, there have been fewer studies about the different mathematical mod-
eling approaches and comparative analyzes. The mathematical modeling studies 
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are necessary to understand the process and show the optimization alternatives 
to the process [35]. 

The present study deals with the evaluation of the predictive competencies 
of the RSM and ANN two methodologies for the formerly reported experimental 
data of thermal structure of catalytic stabilized confined turbulent gaseous diffu-
sion flames over Pt/γAl2O3 and Pd/γAl2O3 catalytic disc burners under fuel-rich 
and fuel-lean conditions [9]. This has been achieved by comparing the values of 
coefficient of determination (R2), F_Ratio besides the various error analyses pa-
rameters. Furthermore, the ANN method has been employed to illustrate the ef-
fect of input flame parameters on the response in three and two dimensions and 
to show the location of the optimum. 

2. Response Surface Methodology  

The RSM is a resourceful tool which is conjured of mathematical and statistical 
techniques for designing experiments, building models, evaluating the effects of 
variables, and searching optimum conditions of variables to predict targeted 
responses as well as the evaluation of the most influential factors on chosen res-
ponses [33] [34] [36].  

RSM, since its introduction in the 1980s, has been extensively utilized for 
modeling and optimization of several engineering processes and studies whereby 
the numbers of process variables influencing the response(s) are many [33] [37]. 
The structured nature of the RSM is useful to exhibit the factors of contributions 
from the coefficients in the regression models. This ability is powerful in identi-
fying the insignificant main factors and interaction factors or insignificant qua-
dratic terms in the model and thereby can reduce the complexity of the problem 
[38]. 

One of the very important advantages of RSM is the reduction in the number 
of experimental runs which means it is time effective, inexpensive, and still, has 
the capability of attaining maximum efficiency and providing acceptable results 
as well as the evaluation of the most influential factors. RSM also has the advan-
tage of generating second-order polynomial equation, which relates the depen-
dent(s) or response(s) to the independent or process parameters. RSM is benefi-
cial to determine the effects of each variable alone or in combination as it con-
templates all the input variables at the same time, and therefore, interactions 
between variables are considered [39] [40] [41] [42]. 

Generating a mathematical model; its graphical perspective has led to the term 
Response Surface Methodology [43]. These graphic drawings of the shape of the 
surfaces allow a visual explanation of the functional relations between the re-
sponse and the experimental variables [44] [45]. 

However, any form of a non-linear relationship between the variables may 
result in a decrease in the prediction accuracy of the RSM. Increased number of 
variables is very time-consuming for analysis and significantly decreases the ac-
curacy of this method. Moreover RSM based models are exact for only a limited 
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range of input process parameters, and thus, impose a limitation on the use of 
RSM models for highly non-linear processes beside it cannot include uncontrol-
lable variables [46] [47]. 

RSM involves the following steps: 1) Selection of the independent variables, 
responses and experimental design; 2) Execution of experiments and collection 
of results; 3) Mathematical modeling of the experimental data by polynomial 
equations, with the best fitting response through analysis of variance; 4) Draw-
ing of response surfaces using 2D or 3D plots, and finally; 5) Evaluating main 
and interactional effect of variables and identification of optimal conditions [48] 
[49]. 

Before performing the regression analysis the variables should be codified to 
eliminate the effect of the variation of natural independent variables units and 
ranges in the experimental domain over which parameters have been tested. This 
allows parameters of different magnitude to be investigated more evenly in a 
range between −1 and +1. The equation seen below is the most frequently one 
utilized for coding [50] [51] [52]: 

actual value meancoded value
half of range

−
=                     (1)  

A second order equation of the following form has been established for the 
functional relationships between the coded independent variables and depen-
dent variables using multiple regression technique [52] [53]:  

2
0 1 1 1 1

1
i i ij

n n
i j i ii i i

n
j i

nY X X X Xβ β β β
= = = + =

−= + + +∑ ∑ ∑ ∑          (2)  

Details of this method have been dealt with in our previous papers [54] [55] 
[56]. 

2.1. Artificial Neural Networks 

Artificial neural networks (ANNs) are generic mathematical models lie at the 
intersection of computer science, artificial intelligence, and neuroscience. They 
classify data, learn models, and make predictions.ANN is an efficient algorithm 
to identify any function with limited number of discontinuities and valuable tool 
to interpret the relationship between the input and output data of augmented 
experimentations [57]. The capability of ANN to investigate and rationalize the 
performance of any complicated and non-linear process makes ANN an impor-
tant modeling tool [22]. 

Ever since its introduction as universal function approximators by McCulloch 
and Pitts in 1943 [58] ANNs have been extensively used in many areas as a po-
werful and reliable tool serving data mining and numerical applications because 
of their powerful control over regulatory parameters for pattern recognition and 
classification. ANNs have been around since the mid-20th century but blos-
somed first in the 1980s with the introduction of back propagation and then 
again in the 2000s with the development of deep learning. The latter has domi-
nated the machine learning and artificial intelligence scene in recent years [57]. 
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Over the years, ANNs have been applied in Modeling and Prediction, Control, 
Optimization and Classification, Fault Detection besides solving several engi-
neering, science, medicine, mathematics, neurology, metrology, psychology and 
biology problems [33].  

NN is a computational mechanism that is able to acquire, represent, and 
compute mapping from multivariate space of information to another, given a set 
of data representing that mapping. ANNs are designed to simulate the human 
brain when analyzing data by learning from experience. Similar to the human 
brain, ANNs are capable of processing multi dimensional, non-linear, clustered 
and imprecise information and could be used to extract a pattern in nonlinear, 
complex and noisy or fuzzy data sets to detect the trends with high accuracy. 
ANN algorithms are employed for their high sensitivity to change in variables, 
accommodation for a large number of variables, flexibility, ease in network con-
struction, and the diverse availability of adjustable functions for precision mod-
eling and prediction. ANN substantially reduces the computational cost involved 
in simulation and sensitivity analyses. Thus, ANN can be used to decode com-
plicated real world problems that are sometimes challenging to evaluate using 
statistical approaches without the need for complicated equations, and is capable 
of exploring regions that are otherwise omitted when using statistical approach-
es. ANN using its many parameters (weights and bias) is able to predict the 
output of the model with high accuracy and this will reduce the need for more 
laboratory data, allowing us to determine the optimal parameters for designing 
equipment. ANNs, in particular, are best suited for descriptive problems for 
which large amounts of data are cheaply available. Recently ANN has been de-
veloped as an alternative to the RSM system for complex non-linear multivariate 
modeling. ANN performs the project by learning from training examples and 
does not need any prior knowledge of the correlation between targeted res-
ponses. As compared to the RSM, ANN could be a powerful tool to propose 
higher accuracy and efficiency on the fitting of experimental responses, predic-
tion, and modeling of processes [46] [47] [49] [57] [59] [60] [61].  

ANN is a colossal structure of interconnected networks based on a simplified 
analogy to the behavior of the human brain consisting of numerous individual 
elements called neurons, which are mathematically represented by relatively 
simple yet flexible functions, such as linear or sigmoid functions capable of per-
forming parallel computations for data processing. These processing units 
communicate with each other by means of weighted connections, corresponding 
to the synapses of the brain [37] [62].  

Due to the uncertainty of the model, the experimental results can be achieved 
by adjusting the structure of the network, by choosing different numbers of 
neuron layers, the type and number of neurons in each layer, the type of connec-
tion between neurons, the excitation function and the weight of interconnection 
among internal nodes. The accuracy of the neural network is mainly affected by 
the hidden layers, the number of nodes, the training algorithm, the learning rate, 
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and the transfer function. Many hidden layers and neurons can lead to network 
complexity and overfitting [34] [40].  

For a specific configuration of the network and for a given set of input-output 
data, the so-called training of the network consists of adjusting its parameters in 
order for the network to reproduce the input-output data as accurately as possi-
ble. Each iteration of the training process is called an epoch and composed of 
forward activation to produce a solution and the backward propagation of the 
calculated error to adjust the weights [62] [63] [64]. 

2.2. Neuron Model  

The most commonly used transfer functions for multilayer networks are presented 
below in Figure 1(a) & Figure 1(b). Figure 1(a) portrays the tansig differentiable  
 

 
(a) 

 
(b) 

 
(c) 

Figure 1. (a) Tansig transfer function; (b) Purelin transfer function; (c) Elementary neuron. 
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transfer function f to generate the output between −1 and 1 as the neuron’s net 
input goes from negative infinity to positive infinity. Figure 1(b) displays the li-
near transfer function purelin. Figure 1(c) depicts an elementary neuron with R 
inputs where each input is weighted with an appropriate w while the sum of the 
weighted inputs and the bias forms the input to the transfer function f [65]. 

2.3. Feed Forward Neural Network 

The most widely used network type for approximation problems is the mul-
ti-layer perceptron (MLP), also called feed-forward back propagation network 
(FFBPN), Figure 2(a) & Figure 2(b) [31] [65]. The choice of feed-forward con-
figuration is due to its wide applications in industrial processes and it is easy to 
implement in a variety of processes [29] [66]. Figure 3 presents the general Pro-
cedure for back propagation artificial neural network (BPANN) modeling [31]. 

Figure 2(a) & Figure 2(b) depicts two-layer tansig/purelin network. Feed 
forward networks often have one or more hidden layers of sigmoid neurons 
followed by an output layer of linear neurons along with an input layer. Em-
ploying the nonlinear transfer functions allow the network to learn the nonlinear 
relationships between input and output vectors. The linear output layer is most 
frequently used for function fitting (or nonlinear regression) problems [65]. 

 

 
(a) 

 
(b) 

Figure 2. (a) Model architecture of BPANN [31]; (b) feed-forward network [65]. 
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Figure 3. Procedure for BPANN modeling [31]. 

 
The number of input neurons signifies and is equal to the independent va-

riables of the system and the number of output neurons denotes and is equal to 
the response of the system. All hidden units are attached to each input unit and 
to the output layer and there is no communication between neurons in the same 
layer but information only moves in the forward direction, from the input to-
wards the output layer [32] [62] [67].  

Generally, a combination of layers with sigmoid activation functions for the 
hidden layer and a linear function for the output layer beside linear activation 
functions for the input (where input values are simply passed onto the neurons 
in the next layer) are used for approximation of functions with minor disconti-
nuities. In the passageway, each value is multiplied by the relevant weight, which 
characterizes the connection between neurons of the layers; hence a weighted 
sum is passed to the hidden layer neurons. A bias factor is added to the weighted 
sum, which allows, for instance, an activation of the neuron even when a null 
value is passed to it. Employing the tangent sigmoid function in the hidden 
layer, a value between −1 and +1 is resulted on processing input values of 
weighted sum and bias. The resulting values are transmitted to the output layer. 
The output neurons add their own biases to the weighted sum they receive and 
return the network response for the input data provided to the network. The 
network parameters to be determined during the training process are the 
weights which characterize the connection between the neurons and the bias of 
each neuron [32] [42] [62]. 

Normalization of the input variables through codification employing Equa-
tion (1) leads to avoidance of numerical over-flows due to very large or very 
small weights and prevention of mismatch between the influence of some input 
values to the network weights and biases [68] beside avoiding problems such as 
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reduced accuracy and network instabilities in the course of training process [69]. 
The output values obtained from the ANN are also in the range of −1 to 1, and 
utilizing the reverse method of normalization process they are transformed to 
values corresponding to their original data [46]. 

In the training of the back propagation method, the error is determined by 
comparing the network output and the desired response and this error is re-
turned to the previous hidden and input layers for performing the necessary 
corrections in the next training processes. The network training operation ends 
when the error comes down below some value specified by the user [70]. 

To avoid overfitting the neural network model, the input-output experimental 
data is divided into three groups: the training set, verification set and test set. 
They played different roles in the model formation. The function of training set 
is to determine the parameters of neural network model and training model, the 
verification set calculates a single evaluation index used between epochs to op-
timally select model parameters, in order to halt the training process if the net-
work error starts to increase due to over fitting; and the test set verifies the fit-
ting ability of the neural network model at the end of the training [40] [62] [66] 
[69]. To avoid misleading performance results, the training, validation, and test 
sets should be sampled without replacement (no data points are shared between 
sets) [57].  

The MATLAB neural network toolbox has been employed for generating, 
training and prediction using the ANNs. The Levenberg–Marquardt (LM) me-
thod has been utilized for performing the training due to its fast convergence, 
accurate prediction of the model and reliability in locating the global minimum 
of the mean-squared error (MSE) [29] [31] [40] [68]. LM is hybrid of the Gauss 
Newton nonlinear regression and gradient steepest descent methods based on 
the least squares technique for nonlinear models employing the Jacobian matrix 
[62] [65] [66] [69].  

The following mathematical equation relates the input/output variables of the 
network [34] [49] [62]  

( ){ }0 1 1n lin k sig hk ik
h

i
m

k iO f b W f b W X
= =

 = + × +
 ∑ ∑             (3) 

where nO  is the normalized output ranging from −1 to 1; ob  is the output bi-
as; kW  is the connection weight between kth neuron of hidden layer and the 
single output neuron; hkb  is the bias at the kth neuron of hidden layer; h is the 
number of neurons in the hidden layer; ikW  is the connection weight between 
ith input variable and kth neuron of hidden layer; iX  is the normalized input 
variable i in the range [−1, 1]; sigf  is the sigmoid transfer function & linf  is 
the linear transfer function. 

The Levenberg-Marquardt algorithm uses the following updating function 
[62] [63]: 

1T T
1tk tkW W J J I J Eµ

−

+  = − +                     (4) 

where 
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( )21
2j j jj jE E T Y= = −∑ ∑                    (5) 

J is the Jacobian matrix, which contains first derivatives of the network errors 
with respect to the weights and biases parameters of the ANN. I is the identity 
matrix, E is a vector of network errors, W contains both the weights and biases 
of the ANN, μ is a scalar, a parameter of the algorithm, and tk represents the 
current training epoch [62]. Yj is the output value of the jth output neuron and Tj 
is the desired value of the jth output neuron. The tanh sigmoid transfer function 
( sigf ) is defined by the following relation [29] [65] 

( ) ( ) ( )( )( )2 1 exp 2 1sigf sum tansig sum sum= = + − ∗ −         (6) 

To employ an ANN the following steps must be completed: 1) data selection 
for learning, 2) network architecture selection, 3) determination of weight and 
threshold values, 4) verification and validation of the prediction model on the 
basis of error function, and, optionally, 5) optimization of the function learned 
by ANN [48].  

2.4. Application of RSM and ANN to the Present Work 

Experimental  
Details of the experimental setup and the data employed in this study have 

been reported previously in the work of [9].  
The following formulas have been employed to calculate the coded factors of 

(r) and (x): 

( )
75

127.5 97.5
R r
X x
=

= −
                          (7) 

where: 
r: radial distance from the center line of the flame (mm); 
x: axial distance along with the flame over the disc (mm). 
ANN Modeling Process  
The Artificial Neural Network Toolbox of MATLAB (Matlab 2016a (9.0.0), 

MathWorks, Natick, MA, USA) has been utilized for the development process of 
the MLP network employed in this study. A three-layer feed-forward ANN has 
been established with two input neurons for the coded influencing factors R and 
X representing the coded radial and axial distances respectively beside one out-
put neurons for the dependent response variable of Temperature. The back 
propagation algorithm has been employed for training data because of its ability 
for acquiring the non-linear functional relationships between inputs and targets. 
The activation functions involved in this network are hyperbolic tangent sigmo-
id (tansig) for the hidden layer and linear (purelin) for the output layer. The Le-
venberg-Marquardt back-propagation training algorithm was applied for mini-
mizing the error function of the ANN employing the mean square error (MSE) 
as performance function.  

The imported processing data matrix from laboratory experiment results in-
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cluding the coded X and R as input variables and radial mean temperature as an 
output variable were randomly divided by the network into three categories of 
training data (with a share of 70%), test data (with a share of 15%) and valida-
tion data (with a share of 15%). For identification of the optimum network ar-
chitecture, it is essential to determine the number of neurons in the hidden layer. 
Therefore, the number of neurons in the hidden layer was varied 3 to 14 neurons 
and the performance parameter (MSE) of each run was accordingly calculated 
with respect to the target value. The network with 10 neurons in hidden layer 
displayed the best results of minimum MSE. In each network training process, 
the weight and bias were corrected to reduce the MSE. For a certain group of 
neurons in the hidden layer different results may be obtained in each training 
process. Therefore, training process for each number of neurons in the hidden 
layer was executed in five repetitions while the value of the performance func-
tion was calculated for each repetition and the average value of the performance 
function for five repetitions was obtained. Calculating the average value elimi-
nates the effect of the output differences [70]. Also, this concept has been applied 
in all the evaluations of performance and errors of ANN method. 

2.5. Models Validation and Evaluation 

Many approaches have been stated in the literature for evaluation of the good-
ness of model fitting and prediction accuracy of RSM & ANN beside error ana-
lyses as presented in Tables 1(a)-(d). 
 
Table 1. (a) Performance and Error functions and their equations; (b) Performance and 
Error functions and their equations; (c) Performance and Error functions and their equa-
tions; (d) Performance and Error functions and their equations. 

(a) 

Function name Equation Reference 

Absolute maximum  
error, %errormax  ( )( ), ,1

% 100
i n

error i exp i pred max,expi
max max T T T

=

=

 = − ∗ 
 

  

Absolute maximum  
deviation, %TmaxAD  ( ),% 100Tmax max,exp max pred max,expAD T T T= − ∗   

Relative error percent 
( %Er ) 

% 100exp pred
i

exp i

x x
Er

x
 −

= ×  
 

 [69] 

Average relative error 
percent ( %avEr ), 1

1% %
n

av i
i

Er Er
n =

= ∑  [69] 

Average absolute relative 
error percent ( , %a avEr ), ,

1

1% %
n

a av i
i

Er Er
n =

= ∑  [24] [43] 
[69] 

Minimum absolute  
relative error percent 
( , %a minEr ), 

, % %
1a min i

n
Er min Er

i
=

=
 [69] 
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Maximum absolute  
relative error percent 
( , %a maxEr ), 

, % %
1a max i

n
Er max Er

i
=

=
 [69] 

Where: n: is the number of experimental data points; iexpx : is the experimental value of 

the ith data point; ipredx : is the corresponding value of the ith experimental data point 

predicted by the model; eX : is the value of the average experimentally measured tem-

peratures and pX : is the value of the average predicted temperatures. 

(b) 

Function name Equation Reference 

Adjusted R2 ( )2 2 11 1
1adj

nR R
n p

 −
= − − − − 

 [19] [27] [77] 

Standard Deviation (SD) 
2

1

1SD
1

n
iexp ipred

i iexp

x x
n x=

 −
=   −  

∑  [69] [78] 

Mean Absolute Error 
(MAE) 1

1MAE n
iexp ipredi

x x
n =

= −∑  [19] [32] [38] [48] [59] 
[64] [70] [71] [79] 

Mean Absolute Relative 
Error (MARE) 

1MARE
n

iexp ipredi

emax emin

x x n
x x

=
−

=
−

∑  [80] 

Average Absolute Relative 
Deviation (AARD) 1

1AARD n iexp ipred

i
iexp

x x
n x=

 −
 =
 
 

∑  [21] [34] [37] [39] [53] 
[64] [78] 

Absolute Average  
Deviation (AAD) 

2

1

1AAD
N

iexp ipred

i iexp

x x
n x=

 −
=   

 
∑  [19] [53]  

Where: n: is the number of experimental data points; p: is the number of non-constant 
terms in the RSM model; iexpx : is the experimental value of the ith data point; ipredx : is 

the corresponding value of the ith experimental data point predicted by the model; eX : 

is value of the average experimentally measured temperatures and pX : is value of the 

average predicted temperatures. 

(c) 

Function name Equation Reference 

Root Mean Square Error 
(RMSE), ( ) ( )2

1

RMSE 1
n

iexp ipred
i

x x n p
=

= − − −∑  [27] 

Averages 
1

1 n
e iexpi

X x
n =

= ∑ , 
1

1 n
p ipredi

X x
n =

= ∑   

Correlation coefficient 
(CC) 

( )
( )

2

1
2

1

CC 1
n

iexp ipredi
n

iexp ei

x x

x X
=

=

−
= −

−

∑
∑

 [69] 
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Coefficient of efficiency 
(CE1) 

( )
( )

2

1
2

1

CE1 1
n

iexp ipredi
n

iexp ei

x x

x X
=

=

−
= −

−

∑
∑

 [81] 

Coefficient of efficiency 
(CE2) 

( )
( )

2

1
2

1

CE2 1
n

iexp ipredi
n

iexp pi

x x

x X
=

=

−
= −

−

∑
∑

 [79] 

Nash Coefficient of  
efficiency (NSE) 

( )
( )

2

1
2

1

NSE 1
n

ipred iexpi
n

iexp ei

x x

x X
=

=

−
= −

−

∑
∑

 [49] [32] 

Standard Error of  
Prediction (SEP%) 

RMSESEP% 100
eX

= ×  [20] [38] [39] [52] 
[64] 

Where: n: is the number of experimental data points; p: is the number of non-constant 
terms in the RSM model; iexpx : is the experimental value of the ith data point; ipredx : is 

the corresponding value of the ith experimental data point predicted by the model; eX : 

is value of the average experimentally measured temperatures and pX : is value of the 

average predicted temperatures. 

(d) 

Function name Equation Reference 

Chi square statistic 
( 2χ ) 

( )2

2

1

n
iexp ipred

i ipred

x x
x

χ
=

−
= ∑  [38] [71] 

Accuracy (Af) 
1

10 log
N

ipred
f

i iexp

x
A N

x=

  
 =      
∑  [52] 

Bias (Bf) 
1

10 log
N

ipred
f

i iexp

x
B N

x=

  
 =      
∑  [52] 

% Relative Variance, 
RV% 

0.52

1

1RV% 100
n

iexp ipred

i iexp

x x
x n p=

  − = ×    −  
∑  [37] 

Absolute fraction of 
variance 

( )
( )

2

1
2

1

AFV 1
n

ipred iexpi
n

iexpi

x x

x
=

=

−
= − ∑

∑
 [23] 

Relevance Factor 
(RF) 

( )
( )( )

( ) ( )
,1

2 2

, 1

RF ,
n

k i k Ti Ti
k T

n
k i k Ti Ti

Inp Inp P P
Inp P

Inp Inp P P

=

=

− −
=

− −

∑

∑
 [69] 

Where: n: is the number of experimental temperatures data points; p: is the number of 
non-constant terms in the RSM model; iexpx : is the experimental value of the ith temper-

ature data point; ipredx : is the corresponding value of the ith temperature data point pre-

dicted by the model; eX : is value of the average experimentally measured temperatures 

and pX : is value of the average predicted temperatures; TP : predicted temperatures. 

,k iInp  and kInp  denote the ith and the average value of the ith input variable respec-

tively (k = R and X). TiP  and TP  refer to the ith predicted temperature and average 
predicted temperature respectively. 
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For the RSM several mathematical models have been suggested to establish 
the relationship between the dependent and independent variables. A suitable 
power transformation to the response data has been recognized using the 
Box-Cox method for normalizing the data or equalizing its variance. This me-
thod indicated that sqrt(T) of the mean experimental temperature T dependent 
variable is the best transformation, so it has been employed to represent the re-
sponse Y in Equation (2) [56]. 

In the present study the following cases have been considered 
Case a—The response temperature has been employed as it is for Y in Equa-

tion (2) and for training in case of ANN and the predicted temperatures were 
compared with the corresponding experimental temperature ones. 

Case b—The sqrt(T) has been employed in Equation (2) as Y and for training 
in case of ANN and the predicted results in both cases have been transformed to 
the equivalent predicted temperature to be compared with the corresponding 
experimental temperature ones. 

Case c—The sqrt(T) has been employed in Equation (2) as Y and for training 
in case of ANN and predicted results in both cases have been compared with the 
corresponding sqrt(experimental temperature) ones. 

3. Results and Discussions 

These above mentioned formulas Tables 1(a)-(d) have been employed in this 
study for performance evaluation and error analyses and the results are recorded 
in Tables 2(a)-(c). These results revealed the consistently accurate performance  
 

Table 2. (a) Performance and error evaluation of RSM and ANN methods; (b) Performance and error evaluation of RSM and 
ANN methods; (c) Performance and error evaluation of RSM and ANN methods. 

(a) 

Cond_Disc_Method_Case 

Av_temp Max_temp Min_temp 

T_
m

ax
_p

re
d 

X
_m

ax
_p

re
d 

r_
m

ax
_p

re
d 

tim
e_

el
ap

se
d 

A
D

Tm
ax

%
 

m
ax

er
ro

r%
 

Exp 
Corres. 

Calc 
Exp 

Corres. 
Calc 

Exp 
Corres. 

Calc 

FR_Pt_case a_NN_T_T 676.5 672.2 1275 1237.3 20 −2.704 1249.8 119.1 −5.5 3.426 1.98 12.53 

FR_Pt_case a_Reg_T_T 676.5 676.5 1275 1112.1 20 −164.9 1113.1 144.1 −2.60E−03 0.020 12.70 20.39 

FR_Pt_case b_NN_sqrtT_T 676.5 673.3 1275 1263.8 20 28.17 1279.7 123.0 −2.5 4.344 0.706 8.22 

FR_Pt_case b_Reg_sqrtT_T 676.5 674.2 1275 1198.5 20 47.61 1200.8 145.4 1.93E−05 0.013 6.07 13.39 

FR_Pt_case c_NN_sqrtT_sqrtT 25.19 25.21 35.71 35.23 4.47 5.178 1243.6 119.7 −1.5 4.235 2.46 5.76 

FR_Pt_case c_Reg_sqrtT_sqrtT 25.19 25.19 35.71 34.62 4.47 6.900 1200.8 145.4 1.93E−05 0.012 6.07 9.83 

FL_Pt_case a NN_T_T 512.8 512.5 1025 992.1 20 1.124 1039.1 153.8 −1.5 3.368 2.61 8.18 

FL_Pt_case a Reg_T_T 512.8 512.8 1025 869.2 20 −185.4 870.2 168.9 −2.70E−03 0.020 15.10 20.03 

FL_Pt_case b NN_sqrtT_T 512.8 512.8 1025 1009.0 20 18.12 1084.5 151.6 −2.5 3.863 6.20 8.46 

FL_Pt_case b_Reg_sqrtT_T 512.8 512.0 1025 946.5 20 13.28 949.9 166.0 1.13E−05 0.019 7.32 10.11 

FL_Pt_case c NN_sqrtT_sqrtT 21.69 21.70 32.02 31.89 4.47 4.260 1080.8 152.2 −3 4.291 5.44 6.34 
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FL_Pt_case c Reg_sqrtT_sqrtT 21.69 21.69 32.02 30.77 4.47 3.644 949.9 166.0 1.13E−05 0.020 7.32 7.18 

FR_Pd_case a NN_T_T 453.5 453.1 960 907.6 35 11.72 921.5 154.8 0.5 3.093 4.34 7.63 

FR_Pd_case a Reg_T_T 453.5 453.5 960 793.3 35 −162.8 793.6 171.7 5.87 0.021 17.33 21.13 

FR_Pd_case b NN_sqrtT_T 453.5 452.8 960 927.2 35 28.34 948.1 150.3 0.5 3.445 2.18 6.24 

FR_Pd_caseb_Reg_sqrtT_T 453.5 451.8 960 859.7 35 16.54 861.8 168.3 5.44 0.019 10.23 14.18 

FR_Pd_case c NN_sqrtT_sqrtT 20.39 20.38 30.98 30.40 5.92 5.451 965.7 156.8 6 3.671 1.71 4.75 

FR_Pd_case c Reg_sqrtT_sqrtT 20.39 20.39 30.98 29.32 5.92 4.067 861.8 168.3 5.44 0.019 10.23 8.87 

FL_Pd_case a NN_T_T 514.3 514.4 970 940.6 50 44.766 992.7 129.5 2 3.614 3.67 9.10 

FL_Pd_case a Reg_T_T 514.3 514.3 970 837.5 50 −98.6 841.6 150.4 1.99E−03 0.104 13.24 18.04 

FL_Pd_case b NN_sqrtT_T 514.3 512.7 970 947.0 50 56.90 966.6 123.0 1 3.618 0.95 9.82 

FL_Pd_caseb_Reg_sqrtT_T 514.3 513.1 970 891.7 50 50.90 898.9 151.7 2.53E−05 0.017 7.33 14.51 

FL_Pd_case c NN_sqrtT_sqrtT 22.04 22.01 31.14 30.63 7.07 7.806 958.2 128.2 1 5.140 1.27 7.87 

FL_Pd_case c Reg_sqrtT_sqrtT 22.04 22.04 31.14 29.86 7.07 7.135 898.9 151.7 2.53E−05 0.014 7.33 7.94 

Min NN= 20.4 20.4 31.0 30.4 4.47 −2.70 921.5 119.1 −5.50 3.09 0.71 4.75 

Max NN= 676.5 673.3 1275.0 1263.8 50.0 56.9 1279.7 156.8 6.00 5.14 6.20 12.5 

Min Reg= 20.4 20.4 31.0 29.3 4.47 −185.4 793.6 143.1 −2.70E−03 1.19E−02 6.07 7.18 

Max Reg= 676.5 676.5 1275.0 1198.5 50.0 50.9 1197.6 171.7 5.87 1.04E−01 17.3 21.1 

(b) 

Cond_Disc_Method_Case R_square 2
adjR  F_ratio SD Erav% Era,av% Era,min% Era,max% MARE AARD AAD RMSE 

FR_Pt_case a_NN_T_T 0.9881 0.988 18,379.5 0.124 −0.9935 5.121 1.03E−02 117.9 0.0173 0.0512 0.0198 30.13 

FR_Pt_case a_Reg_T_T 0.9193 0.9181 796.9 0.7656 6.85 20.89 4.93E−02 924.6 0.0561 0.2089 0.5834 86.7 

FR_Pt_case b_NN_sqrtT_T 0.9903 0.9901 19136 0.0881 0.3389 4.166 9.81E−03 75.73 0.0163 0.0417 0.0197 26.86 

FR_Pt_case b_Reg_sqrtT_T 0.9304 0.9294 973.6 0.2109 −2.378 12.31 1.23E−01 189.7 0.0528 0.1232 0.0443 80.49 

FR_Pt_case c_NN_sqrtT_sqrtT 0.9927 0.9926 23,077.9 0.03 0.244 1.753 1.48E−02 19.23 0.012 0.0175 0.0011 0.514 

FR_Pt_case c_Reg_sqrtT_sqrtT 0.9453 0.9446 1210.7 0.0908 −0.7787 5.943 6.15E−02 70.2 0.0416 0.0594 0.0082 1.5257 

FL_Pt_case a NN_T_T 0.9885 0.9883 12,563.8 0.1422 −0.0198 6.577 1.67E−02 122.6 0.0197 0.0658 0.0224 26.36 

FL_Pt_case a Reg_T_T 0.9449 0.9441 1159.6 1.1408 15.5 27.94 1.55E−01 1026.8 0.0446 0.2794 1.2951 61.2 

FL_Pt_case b NN_sqrtT_T 0.9935 0.9934 16,058.2 0.0606 0.3501 4.026 2.78E−02 38.49 0.0148 0.0386 0.0038 20.96 

FL_Pt_caseb_Reg_sqrtT_T 0.9764 0.9764 2799.4 0.1054 −0.5811 7.799 5.06E−02 39.41 0.0308 0.078 0.0111 40.02 

FL_Pt_case c NN_sqrtT_sqrtT 0.9942 0.9941 18,341.6 0.0337 0.2189 2.016 9.41E−03 22.6 0.0128 0.0202 0.0012 0.4968 

FL_Pt_case c Reg_sqrtT_sqrtT 0.9812 0.9809 3528.8 0.0533 −0.1491 3.91 2.53E−02 22.16 0.0263 0.0391 0.0028 0.9015 

FR_Pd_case a NN_T_T 0.9939 0.9937 18,886.4 0.0954 −0.1059 4.862 2.99E−02 76.68 0.0151 0.0486 0.0101 18.61 

FR_Pd_case a Reg_T_T 0.9226 0.9208 634.5 0.6627 6.805 24.62 9.89E−02 526.1 0.0577 0.2462 0.4371 66.9 

FR_Pd_case b NN_sqrtT_T 0.9941 0.994 21,854.8 0.057 0.0942 3.883 2.18E−02 29.74 0.0145 0.0388 0.0033 18.05 

FR_Pd_caseb_Reg_sqrtT_T 0.9513 0.9501 1030.8 0.1724 −1.659 12.91 3.43E−02 58.65 0.0454 0.1291 0.0296 52.83 

FR_Pd_case c NN_sqrtT_sqrtT 0.9953 0.9951 24,028.4 0.0275 0.0198 1.836 8.68E−03 13.68 0.0126 0.0184 0.0008 0.4262 

FR_Pd_case c Reg_sqrtT_sqrtT 0.9547 0.9536 892.6 0.0862 −0.4603 6.43 1.71E−02 35.69 0.0433 0.0643 0.0074 1.3296 

FL_Pd_case a NN_T_T 0.9859 0.9857 8538.4 0.094 0.4295 5.294 2.12E−02 67.48 0.0209 0.0529 0.0094 26.08 
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FL_Pd_case a Reg_T_T 0.9346 0.9336 952.4 0.3124 2.398 13.74 9.37E−02 297.1 0.0502 0.1374 0.0971 57.7 

FL_Pd_case b NN_sqrtT_T 0.9887 0.9885 9306.8 0.0648 −0.0066 4.212 2.33E−02 32.72 0.0187 0.0421 0.0042 23.85 

FL_Pd_caseb_Reg_sqrtT_T 0.9481 0.9473 1236.9 0.1087 −0.944 8.884 8.58E−03 41.03 0.0452 0.0888 0.0118 51.4 

FL_Pd_case c NN_sqrtT_sqrtT 0.9864 0.986 7636.4 0.0358 0.0757 2.333 2.08E−02 20.17 0.0188 0.0233 0.0013 0.6272 

FL_Pd_case c Reg_sqrtT_sqrtT 0.9588 0.9582 1552.6 0.0539 −0.3274 4.428 4.29E−03 18.76 0.0384 0.0443 0.0029 1.0983 

Min NN= 0.9859 0.9857 7636.4 0.0275 −0.9935 1.753 0.00868 13.68 0.18 0.012 0.0175 0.0008 

Max NN= 0.9953 0.9951 24,028.4 0.1422 0.4295 6.577 0.0299 122.6 1086 0.0209 0.0658 0.0224 

Min Reg= 0.9193 0.9181 634.5 0.0533 −2.378 3.91 0.00429 18.76 0.7969 0.0263 0.0391 0.0028 

Max Reg= 0.9812 0.9809 3528.8 1.1408 15.5 27.94 0.155 1026.8 7376 0.0577 0.2794 1.2951 

(c) 

Cond_Disc_Method_Case CC CE1 CE2 NSE SEP Ch2 Af Bf RV% AFV RF(R) RF(X) 

FR_Pt_case a_NN_T_T 0.9948 0.9881 0.9875 0.9881 4.453 −683.8 0.619 −1.48E−01 12.46 0.998 4.24E−02 0.3811 

FR_Pt_case a_Reg_T_T 0.9588 0.9193 0.9122 0.9193 12.82 4570.2 2.017 7.05E−02 76.92 0.9866 6.82E−02 0.3942 

FR_Pt_case b_NN_sqrtT_T 0.9955 0.9902 0.9898 0.9902 3.971 340.1 0.388 −1.08E−02 8.85 0.9984 3.99E−02 0.3824 

FR_Pt_case b_Reg_sqrtT_T 0.9648 0.9304 0.9281 0.9304 11.9 1929.3 1.160 8.45E−02 21.19 0.9884 6.77E−02 0.405 

FR_Pt_case c_NN_sqrtT_sqrtT 0.9964 0.9927 0.9925 0.9927 2.04 3.164 0.1728 1.92E−02 3.009 0.9996 5.30E−02 0.4148 

FR_Pt_case c_Reg_sqrtT_sqrtT 0.9723 0.9453 0.9422 0.9453 6.06 22.16 0.5802 4.22E−02 9.122 0.9966 6.85E−02 0.414 

FL_Pt_case a NN_T_T 0.9943 0.9885 0.9882 0.9833 5.141 289.9 0.7337 8.89E−02 14.29 0.9977 −1.86E−02 0.6384 

FL_Pt_case a Reg_T_T 0.972 0.9449 0.9417 0.9449 11.93 140.4 2.534 1.74E−01 114.6 0.9889 −2.93E−04 0.6555 

FL_Pt_case b NN_sqrtT_T 0.9967 0.9933 0.9933 0.9933 4.088 196 0.3837 8.44E−03 6.35 0.9987 −2.26E−02 0.6361 

FL_Pt_caseb_Reg_sqrtT_T 0.9881 0.9764 0.9758 0.9764 7.805 672.3 0.7861 8.00E−04 10.59 0.9952 9.60E−04 0.6486 

FL_Pt_case c NN_sqrtT_sqrtT 0.9971 0.9942 0.9941 0.9942 2.291 2.891 0.1998 1.64E−02 3.39 0.9995 −1.46E−02 0.6243 

FL_Pt_case c Reg_sqrtT_sqrtT 0.9906 0.9812 0.9808 0.9812 4.156 8.941 0.3931 4.00E−04 5.358 0.9985 8.90E−04 0.6289 

FR_Pd_case a NN_T_T 0.997 0.9939 0.9938 0.9939 4.104 298.9 0.5477 −6.87E−02 9.631 0.9987 7.32E−02 0.7187 

FR_Pd_case a Reg_T_T 0.9605 0.9226 0.9161 0.9226 14.75 −1841.5 2.7337 1.89E−01 66.88 0.9834 7.52E−02 0.7474 

FR_Pd_case b NN_sqrtT_T 0.9971 0.9941 0.9941 0.9941 3.979 173.0 0.3876 −7.17E−03 5.755 0.9987 7.26E−02 0.7207 

FR_Pd_caseb_Reg_sqrtT_T 0.9754 0.9513 0.9483 0.9513 11.65 1525.2 1.290 1.65E−02 17.4 0.9895 6.75E−02 0.7467 

FR_Pd_case c NN_sqrtT_sqrtT 0.9976 0.9953 0.9952 0.9953 2.091 2.352 0.1835 −1.90E−03 2.777 0.9996 6.57E−02 0.7166 

FR_Pd_case c Reg_sqrtT_sqrtT 0.9771 0.9547 0.9525 0.9547 6.522 22.87 0.6448 8.23E−03 8.696 0.9962 6.67E−02 0.7319 

FL_Pd_case a NN_T_T 0.993 0.9859 0.9857 0.9859 5.072 481.4 0.5375 −7.84E−03 9.445 0.9978 9.96E−03 0.4866 

FL_Pd_case a Reg_T_T 0.9667 0.9346 0.93 0.9346 11.22 1175.8 1.605 −8.23E−02 31.4 0.9896 −9.93E−04 0.4984 

FL_Pd_case b NN_sqrtT_T 0.9944 0.9887 0.9885 0.9887 4.637 269.5 0.4215 −2.14E−02 6.507 0.9982 1.52E−02 0.4878 

FL_Pd_caseb_Reg_sqrtT_T 0.9738 0.9481 0.9461 0.9481 9.994 979.8 0.8844 3.67E−02 10.92 0.9918 5.24E−03 0.5031 

FL_Pd_case c NN_sqrtT_sqrtT 0.9932 0.9864 0.986 0.9864 2.846 4.226 0.2323 1.21E−03 3.602 0.9992 4.85E−03 0.5071 

FL_Pd_case c Reg_sqrtT_sqrtT 0.9792 0.9588 0.9571 0.9588 4.984 11.41 0.4422 1.83E−02 5.419 0.9977 −9.00E−04 0.5129 

Min NN= 0.993 0.9859 0.9857 0.9833 2.04 −683.84 0.1728 −0.148 2.777 0.9977 −2.26E−02 0.3811 

Max NN= 0.9976 0.9953 0.9952 0.9953 5.141 481.385 0.7337 0.0889 14.29 0.9996 7.32E−02 0.7207 

Min Reg= 0.9588 0.9193 0.9122 0.9193 4.156 −1841.5 0.3931 −0.0823 5.358 0.9834 −9.93E−04 0.3942 

Max Reg= 0.9906 0.9812 0.9808 0.9812 14.75 4570.2 2.7337 0.189 114.6 0.9985 7.52E−02 0.7474 

https://doi.org/10.4236/wjet.2021.94057


T. S. Gendy et al. 
 

 

DOI: 10.4236/wjet.2021.94057 835 World Journal of Engineering and Technology 
 

of the properly trained ANN compared to RSM model in all aspects indicated in 
the values of the predicted temperatures compared to the experimentally meas-
ured ones suggesting the scucessfulness of ANN model for both simulation and 
predictions. Similar annotations were obtained by many research groups study-
ing various engineering problems [46]. This is conveyed in the very high values 
of R2 & F ratio and the exceedingly low value of error indicators for the ANN 
results compared to that of RSM ones. Considering the results of the studied 
case a for the values of 2

adjR  (0.9881, 0.9883, 0.9937 & 0.9857) in case of ANN 
compared to (0.9181, 0.9441, 0.9208& 0.9336) in case of RSM, and of F_ratio in 
case of ANN (18,379.5, 12,563.8, 18,886.4 & 8538.4) matched to (796.9, 1159.6, 
634.5 & 952.4) in case of RSM for FR_Pt, FL_Pt, FR_Pd and FL_Pd respectively 
designating the preeminence of ANN in prediction. Furthermore the ranges of 

2
adjR  and F_ratio in all the studied cases are 0.9857 - 0.9951 & 7636.4 – 24,028.4 

for ANN method compared to 0.9181 - 0.9809 & 634.5 - 3528.8 for RSM me-
thod. The superior modeling capability of ANN can be accredited to its universal 
approximation facility for nonlinearity, whereas RSM is only limited to a 
second-order polynomial regression [71]. 

Also, in all the studied cases, the predicted temperatures were compared with 
corresponding experimental ones and the error was referred to the maximum 
experimental temperature and this comparison is demonstrated in Table 2(a) as 
maxerror%. In all cases studied the maxerror% for the ANN method was less than 
that for the RSM method. The maxerror% lies between 4.7 & 12.5 for the ANN 
compared to the range 7.2 - 21.1 for the RSM beside the range of RMSE cited in 
Table 2(b) varies between 0.4262 - 30.13 for ANN while that for RSM is 0.9015 - 
86.7. These results designate that the ANN method shows a significantly excel-
lent generalization capacity than that of the RSM. Table 2(c) presents the rele-
vancy factor RF which reflects the effect of the independent variables on the re-
sponse. The positive relevancy factor of RF(X) (0.3811 - 0.7474) indicates the 
prominent effect of increase of X towards the increase of temperature. While the 
radius has a negligible value (−9.93E−04 - 7.52E−02), indicating the trivial effect 
of radius on the measured temperature [69].  

Table 2(a) discloses that the ANN method is more expensive than RSM. This 
is shown in the larger elapsed time for NN (3.09 - 5.14) compared to that of RSM 
(1.19E−02 - 1.04E−01), because ANN method uses a series of computationally 
expensive functions for a single model. 

The three-dimensional concave curved response surfaces in Figures 4(a)-(d) 
designate the probability of obtaining a maximum value of the measured tem-
perature within the chosen factors levels and analyses the interactive relation-
ships among the factors and the response [36] [64].  

The contour plots of Figures 5(a)-(d) consider the individual and cumulative 
influence of the variables and the mutual interaction between the variables and 
the dependent variable [72] [73]. The oval shape of the contour plots points to a 
significant interaction between the independent variables. The smallest ellipses 
in the contour plots denote the maximum predicted values [71]. 
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(d) 

Figure 4. (a) ANN Surface plot for FR_Pt; (b) ANN Surface plot for FL_Pt; (c) ANN Sur-
face plot for FR_Pd; (d) ANN Surface plot for FL_Pd. 
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(c) 

 
(d) 

Figure 5. (a) ANN Contour plot for FR_Pt; (b) ANN Contour plot for FL_Pt; (c) ANN 
Contour plot for FR_Pd; (d) Contour plot for FL_Pd. 

3.1. Simulation and Optimization 

Establishing the efficiency of the neural network to predict the response temper-
ature for the various conditions of the experiments, the final optimum architec-
ture was utilized for the Prediction of maximum temperature for the above men-
tioned Flame Conditions and Disc Types. The region defined by the two coded 
experimental input variables design limits has been divided into 20 intervals re-
sulting in a total of 202 situations. The neural network has been applied to pre-
dict the response temperature for these situations [74]. The maximum tempera-
ture response and its corresponding input variables have been obtained by in-
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vestigating the simulated results. The optimization results are portrayed in Fig-
ures 4(a)-(d) & Figures 5(a)-(d) which reveals the values for the maximum 
predicted temperature and the corresponding coded input variables that have 
been obtained employing the ANN method. Table 2(a) shows the maximum 
predicted temperature together with the corresponding predicted input va-
riables. 

The RSM the results of cases b & c have been reported previously in our study 
[56] and depicted in Table 2(a). As for case a; the values of the mean experi-
mental temperature T dependent variable cited along with the corresponding x 
and r [9] have been employed utilizing Ordinary Least Squares (OLS) method to 
represent the response Y in Equation (2) in terms of the coded X & R resulting 
the following equations: 

For FR_Pt 
2 21098.2 174.9 574.7 513.4T X R X= + ∗ − ∗ −               (8) 

For FL_Pt 
2 2824.7 214.7 542.6 252.8T X R X= + ∗ − ∗ − ∗               (9) 

For FR_Pd 
2 2737.9 44.04 238.4 389.2 266.4 37.18T R X R X R X= + ∗ + ∗ − ∗ − ∗ + ∗ ∗  (10) 

For FL_Pd 
2 2822.1 165.8 402.3 352.6T X R X= + ∗ − ∗ − ∗              (11)  

An optimization process, exploiting Matlab 2016a (9.0.0), has been performed 
for the above presented Equations (8)-(11) to estimate the maximum predicted 
temperature and the corresponding R and X values. The Matlab implements a 
multidimensional unconstrained nonlinear optimization employing the Neld-
er-Mead simplex (direct search) method. Table 2(a) shows the maximum pre-
dicted temperature together with the R & X values. 

From this table, it is clear the predicted maximum temperatures from ANN 
method are closer to the corresponding experimental ones than those predicted 
by RSM. Comparing the maximum predicted temperatures to the analogous ex-
perimental ones and referring the absolute maximum deviation to the maximum 
experimental temperature, resulted in ADTmax values recorded in Table 2(a). The 
values ADTmax for the ANN method are less than those of the RSM. Furthermore 
for the ANN method there is no remarkable difference in the values of ADTmax in 
the three studied cases which reveals the ability of the ANN method to establish 
the relation of the input variables and the response in any form. On the contrary 
there is a marked difference between case (a) and those of (b & c) cases. This in-
dicates the importance of choosing the suitable equation form for representing 
the data in case of the RSM.  

3.2. Comparative Evaluation of RSM and ANN 

RSM is recommended for modeling of a new process as it is easier compared to 
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ANN and its sensitivity analysis is more precise. ANN has excellent prediction 
and optimization abilities; it is best suited for nonlinear systems that include in-
teractions higher than quadratic. Moreover, ANN does not require any prior 
specification for suitable fitting function [35] [71]. 

The structured nature of RSM delivers the predicted quadratic equation re-
vealing the factors of contributions from the regression coefficients of the mod-
els. This aptitude is vigorous in identifying the significant and insignificant 
terms in the model therefore can reduce the complexity of the models. The Ar-
tificial Neural Network (ANN) model offers little information about the contri-
bution of the factors and their influence on the response if further analysis has 
not been done [75] [76]. 

The greater predictive accuracy of the ANN is accredited to its ability to 
process multi-dimensional, non-linear and clustered information whereas RSM 
is restricted to use of a second order polynomial. The generation of an optimum 
ANN is a multi-step calculation process, that is reiterated until an appropriate 
error is attained whereas a response surface model is based on a single step cal-
culation [25] [76]. 

ANN is an alternative better than the methods based on RSM in the case of 
performance. Furthermore, ANN can increase the level of certainty associated 
with the results and simultaneously can be used to validate new technological 
strategies [35]. Therefore, using RSM-ANN modeling, the shortcomings of RSM 
can be resolved and the actual relationship between independent and response 
parameters can be studied through experimental data [40]. 

4. Conclusions 

An artificial neural model was successfully established and compared to RSM to 
predict the temperature profile of the various Flame Conditions and Disc Types 
for three cases. A generalized, properly fit, robust feed-forward artificial neural 
network model was developed, using a back propagation based Levenberg- 
Marquardt algorithm, and utilized to train the data from the experimental la-
boratory testing. The study consequence proves that both the statistical and 
computational intelligence modeling of ANN can make a potential alternative to 
the time-consuming experimental studies in addition to minimizing the costly 
machining test trials. The main conclusions obtained in this study are as follows: 

1) The neural network model, with 10 neurons in the hidden layer, produced 
prediction results in very good agreement with the experimental data. 

2) The systematic comparative study has revealed that the properly trained 
ANN model has consistently performed more accurate predictions in all aspects 
compared to those of RSM. This accurateness of predictions is expressed in the 
very high values of R2 and F_ratios and the very low value of error indicators for 
the ANN results compared to RSM ones. 

3) The ANN model displays greater generalization capacity than the rest of 
the RSM models. The reason can be accredited to the universal ability of ANN to 
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approximate the nonlinearity of the system. It can be concluded that ANN pro-
vides a more accurate replacement of RSM due to its better predictive ability 
compared to that of RSM. 

4) Considering the accurate results and acceptable errors of ANN it can be 
used to economize material and time in designs. 

5) The reliability of the ANN as a predictive modeling tool (justified through 
the very high values obtained for both statistical parameters R2 and adjusted R2) 
confirms a perfect correlation between the predicted ANN values and the cor-
responding experimental values.  
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