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Abstract 
The present study was conducted to present the comparative modeling, pre-
dictive and generalization abilities of response surface methodology (RSM) 
and artificial neural network (ANN) for the thermal structure of stabilized 
confined jet diffusion flames in the presence of different geometries of 
bluff-body burners. Two stabilizer disc burners tapered at 30˚ and 60˚ and 
another frustum cone of 60˚/30˚ inclination angle were employed all having 
the same diameter of 80 (mm) acting as flame holders. The measured radial 
mean temperature profiles of the developed stabilized flames at different 

normalized axial distances ( )jx d  were considered as the model example of 

the physical process. The RSM and ANN methods analyze the effect of the 
two operating parameters namely ( )r , the radial distance from the center 

line of the flame, and ( )jx d  on the measured temperature of the flames, to 

find the predicted maximum temperature and the corresponding process va-
riables. A three-layered Feed Forward Neural Network in conjugation with 
the hyperbolic tangent sigmoid (tansig) as transfer function and the opti-
mized topology of 2:10:1 (input neurons: hidden neurons: output neurons) 
was developed. Also the ANN method has been employed to illustrate such 
effects in the three and two dimensions and shows the location of the pre-
dicted maximum temperature. The results indicated the superiority of ANN 
in the prediction capability as the ranges of R2 and F Ratio are 0.868 - 0.947 
and 231.7 - 864.1 for RSM method compared to 0.964 - 0.987 and 2878.8 
7580.7 for ANN method beside lower values for error analysis terms. 
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1. Introduction 

Bluff-body stabilized turbulent gaseous jet diffusion flames have received re-
newed attention in recent years due to its practical applications such as, gas 
burners of industrial furnaces, gas turbine combustion chamber, ramjets and 
flaring of petroleum industry. 

The practical importance of the bluff-body stabilization process has raised a 
large number of theoretical and experimental studies over the years to identify 
the physical mechanisms for the stability limits at different geometries of 
bluff-body acting as flame holders. Several pioneering works have proposed 
overall flow field classifications based on the observed flame structure as follows: 

The effects of bluff-body lip thickness on physical parameters like flame 
length, radiant fraction, gas temperature and NOx emissions in (LPG-H2) jet 
diffusion flame were investigated experimentally [1]. The results indicated that 
the flame length reduces with addition of hydrogen in the bluff-body stabilized 
flame, which can be attributed to the enhanced reactivity of the mixture gases. 
Moreover the flame length was reduced, flame temperature was increased and 
NOx emission level was enhanced with increasing lip thickness of the 
bluff-body. Also, Mishra and Kiran [2] presented another experimental study to 
investigate the effect of coaxial air velocity and lip thickness of the bluff-body on 
the stability limits of LPG diffusion flames. The flame stability was found to be 
improved for larger lip-thickness bluff-body because of the presence of lower 
pressure in the wake behind the bluff-body. 

The effect of flame holder geometry on flame structure in non-premixed 
combustion was studied [3]. The investigation showed that increasing in flame 
holder length decreases flame length and increases flame temperature. Also, it 
was found that flame lengths decrease by increasing in flame holder radius and 
increase for larger radii. In addition, the attained numerical results employing 
realizable k-ε and β-PDF models display a good agreement with the experimen-
tal data. Furthermore, the effect of the flame holder geometry on flame structure 
of a mixed hydrogen-hydrocarbon fuel was numerically studied [4]. Numerical 
results obtained by means of the K-ε and β-PDF models demonstrate good 
agreement with experimental data. The results revealed that increasing both the 
flame holder length and hydrogen percentage in the fuel decreases the flame 
length. Also, the flame temperature decreases with decreasing flame holder 
length. 

Furthermore, the turbulent non-premixed flames of natural gas/air stabilized 
in a semi-infinite bluff-body burner were assessed at different situations corres-
ponding either to jet or to wake-dominated to the base of flow field structure. 
The aim was to identify the influence of the fuel jet and air co-flow velocities on 
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the measured results at the flame stabilization region in situations where inter-
mittent flame lift off and partial extinction may occur [5]. 

Recently, Yiheng Tong, et al. [6] designed a burner which has a conical 
bluff-body with a central air injector. This investigation revealed the effects of 
the central air jet on reducing the heat load of the bluff-body which is considered 
a solution to this problem in practical applications. Flame structures and flame 
stability limits were observed and reported due to the enhanced mixing charac-
teristics in the presence of the bluff body in the combustion domain. Also, nu-
merical investigation on combustion characteristics of methane/air flames in a 
micro-combustor with a regular triangular pyramid bluff-body was reported [7]. 
Their results revealed that the blow-out limit of the micro combustor with the 
triangular pyramid bluff-body was 2.4 times that in the micro-combustor with-
out bluff-body. Also, it was found that the methane conversion rate and the 
temperature behind bluff-body reach the highest where blockage ratio increases 
to 0.22. 

Another work of the non-reacting flow field and the mixing characteristics of 
an axisymmetric bluff-body disc burner had been investigated under inlet mix-
ture stratification and preheat [8]. The burner consists of three concentric disks 
that form two premixing cavities. The study had been performed to evaluate the 
flow fields developing in the downstream near wake. The study had helped to 
elucidate the effects of inlet mixture stratification, alone or with preheat in the 
presence of the disc stabilizer and to identify parameters that control the mixture 
in the recirculation zone. 

More recently, the experimental work investigated by [9] discussed the cha-
racteristics of isothermal flow and scalar mixing fields, downstream of a variety 
of axisymmetric baffles in a double-cavity disc burner configuration. The aim of 
this work was to enhance the knowledge of the effect of inlet fuel-air mixture 
conditions and the geometric parameters of blockage ratios in the near recircu-
lating wake of the practical flame stabilizers. The findings can be appropriately 
exploited for the regulation of inlet mixture profile variations and the minimiza-
tion of emissions in the development of combustors. 

2. Modeling 

Modeling is a scientific approach and essential part of many scientific disciplines 
to represent ideas about the natural of the phenomenon under investigation 
from the viewpoint of science and to present an alternative to the real pheno-
menon, to quantify, define, visualize, or simulate it by referring to the existing 
knowledge. There are several types of modeling approaches, among which the 
most widely used are mathematical and intelligent modeling approaches [10]. 

In industry, the most advanced processes require accurate models if high per-
formance is to be attained as they are nonlinear in nature, which makes devel-
oping precise models challenging. When investigating the precision of the mod-
eling technique, various factors, ranging from the nonlinearity of the model be-
havior to the dimensionality and data sampling technique, to the internal para-
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meters, are noticeably affected. The need for a model that can accurately predict 
experimental behavior has been the utmost challenge for researchers over the 
years; such models can dramatically reduce the time and operational cost in 
many engineering aspects. From here emerged the need to model processes [11]. 

Artificial neural networks (ANNs) and response surface methodology (RSM) 
are important approaches in the field of processes modeling and optimization. 
These methods of modeling estimate the relations between the output (response 
or target variable) and input variables (experimental operating factors) of the 
process by means of experimentally derived data. Subsequently, derived models 
are used to approximate the optimum situations of independent variables to mi-
nimize or maximize the target variable (dependent variable) [12]. 

RSM is an effective technique, which enables the estimation of desired re-
sponse from a number of independent variables as well as the interactions be-
tween them. The key advantage in RSM is that fewer experimental runs are suf-
ficient to provide a statistically significant result. Besides analyzing individual 
variables, it can also generate a mathematical model for the process to determine 
the optimum condition of a process and to investigate the influencing factors. 
Despite its simplicity and efficiency, RSM provides efficient and accurate solu-
tions. Therefore, it has successfully been applied in many engineering problems 
[11] [13]. 

ANN modeling is a relatively new nonlinear statistical technique developed to 
solve problems that are not eligible for conventional statistical methods. It is a 
factual computing technique developed based on comportment of the biological 
neural system. It can handle obscure, complex, incomplete problem and execute 
modeling to produce predictions and generalizations at high speed. Both RSM 
and ANN techniques do not need the precise expressions or the physical mean-
ing of the system under investigation [13]. 

Ahmadpour et al. [12] in their investigation of spent caustic wastewater 
treatment through RSM and ANN in a photocatalytic reactor evidenced from 
the obtained results that the ANN model showed higher accuracy than the re-
sponse surface model did. 

Awolusi et al. [14] stated that the comparison between ANN and some clas-
sical modeling techniques such as response surface methodology (RSM), showed 
the supremacy of ANN as a modeling technique in analyzing non-linear rela-
tionships of data sets, which consequently provides good fitting for data and as 
well as better predictive ability. 

Karkalos et al. [15] in the comparative study between regression and neural 
networks for modeling Al6082-T6 alloy drilling found that the MLP_ANN mod-
els were superior to the regression model, as they were able to achieve a relative-
ly lower prediction error. 

Manda et al. [16] in their approach to predict the effects of formulation and 
process variables on prednisone release from a multipartite System proved that 
ANN has better modeling accuracy than RSM. 

RSM and ANN were studied and compared for modeling highly nonlinear 
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responses found in impact-related problems. Despite the computation cost of 
ANN, these studies concluded the supremacy of ANN over RSM in such opti-
mization problems [11]. 

The present study focuses on the evaluation of the predictive capabilities of 
the RSM and ANN two methodologies for the previously reported experimental 
data of thermal structure of the stabilized flames in the presence of different 
geometries of bluff-body burners [17]. This has been performed by comparing 
the values of coefficient of determination (R2), F_Ratio and the various error 
analyses parameters. Moreover ANN method has been exploited to illustrate the 
effect of input flame parameters on the response in three and two dimensions 
and to display the location of the optimum. 

3. Response Surface Methodology 

The Response Surface Methodology (RSM) was introduced, developed and used 
in many studies based on polynomial functions in the 1980s. In the last decade, 
RSM has been extensively utilized for modeling and optimization of several en-
gineering processes and studies. This methodology is an assortment of statistical 
techniques for the experimental design, the building of the models, evaluating 
the consequences of factors, and searching for the optimum conditions [18]. 
This technique is one of the major quantitative tools in industrial decision mak-
ing as it gives better understanding of the process; it helps the process engineer 
to see the effect of the control variables simultaneously and the interactions 
among all the variables [19]. It generates a mathematical model; its graphical 
perspective has led to the term Response Surface Methodology [20]. These 
graphic drawings of the shape of the surfaces allow a visual explanation of the 
functional relations between the response and the experimental variables [21] 
[22]. RSM also permits the location of the optimum conditions and sensitivity 
analyses of the optimum conditions to variations in the settings of the experi-
mental variables. This technique has many advantages such as: cost and time 
reduction, decreasing the number of tests and valuable in attaining maximum 
efficiency [23]. However it is associated with the following shortcomings: in-
creased number of variables significantly decreases the accuracy of this method 
and increased number of variables is very time-consuming for analysis [24]. 
Moreover RSM based models are exact for only a limited range of input process 
parameters, and thus, impose a limitation on the use of RSM models for highly 
non-linear processes [25]. 

RSM can be divided into the following steps: 1) selection of the independent 
variables and responses, 2) selection of the experimental design, 3) execution of 
experiments and collection of results, 4) mathematical modeling of experimental 
data by polynomial equations, with the best fitting response, 5) checking of 
models through analysis of variance, 6) drawing of response surfaces, 7) eva-
luating main and interactional effect of variables using 2D or 3D plots, and, fi-
nally, 8) identification of optimal conditions [16] [26] [27]. 
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The units of the natural independent variables vary from one another. Even if 
some of the parameters have the same units, not all of these parameters will be 
tested over the same range. Before performing the regression analysis the va-
riables should be codified to eliminate the effect of different units and ranges in 
the experimental domain and allows parameters of different magnitude to be 
investigated more evenly in a range between −1 and +1 [20] [28] [29]. 

The frequently used equation for coding is seen below: 

actual value meancoded value
half of range

−
=                    (1) 

Functional relationships between the coded independent variables and de-
pendent variables have been established using multiple regression technique by 
fitting second order equation of the following form [18]: 

1
1 1 1 1

2
0

n n n n
i i j i ii i ij i j i iY X X X Xβ β β β−

= = = + =
= + + +∑ ∑ ∑ ∑           (2) 

Details of this method have been dealt with in our previous papers [30] [31] 
[32]. 

4. Artificial Neural Networks 

ANNs were introduced as universal function approximators by McCulloch and 
Pitts in 1943 [33] and have been extensively used in many areas ever since as a 
powerful and reliable tool serving data mining and numerical applications be-
cause of its powerful control over regulatory parameters for pattern recognition 
and classification. NN is a computational mechanism that is able to acquire, 
represent, and compute a mapping from multivariate space of information to 
another, given a set of data representing that mapping. ANNs are designed to 
simulate the human brain when analyzing data by learning from experience. 
Similar to the human brain, ANNs are capable of processing multi-dimensional, 
non-linear, clustered and imprecise information and could be used to extract a 
pattern in nonlinear, complex and noisy data sets to detect the trends with high 
accuracy. Thus, ANN can be used to decode complicated real world problems 
that are sometimes challenging to evaluate using statistical approaches without 
the need for complicated equations, and is capable of exploring regions that are 
otherwise omitted when using statistical approaches [14] [16] [24] [25] [27] and 
[34]. They are widely used by researchers to solve a variety of problems in 
science and engineering, forecasting, multivariate data analysis using experi-
mental data, field observations or even incomplete or fuzzy data sets particularly 
for some areas where the conventional modeling methods fail such as prediction 
of internal combustion engine performance characteristics [35]. The key privi-
lege of ANN-model is that it is not necessary to specify a preceding proper fit-
ting function; so, it has a complete calculation capability to estimate practically 
all types of nonlinear functions which helps us to develop the most accurate pre-
diction model [11] [36]. The prediction by a well-trained ANN is normally 
much faster than the conventional simulation programs or mathematical models 
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as no lengthy iterative calculations are needed to solve differential equations us-
ing numerical methods but the selection of an appropriate neural network to-
pology is important in terms of model accuracy and model simplicity [35]. 

ANN is a colossal structure of interconnected networks based on a simplified 
analogy to the behavior of the human brain consisting of numerous individual 
elements called neurons, which are mathematically represented by relatively 
simple yet flexible functions, such as linear or sigmoid functions capable of per-
forming parallel computations for data processing. These processing units 
communicate with each other by means of weighted connections, corresponding 
to the synapses of the brain [18] [37]. Different networks can be constructed by 
choosing different numbers of neuron layers, the type and number of neurons in 
each layer, and the type of connection between neurons. For a specific configu-
ration of the network and for a given set of input-output data, the so-called 
training of the network consists of adjusting its parameters in order for the net-
work to reproduce the input-output data as accurately as possible. Each iteration 
of the training process is called an epoch and composed of forward activation to 
produce a solution and the backward propagation of the calculated error to ad-
just the weights [35] [37] and [38]. 

The advantages of ANN are as follows: distributed information processing 
and the inherent potential for parallel computation. In many cases, when suffi-
ciently rich data are available, they can provide fairly accurate models for nonli-
near controls when model equations are not known or only partial state infor-
mation is available. Due to their parallel processing capability, nonlinearity in 
nature and their ability to model without a priori knowledge, ANN can be used 
successfully to capture the dynamics of multivariable nonlinear systems [39]. 

5. Neuron Model 

An elementary neuron with R inputs is shown below, Figure 1(a). Each input is 
weighted with an appropriate w. The sum of the weighted inputs and the bias 
forms the input to the transfer function f. Figure 1(b) depicts the tansig diffe-
rentiable transfer function f to generate the output between −1 and 1 as the 
neuron’s net input goes from negative to positive infinity. Figure 1(c) shows the 
linear transfer function purelin. These transfer functions described here are the 
most commonly used transfer functions for multilayer networks [40]. 

6. Feed Forward Neural Network 
The multi-layer perceptron (MLP), also called feed-forward back propagation 
network is the most widely used network type for approximation problems. Feed 
forward networks often have one or more hidden layers of sigmoid neurons fol-
lowed by an output layer of linear neurons besides an input layer. Figure 2 por-
trays two-layer tansig/purelin network. Multiple layers of neurons with nonli-
near transfer functions allow the network to learn nonlinear relationships be-
tween input and output vectors. The linear output layer is most often used for 
function fitting (or nonlinear regression) problems [40]. 

https://doi.org/10.4236/wjet.2020.81011


T. S. Gendy et al. 
 

 

DOI: 10.4236/wjet.2020.81011 128 World Journal of Engineering and Technology 
 

 
Figure 1. (a) Elementary neuron; (b) Tansig transfer function; (c) Purelin transfer func-
tion. 

 

 
Figure 2. Feed-forward network. 

 
The number of input neurons represents and is equal to the independent va-

riables of the system and the number of output neurons represents and is equal 
to the response of the system. Each input unit is attached to all hidden units and 
each hidden unit is attached to the output layer and there is no communication 
between neurons in the same layer [41]. 

The neurons of one layer are connected with each neuron of the previous and 
next layer, but information only flows in the forward direction, from the input 
towards the output layer [37]. For approximation of functions with minor dis-
continuities generally a combination of layers with sigmoid activation functions 
and a linear output layer is used. Linear activation functions are used for the in-
put (where input values are simply passed onto the neurons in the next layer) 
and output layers, and tangent-sigmoid neurons are chosen for the hidden layer. 
In the passage, each value is multiplied by the respective weight, which characte-
rizes the connection between neurons of the layers; hence a weighted sum is 
passed to the hidden layer neurons. A bias factor is added to the weighted sum, 
which allows, for instance, an activation of the neuron even when a null value is 
passed to it. In the hidden layer, input values are processed by the activation 
function of each neuron, returning a value between −1 and +1 in the case of the 
tangent sigmoid function. The resulting values are transmitted to the output 
layer. The output neurons add their own biases to the weighted sum they receive 
and return the network response for the input data provided to the network. The 
weights which characterize the connection between the neurons and the bias of 
each neuron are the network parameters to be determined during the training 
process [37]. 
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The input variables should also be codified in case of ANN as the normaliza-
tion leads to avoidance of numerical over flows due to very large or very small 
weights and to prevent mismatch between the influence of some input values to 
the network weights and biases [42] beside preventing problems such as reduced 
accuracy and network instabilities in the course of training process [43]. The 
output values obtained from the ANN are also in the range of −1 to 1, and con-
verted to their original data based on the reverse method of normalization [25]. 

In training of the back propagation method, the error is determined by com-
paring the output and the desired output and this error is returned to the hidden 
and input layers of the next training processes. The network training operation 
ends when the error comes down below some value specified by the user [10]. 

The input-output data is separated into three groups: training, validation and 
test data. The first group is the only one used to generate the model structure for 
adjustment of the parameters; validation is used between epochs to optimally se-
lect model parameters, in order to halt the training process if the network error 
starts to increase due to over fitting; and the test data is used to verify the net-
works predicting capacity at the end of training [37] [43]. 

The MATLAB neural network toolbox has been employed for generating, 
training and using the ANNs. The training is performed employing the Leven-
berg–Marquardt (LM) due to its fast convergence and reliability in locating the 
global minimum of the mean-squared error (MSE) [42]. LM is hybrid of the 
Gauss Newton nonlinear regression method and gradient steepest descent me-
thod based on the least squares method for nonlinear models employing the Ja-
cobian matrix [37] [40] and [43]. 

Mathematical equation relating the input/output variables is given by using 
the following equation [27]. 

( ){ }0 1 1
h

n lin k s
m

k iig hk ik iO f b W f b W X
= =

 = + × +
 ∑ ∑             (3) 

where: nO  is the normalized output ranging from −1 to 1; 0b  is the output 
bias; kW  is the connection weight between kth neuron of hidden layer and the 
single output neuron; hkb  is the bias at the kth neuron of hidden layer; h is the 
number of neurons in the hidden layer; ikW  is the connection weight between 
ith input variable and kth neuron of hidden layer; iX  is the normalized input 
variable i in the range [−1, 1]; sigf  is the sigmoid transfer function & linf  is the 
linear transfer function. 

The Levenberg-Marquardt algorithm uses the following updating function 
1T T

1tk tkW W J J I J Eµ
−

+  = − +                       (4) 

where: 

( )21
2j jj jjE E T Y= = −∑ ∑                      (5) 

J is the Jacobian matrix, which contains first derivatives of the network errors 
with respect to the weights and biases parameters of the ANN. I is the identity 
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matrix, E is a vector of network errors, W contains both the weights and biases 
of the ANN, μ is a scalar, a parameter of the algorithm, and tk represents the 
current training epoch [37]. jY  is the output value of the jth output neuron and 

jT  is the desired value of the jth output neuron. The sigf  sigmoid transfer func-
tion is defined by the following relation [40]: 

( ) ( ) ( )( )( )tansig 1 1 exp 2 1sigf sum sum sum= = + − ∗ −            (6) 

To obtain an ANN the following steps must be completed: a) selection of data 
for learning, b) network architecture selection, c) determination of weight and 
threshold values, d) verification and validation of the prediction model on the 
basis of error function, and, optionally, e) optimization of the function learned 
by ANN [26]. 

7. Application of RSM and ANN to the Present Work 

• Experimental 
Details of the experimental setup and the data employed in this study have 

been given the previous work of [17] [44]. 
The coded factors of (r) and ( )jx d  have been calculated employing the fol-

lowing formulas: 

( ) 136
75,

104
jx d

R r X
−

= =                         (7) 

where: 
r: radial distance from the center line of the flame (mm); 
X: axial distance along the flame over the disc (mm); 

jd : jet diameter (mm).  

8. ANN Modeling Process 

The development process of our MLP network was performed using the Artifi-
cial Neural Network Toolbox in MATLAB (R2016a, Math Works, Natick, MA, 
USA). 

We built a three-layer feed-forward ANN with two input neurons 
representing the coded influencing factors; one output neurons representing the 
dependent response variable. The back propagation algorithm has been applied 
to obtain the best fit to the training data because of its capacity of representing 
non-linear functional relationships between inputs and targets. As activation 
functions, we used the hyperbolic tangent sigmoid (tansig) for the hidden layer 
and linear (purelin) for the output layer. The Levenberg-Marquardt 
back-propagation training algorithm was used for minimizing the error function 
of the ANN. The mean square error (MSE) was used as performance function. 

In the first step, the imported processing data matrix from laboratory experi-
ment results included the coded X and R as input variables and radial mean 
temperature as an output variable. In the second step, the imported data were 
randomly divided by the network into three categories of training data (with a 

https://doi.org/10.4236/wjet.2020.81011


T. S. Gendy et al. 
 

 

DOI: 10.4236/wjet.2020.81011 131 World Journal of Engineering and Technology 
 

share of 70%), test data (with a share of 15%) and validation data (with a share 
of 15%). In order to identify the optimum network architecture, it is essential to 
determine the number of neurons in the hidden layer. Therefore, the number of 
neurons was chosen from 3 to 14 neurons in the hidden layer and the perfor-
mance parameter (MSE) of each run was accordingly calculated with respect to 
the target value. The network with 10 neurons in hidden layer shows the best 
results of minimum MSE. For a certain group of neurons in the hidden layer 
different results may be obtained in each training process. In each network 
training process, the weight and bias were corrected to reduce the tilt of the per-
formance function and the output matrix of the network. Therefore, training 
process for each number of neurons in the hidden layer was executed in five re-
petitions while the value of the performance function was calculated for each 
repetition and the average value of the performance function for five repetitions 
was obtained. Calculating the average value eliminates the effect of the output 
differences [10]. 

9. Models Validation and Evaluation 
In order to evaluate the goodness of the model fitting and prediction accuracy of 
the constructed models, R2, F_ratio and error analyses were performed between 
the experimental and predicted data in the RSM, and ANN models. Many ap-
proaches for error analyses are stated in the literature, with some listed in a pre-
vious study [11] [45]. The formulas employed in this study for performance 
evaluation and error analyses are listed in Tables 1(a)-(c). 
 

Table 1. (a) Performance and Error functions and their equations; (b) Performance and Error functions and their equations; (c) 
Performance and Error functions and their equations. 

(a) 

Function name Equation Reference 

Relative error percent ( )%Er  exp

exp

% 100pred
i

i

x x
Er

x
 −

= ×  
 

 [43] 

Average relative error percent ( )%avEr , 
1

1% %
n

av i
i

Er Er
n =

= ∑  [43] 

Average absolute relative errorpercent ( ), %a avEr , ,
1

1% %
n

a av i
i

Er Er
n =

= ∑  [43] 

Minimum absolute relative error percent ( ),min %aEr , 
,min 1

% min %
n

a ii
Er Er

=
=  [43] 

Maximum absolute relative error percent ( ),max %aEr , 
,max 1

% max %
n

a ii
Er Er

=
=  [43] 

Average Relative Error (ARE) 1

max min

ARE
n

iexp ipredi

e e

x x n
x x
=

−
=

−
∑  [52] 

Average Relative Deviation (ARD) 
1

1ARD
n

iexp ipred

i iexp

x x
n x=

 −
 =
 
 

∑  [23] 

Absolute Average Deviation (AAD) 
1

2

1AAD iexp ipred

iexp

N

i

x x
n x=

 −
=   

 
∑  [23] 
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(b) 

Function name Equation Reference 

Averages 
1 1

1,1 n n

i ie iexp p ipredX x X x
n n= =

= =∑ ∑   

Correlation Coefficient (CC) 
( )
( )

2

2
1

1

CC 1
n

i ie

n

i

xp ipred

iexp e

x x

x X
=

=

−
= −

−

∑
∑

 [43] 

Coefficient of Efficiency (CE1) 
( )
( )

1

2

2

1

CE1 1
n

i ie

n

i

xp ipred

iexp e

x x

x X
=

=

−
= −

−

∑
∑

 [53] 

Coefficient of Efficiency (CE2) 
( )
( )

1

2

2

1

CE2 1
n

i ie

n

i

xp ipred

iexp p

x x

x X
=

=

−
= −

−

∑
∑

 [54]) 

Root Mean Square Error (RMSE) ( )2

1

RMSE
n

iexp ipred
i

n x x n
=

= −∑  [55] 

Mean Absolute Error (MAE) 
1

1MAE iexp ipre

n

i dx x
n =

= −∑  [55] 

Standard Error of Prediction (SEP%) 
RMSESEP% 100

eX
= ×  [55] 

Model Predictive Error (MPE%) 
1

100MPE%
n

iexp ipred

i ipred

x x
n x=

−
= ∑  [55] 

(c) 

Function name Equation Reference 

Chi square statistic ( 2χ ) ( )2

2

1

n
iexp ipred

i ipred

x x
x

χ
=

−
=∑  [55] 

Standard Deviation (SD) ( )2

1

1SD
1

n
iexp ipred

i ipred

x x
n x=

−
=

− ∑  [43] 

Nash Coefficient of Efficiency (NSE) 
( )
( )

1

2

2

1

NSE 1
n

i ip

n

ei

red iexp

iexp

x x

x X
=

=

−
= −

−

∑
∑

 [27] 

Accuracy (Af) 
1

10 log
N

ipred
f

i iexp

x
A N

x=

  
 =      
∑  [29] 

Bias (Bf) 
1

10 log
n

ipred
f

I iexp

x
B N

x=

  
=       

∑  [29] 

Relevance Factor (RF) ( )
( ) ( )

( ) ( )
,1

2 2

, 1

RF ,
n

k i k Ti Ti
k T

k i k T

n

i i T

Inp Inp P P
Inp P

Inp Inp P P

=

=

− −
=

− −

∑
∑

 [43] 

where: n: is the number of experimental data points; iexpx : is the experimental value of the ith data point; ipredx : is the corresponding value of the ith expe-

rimental data point predicted by the model; eX : is value of the average experimentally measured temperatures and pX  is value of the average predicted 

temperatures. ,k iInp  and kInp  denote the ith and the average value of the ith input variable respectively (k = R and X). TiP  and TP  refer to 

the ith predicted temperature and average predicted temperature respectively. 
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For the RSM several mathematical models have been suggested to establish 
the relationship between the dependent and independent variables. The Box-Cox 
method has been utilized to identify a suitable power transformation to the re-
sponse data for normalizing the data or equalizing its variance. The following 
transformations; of the mean temperature T dependent variable; sqrt(T), Ln(T) 
and (T) have been resulted and employed for D30, D60 and DFC respectively to 
represent the response Y in Equation (2) [31]. 

In the present study the following cases have been considered for D30, 
D60 & DFC: 

Case a—For all discs, the response temperature has been employed as it is for 
Y in Equation (2) and for training in case of ANN and the predicted tempera-
tures were compared with the corresponding experimental temperature ones. 

For D30 the following trials have been performed: 
Case b—The sqrt(T) has been employed in Equation (2) as Y and for training 

in case of ANN and the predicted results in both cases have been converted to 
the equivalent predicted temperature to be compared with the corresponding 
experimental temperature ones. 

Case c—The sqrt(T) has been employed in Equation (2) as Y and for training 
in case of ANN and predicted results in both cases have been compared with the 
corresponding sqrt(experimental temperature) ones. 

For D60 the following trials have been performed: 
Case b—The ln(T) has been employed in Equation (2) as Y and for training 

in case of ANN and the predicted results in both cases have been converted to 
the analogous predicted temperature to be compared with the corresponding 
experimental temperature ones. 

Case c—The Ln(T) has been employed in Equation (2) as Y and for training 
in case of ANN and the predicted results in both cases have been compared with 
the corresponding Ln(experimental temperature) ones. 

10. Results and Discussions 

The results of comparison are presented in Tables 2(a)-(c). These results ex-
posed that the properly trained ANN model has consistently performed more 
accurate prediction closer to experimentally measured ones compared to RSM 
model in all aspects hinting that ANN model was quite successful for both si-
mulation and predicted values. Similar observations were obtained by many re-
search groups to study various engineering problems [25]. This is expressed in 
the very high values of R2 & F ratio and the extremely low value of error indica-
tors for the ANN results compared to that of RSM ones. This is more pro-
nounced by comparing the results of the studied case a for the values of R2 
(0.98312, 0.9683, 0.98745 in case of ANN compared to 0.9231, 0.86814, 0.93575 
in case of RSM) and of F ratio (5658.57, 2922.47, 7580.67 in case of ANN com-
pared to 540.154, 231.747, 864.077 in case of RSM) for D30, D60 & DFC respec-
tively. Moreover the ranges of R2, F_Ratio in all the studied cases are 0.868 -  
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Table 2. (a) Performance and Evaluation of RSM and ANN methods; (b) Performance and Error evaluation for RSM and ANN; 
(c) Performance and Error evaluation for RSM and ANN. 

(a) 

Disc_Method_Case 
ave_Y_ 
output 

max_Y_ 
output 

min_Y_ 
output 

R_square F_ratio 
time 

elapsed max, predT  
maxTAD  jx d

pred 
r_pred max %error  RF_R RF_X 

D30_ANN_a− 908.4 1394.0 333.7 0.9831 5658.6 4.230 1397.8 0.155 183.1 −1.50 6.62 5.70E−04 0.614 

D30_RSM_a− 909.3 1275.7 128.8 0.9231 540.2 0.357 1278.5 8.676 188.8 −3.11 10.72 −4.90E−03 0.639 

D30_ANN_b− 909.1 1393.9 348.8 0.9850 6432.5 2.881 1398.0 0.144 186.6 −1.50 9.02 −5.00E−03 0.621 

D30_RSM_b− 908.0 1308.7 260.6 0.9468 760.1 0.011 1311.1 6.352 186.3 −3.12 9.23 −6.00E−03 0.646 

D30_ANN_c− 29.8 37.4 18.4 0.9844 6330.3 2.975 1420.1 1.928 179.7 −1.50 5.36 −8.20E−03 0.620 

D30_RSM_c− 29.8 36.2 16.1 0.9436 753.1 0.009 1311.1 6.352 186.3 −3.12 6.43 −5.40E−03 0.630 

D60_ANN_a− 768.5 1239.5 284.1 0.9683 2922.5 6.152 1256.6 3.001 210.9 −2.00 10.51 3.18E−02 0.564 

D60_RSM_a− 770.2 1129.8 51.1 0.8681 231.7 0.032 1130.7 11.318 234.8 −2.78 15.43 3.37E−02 0.592 

D60_ANN_b 768.7 1247.4 322.8 0.9680 3156.6 4.284 1278.3 1.991 214.3 −0.50 13.51 3.38E−02 0.566 

D60_RSM_b− 764.5 1182.6 250.1 0.9106 336.4 0.014 1190.5 6.626 218 −2.45 12.20 3.64E−02 0.611 

D60_ANN_c− 6.6 7.1 5.5 0.9638 2878.8 3.095 1306.2 6.078 213.7 −4.00 2.81 4.89E−02 0.541 

D60_RSM_c− 6.6 7.1 5.5 0.8974 308.0 0.129 1190.5 6.626 218 −2.45 3.35 5.37E−02 0.567 

DFC_ANN_a− 1062.6 1551.0 357.1 0.9875 7580.7 4.624 1617.9 0.479 148.5 −7.50 6.18 4.46E−02 0.528 

DFC_RSM_a− 1063.1 1462.3 257.5 0.9358 864.1 0.033 1463.0 5.614 172.8 0.00 10.95 5.50E−02 0.540 

(b) 

Disc_Method_Case %avEr  , %a avEr  ,min %aEr  ,max %aEr  ARE ARD AAD CC CE1 CE2 

D30_ANN_a− 0.0663 3.238 0.0269 19.54 0.0257 0.0020 0.0324 0.9915 0.9831 0.9828 

D30_RSM_a− −0.1834 8.590 0.0884 63.21 0.0621 0.0146 0.0859 0.9608 0.9231 0.9167 

D30_ANN_b− 0.1497 2.940 0.0356 18.45 0.0238 0.0017 0.0294 0.9925 0.9850 0.9847 

D30_RSM_b− −0.4121 6.765 0.0714 28.74 0.0517 0.0073 0.0677 0.9730 0.9468 0.9408 

D30_ANN_c− −0.0547 1.474 0.0241 9.43 0.0225 0.0005 0.0147 0.9922 0.9844 0.9842 

D30_RSM_c− −0.1141 3.384 0.0357 15.59 0.0504 0.0018 0.0338 0.9714 0.9436 0.9403 

D60_ANN_a− 0.2069 5.009 0.0145 25.87 0.0355 0.0052 0.0501 0.9840 0.9683 0.9670 

D60_RSM_a− −1.0971 12.729 0.0245 84.51 0.0840 0.0301 0.1273 0.9317 0.8681 0.8481 

D60_ANN_b 0.1719 4.580 0.0269 23.10 0.0361 0.0040 0.0458 0.9838 0.9679 0.9668 

D60_RSM_b− −0.7025 9.505 0.0520 27.05 0.0676 0.0142 0.0950 0.9539 0.9099 0.8953 

D60_ANN_c− 0.0009 0.761 0.0050 4.51 0.0366 0.0001 0.0076 0.9817 0.9638 0.9630 

D60_RSM_c− −0.0327 1.473 0.0074 4.78 0.0702 0.0003 0.0147 0.9473 0.8974 0.8857 

DFC_ANN_a− 0.0120 21.425 116.8000 34.07 0.0215 0.0017 0.0272 0.9937 0.9875 0.9874 

DFC_RSM_a− 0.0191 39.401 197.0000 50.00 0.0515 0.0103 0.0687 0.9673 0.9358 0.9313 
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(c) 

Disc_Method_Case MSE RMSE_N MAPE SEP% MPE% Chi2 SD NSE Af Bf 

D30_ANN_ a− 1292.0 35.68 3.238 3.924 3.254 288.7 0.0446 0.9831 0.3243 −3.50E−03 

D30_RSM_a− 5886.5 76.72 8.590 8.437 9.922 2100.2 0.1212 0.9231 0.9039 −7.48E−02 

D30_ANN_b− 1150.2 33.59 2.940 3.694 2.948 250.3 0.0407 0.9850 0.2941 6.54E−03 

D30_RSM_b− 4072.3 63.81 6.765 7.018 6.832 957.1 0.0856 0.9468 0.6779 4.24E−03 

D30_ANN_c− 0.3530 0.5863 1.474 1.969 1.483 2.351 0.0211 0.9844 0.1478 −7.80E−03 

D30_RSM_c− 1.2783 1.1306 3.384 3.797 3.400 8.923 0.0430 0.9436 0.3390 2.12E−03 

D60_ANN_a− 2186.4 46.36 5.009 6.019 5.046 599.4 0.0714 0.9683 0.5014 −5.29E−03 

D60_RSM_a− 9093.0 95.36 12.73 12.38 16.15 4434.8 0.1739 0.8681 1.3487 −9.02E−02 

D60_ANN_b 2211.9 46.16 4.580 5.993 4.590 525.7 0.0622 0.9679 0.4576 −2.78E−03 

D60_RSM_b− 6213.1 78.82 9.505 10.23 9.548 1651.3 0.1195 0.9099 0.9486 −6.60E−16 

D60_ANN_c− 4.96E−03 6.88E−02 0.761 1.045 0.7616 0.1406 0.0107 0.9638 0.0761 −5.10E−04 

D60_RSM_c− 1.41E−02 1.19E−01 1.473 1.801 1.4738 0.4008 0.0186 0.8974 0.1473 1.54E−03 

DFC_ANN_a− 1107.0 33.01 2.720 3.105 2.744 239.9 0.0409 0.9875 0.2729 −5.80E−03 

DFC_RSM_a− 5665.9 75.27 6.871 7.081 7.084 1344.7 0.1019 0.9358 0.6931 −7.90E−03 

 
0.947 & 231.7 - 864.1 for RSM method compared to 0.964 - 0.987 & 2878.8 
7580.7 for ANN method. The better modeling ability of ANN can be attributed 
to its universal approximation ability for nonlinearity, whereas RSM is only li-
mited to a second-order polynomial regression [46]. 

Also the predicted temperatures in all the studied cases were compared with 
corresponding experimental ones and the error was referred to the maximum 
experimental temperature and this comparison is displayed in Table 2(a) as 
max %error  calculated by the following Equation (8). In all cases studied for the 
three discs the max %error  for the ANN method was less than that for the RSM 
method. 

( )( )1 , , max,max % max 100i n
error i i exp i pred expT T T=

== − ∗              (8) 

These results indicate that the ANN model shows a significantly excellent ge-
neralization capacity than the RSM models. This can be attributed to the uni-
versal ability of ANN to approximate the nonlinearity of the system, whereas the 
RSM is restricted to a second-order polynomial. 

Table 2(a) presents RF values for each parameter. This Table indicates the 
positive relevancy factor of jx d  which means that the temperature increases 
with the increasing of jx d , while the radius has a very small relevancy factor 
indicating the trivial effect of radius on the measured temperature. 

Also, this table discloses that the ANN method is more expensive than RSM 
indicated in the larger elapsed time for NN compared to that of RSM, because it 
uses a series of computationally expensive functions for a single model. 
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The three-dimensional concave curved response surfaces in Figures 3(a)-(c) 
indicate the possibility of obtaining a maximum value of the measured tempera-
ture within the chosen factors levels and the interaction between the factors [38]. 

The contour plots of Figures 4(a)-(c) assess the individual and cumulative in-
fluence of the variables and the mutual interaction between the variables and the 
dependent variable [47] [48]. The oval shape of the contour plots indicates a sig-
nificant interaction between the independent variables. The smallest ellipses in 
the contour plots represent the maximum predicted values [46]. 

11. Comparative Evaluation of RSM and ANN 

Modeling using RSM is easier compared to ANN, as ANN needs a higher num-
ber of inputs than RSM for better predictions. ANN has excellent prediction and 
optimization abilities, while sensitivity analysis is more precise in RSM. RSM is 
recommended for modeling of a new process, while ANN is best suited for non-
linear systems that include interactions higher than quadratic. Moreover ANN 
does not require any prior specification for suitable fitting function [46]. 

The structured nature of RSM provides the predicted quadratic equation to 
exhibit the factors contributions from the coefficient regression of the models. 
 

 
(a) 

 
(b)                                                          (c) 

Figure 3. (a) Surface plot for D30 using ANN; (b) Surface plot for D60 using ANN; (c) Surface plot for DFC using ANN. 
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Temperature (C) for DFC as a function of coded radius and coded x/dj
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(a) 

 
(b)                                                          (c) 

Figure 4. (a) Contour plot for D30 using ANN; (b) Contour plot for D60 using ANN; (c) Contour plot for DFC using ANN. 
 
This ability is robust in identifying the significant and insignificant terms in the 
model and hence can reduce the complexity of the models. However, the ANN 
presents a better alternative in modeling and prediction [49]. The Artificial 
Neural Network (ANN) model provides little information about the influencing 
factors and their contribution to the response if further analysis has not been 
done [50]. 

The higher predictive accuracy of the ANN is attributed to its ability to 
process multi-dimensional, non-linear and clustered information whereas RSM 
is limited to use of a second order polynomial. The generation of an optimum 
ANN is a multi-step calculation process, that is repeated until a desirable error is 
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Temperature (C) for D60 as a function of coded radius and coded x/dj
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Temperature (C) for DFC as a function of coded radius and coded x/dj
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achieved whereas a response surface model is based on a single step calculation 
[16] [50]. 

12. Simulation and Optimization 

Since it had been established that the neural network was able to efficiently pre-
dict the temperature for the various conditions of the experiments, the final 
network with the optimum NN architecture was utilized for the optimization 
purpose for the above three mentioned cases for the three discs. The optimiza-
tion was executed by a grid search algorithm, exploring the region defined by 
two of the coded experimental input variables design limits and dividing each 
factor into 20 intervals. Therefore, a total of 202 situations were evaluated, simu-
lating the corresponding response factor of the neural network [51]. The simu-
lated results have been investigated to get the maximum temperature response 
and its corresponding input variables. The optimization results are presented in 
Figures 3(a)-(c) & Figures 4(a)-(c) which reveals the exact values for the 
maximum predicted temperature and the corresponding coded input variables 
that have been obtained employing the ANN method. Table 2(a) shows the 
maximum predicted temperature together with the corresponding input va-
riables and with those predicted from the RSM. These values were compared 
with those of the maximum experimental temperature ones of 1400, 1275, and 
1550 and jx d  of 178,200,132 at the centre line for D30, D60 and DFC discs 
respectively. The maximum predicted temperature by ANN is more closer to the 
corresponding experimental ones than those predicted by RSM. The maximum 
predicted temperatures have been compared to the analogous experimental ones 
and the absolute maximum deviation has been calculated employing the follow-
ing equation: 

( )max max, max, max,– 100T exp pred expAD T T T= ∗                  (9) 

Table 2(a) reveals the low values of % AD for the maximum predicted tem-
peratures for ANN compared to that of RSM in all the studied cases for all discs. 

13. Conclusions 

An artificial neural mode was successfully developed and compared to RSM to 
predict the temperature profile of the three discs (D30, D60 & DFC) for three 
cases. The back propagation ANN network with Levenberg-Marquardt training 
algorithm was used to train the data from the experimental laboratory testing. 
The study outcome demonstrated that both statistical and computational intel-
ligence modeling can make a potential alternative to time consuming experi-
mental studies in addition to minimizing the costly machining test trial. The 
main conclusions obtained in this study are as follows: 

1) The prediction results of the neural network model which have 10 neurons 
in hidden layer were found to be in good agreement with the experimental data. 

2) The systematic comparative study has revealed that the properly trained 

https://doi.org/10.4236/wjet.2020.81011


T. S. Gendy et al. 
 

 

DOI: 10.4236/wjet.2020.81011 139 World Journal of Engineering and Technology 
 

ANN model has consistently performed more accurate prediction compared to 
those of RSM, in all aspects. The distribution of data points for neural network 
model almost similar and close to the actual experimental data with correlation 
coefficient (R) in the range of 0.9 - 1.0. This indicated that the developed neural 
network model is capable of making the prediction with good accuracy. This 
accurateness is expressed in the very high values of R2 and F_ratios and the very 
low value of error indicators for the ANN results compared to RSM ones. 

3) Neural network is a powerful tool and is easy to use in complex or 
non-linear problems. This confirms that the ANN model displays a significantly 
higher generalization capacity than the rest of the RSM models. The reason can 
be accredited to the universal ability of ANN to approximate the nonlinearity of 
the system. The ANN predictive ability was proved to be better than that of RSM 
and it can be concluded that ANN gives a more accurate replacement of RSM. 
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