
World Journal of Engineering and Technology, 2025, 13(3), 536-555 
https://www.scirp.org/journal/wjet 

ISSN Online: 2331-4249 
ISSN Print: 2331-4222 

 

DOI: 10.4236/wjet.2025.133035  Aug. 8, 2025 536 World Journal of Engineering and Technology 
 

 
 
 

Deformation Control and Early Warning 
Analysis of Deep Riverside Foundation Pit 
Construction Process Based on Machine 
Learning 

Zunquan Zhu1, Dongming Chang1, Fang Xu2, Mingtian Ma2, Kai Zhang2* 

1China Communications Third Shipping Engineering Bureau Co., Ltd., Shanghai, China 
2School of Civil Engineering, Wuhan University, Wuhan, China 

 
 
 

Abstract 
The large deep foundation pit projects usually face complex geological condi-
tions, with high possibility of engineering disasters and difficult construction 
technology. Foundation pit stability monitoring and control is essential to en-
sure construction quality. The traditional method of foundation pit monitor-
ing is difficult to achieve real-time disaster early warning, missing the best 
time for structural reinforcement and causing great potential safety hazards. 
Based on specific engineering cases, this study obtains and analyzes the actual 
response data of the foundation pit project through real-time monitoring, and 
uses different neural network models to predict the deformation of the soil 
around the foundation pit. The results show that when the LSTM model is 
predicted backward to 25 days, the RMSE value is 0.395, and the accuracy of 
the model is significantly higher than that of BP and GA-BP neural networks. 
The maximum relative error is less than 0.06 in the range of 2.5 - 6.0 m key 
monitoring depth, which meets the construction safety requirements. The 
model is used to predict the horizontal displacement of soil in the key moni-
toring interval of X1 monitoring point in the medium and long term. It is 
found that the maximum deformation value in this area is controlled within a 
very low range of 1.0 mm, which is far lower than the warning value stipulated 
in the relevant engineering specifications. In theory, the risk of large-scale de-
formation or failure of foundation pit engineering is excluded. Based on the 
above deformation prediction analysis, the prediction and evaluation of the 
effectiveness of supporting measures are realized, which can provide reference 
for the establishment and optimization of early warning mechanism of foun-
dation pit deformation in similar projects. This study is of great significance 
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for the early warning of foundation pit stability and the elimination of hidden 
dangers, which is helpful to further improve the quality and efficiency of en-
gineering, reduce costs, and promote the scientific and standardized construc-
tion of foundation pit engineering. 
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1. Introduction 

As urbanization accelerates, high-rise buildings and the use of underground 
spaces encounter increasingly complex geological environments, more variable 
external factors, and greater technical challenges [1]. In large deep foundation pit 
projects under complex geological conditions, complex engineering problems 
such as stratum sliding and instability of support structures often occur. There-
fore, on the basis of controlling project quality, developing effective foundation 
pit monitoring and early warning technologies is of significant importance for 
ensuring the safe construction and healthy operation of foundation pit projects 
[2]. 

Displacement monitoring of foundation pits primarily employs preset array 
displacement meters, strain gauges, and other deformation monitoring instru-
ments to regularly or in real time detect horizontal and vertical displacements of 
foundation pit retaining structures, surrounding soils, or adjacent buildings dur-
ing construction and use [3], and compare these with preset safety thresholds to 
predict or assess potential hazards in foundation pit structures in advance [4]. For 
areas that may pose safety risks, timely measures such as reinforcing support 
structures or adjusting construction plans are implemented to ensure the safety 
and stability of large deep foundation pit construction and use processes [5] [6]. 
Groundwater level monitoring is a crucial aspect of deep foundation pit projects, 
using water level gauges and other equipment to monitor changes in groundwater 
around the foundation pit, including parameters such as water level, pressure, and 
flow [7]. Timely understanding of the replenishment and discharge of groundwa-
ter around the foundation pit helps prevent geological disasters and construction 
risks caused by fluctuations in groundwater [8]. Additionally, groundwater level 
monitoring provides important hydrogeological data for foundation pit construc-
tion, guiding contractors to arrange construction plans reasonably and take ap-
propriate protective measures. For instance, timely pumping or injection of water 
can prevent foundation pit flooding due to excessively high groundwater levels or 
geological collapse due to excessively low levels [9]. 

Traditional methods for foundation pit monitoring struggle to achieve real-
time disaster early warning, often missing the optimal timing for structural rein-
forcement and posing significant safety risks [10]. Computer-aided intelligent 
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analysis can scientifically predict time-varying nonlinear deformations of founda-
tion pits [11]. The BP neural network was first proposed by foreign scholars at the 
end of the 19th century; it is a multilayer feedforward neural network trained ac-
cording to the error backpropagation algorithm and is one of the most widely used 
neural network models currently. In recent years, the BP neural network model 
has been widely applied in foundation pit monitoring. Zhao Zhen [12], based on 
monitoring data from a foundation pit monitoring point in Taiyuan, established 
a BP neural network model to verify subsequent data, proving that the predictive 
accuracy of the BP neural network model meets the requirements for engineering 
applications. Li Wei et al. [13] established an improved BP neural network pre-
diction model based on particle swarm optimization algorithms for monitoring 
foundation pit deformations, which proved the model’s reliability through con-
struction trials and provided effective support for safe construction. Zhang Deyu 
[14] proposed a foundation pit deformation monitoring method based on the BP 
neural network, demonstrating the economic benefits of neural networks in foun-
dation pit monitoring through engineering examples. Meng Guowang et al. [15] 
proposed a method combining machine learning for multi-step rolling prediction 
of horizontal displacements of retaining structures, confirming that the prediction 
errors under three working conditions met the requirements through comparison 
with predicted results. Research by these scholars indicates that the machine learn-
ing method is a technology that can meet the requirements of foundation pit pre-
diction and early warning in terms of accuracy and timeliness, widely used in en-
gineering construction with good applicability. 

This paper combines the large deep foundation pit project of the Unigroup New 
Intelligent Base in Xiaoshan District, Hangzhou, using relevant instruments for 
real-time monitoring to obtain actual response data of the foundation pit project. 
It employs the BP neural network model to conduct displacement prediction and 
early warning analysis of deep soil near the foundation pit retaining structure, 
promptly identifying and eliminating potential safety risks and unstable factors in 
the project to ensure the security and stability of the foundation pit project. This 
research contributes to further improving engineering quality and efficiency, re-
ducing costs, and promoting scientific and standardized management in con-
struction projects. 

2. Project Introduction 
2.1. Project Example Introduction 

The Unigroup New Intelligent Base project in Xiaoshan District, Hangzhou, co-
vers a total planned land area of 45,549.00 m2, with a total construction area of 
140,191.29 m2. The main structures planned include two 11-story R&D buildings, 
two 13-story dormitory buildings, one 5-story factory building, one 2-story ancil-
lary service building, one 2-floor staff activity center, and podium buildings and 
other ancillary facilities. There is one basement level beneath the site. The sur-
rounding environment of the foundation pit is shown in Figure 1. 
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Figure 1. Surrounding environment of foundation pit. 
 

The foundation type adopted for the project is bored pile foundation. The ex-
cavation area of the foundation pit is 30,530 m2, with a perimeter of 730 m. The 
excavation process of the foundation pit utilizes a combination of lattice struts 
and PC (prefabricated concrete) method pile composite support construction. 
The retaining piles consist of Φ630 × 14 PC method composite steel pipe piles 
plus Larsen IV steel sheet piles. 

2.2. Stratum Lithologic 

According to the drilling exposure, within the exploration depth range of this site, 
the strata can be divided into six major engineering geological layers based on 
their types and differences in physical and mechanical properties, further subdi-
vided into 11 sublayers. The spatial distribution of each rock and soil layer is 
shown in Figure 2. 
 

 

Figure 2. Engineering geology profile. 
 

The physical and mechanical property parameters of each rock and soil layer 
are described from top to bottom as shown in Table 1: 
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Table 1. Physical and mechanical property index of soil layer. 

Soil layer  
number 

Soil layer name 
Gravity γ 
(kN/m3) 

Vertical permeability 
coefficient Kh (cm/s) 

Vertical permeability  
coefficient Kv (cm/s) 

Internal friction  
angle φ (˚) 

Cohesive  
force c (kPa) 

I 
Miscellaneous 

fill 
/ / / / / 

II Silty clay 1 18.9 5.00 × 10−6 4.27 × 10−6 9.6 16.0 

III Clayey silt 19.2 8.26 × 10−5 7.88 × 10−6 21.5 8.4 

IV Muddy clay 17.4 4.40 × 10−6 3.80 × 10−6 1.6 5.6 

V Silty clay 2 18.8 1.12 × 10−6 1.00 × 10−6 8.0 14.4 

VI Silty clay 3 19.7 6.90 × 10−6 5.79 × 10−6 10.6 36.8 

2.3. Geohydrologic Condition 

Based on the investigation and exploration in the survey report, a newly opened 
river is distributed to the west outside this site, with a width of approximately 20 
meters. During the survey period, the water depth of the river was measured to be 
about 1.5 to 2.0 meters, and the elevation of the river surface was around 3.0 me-
ters. There is a close hydraulic connection between the river and the groundwater 
at this site, directly influencing the recharge and discharge relationships. 

The pore water table at this site is primarily contained within the layers of soil, 
including the I layer of miscellaneous fill, the II layer of silty clay, the III layer of 
clayey silt, and the IV layer of mucky clay. The stable groundwater level was meas-
ured during the survey period to have a depth ranging from 0.30 to 4.20 meters. 
The annual fluctuation range of the groundwater level is approximately 1.0 to 2.0 
meters, and the highest groundwater level in recent 3 to 5 years has approached 
the surface level. 

2.4. Poor Geological Conditions 

Within the project site, there are extensive fishponds present, which after being 
backfilled and leveled, have formed hidden ponds. These pose challenges for pile 
foundation construction and excavation work, particularly located within the pit 
area as well as to the west and northeast sides. The backfill has been completed, 
but the soil structure is loose, its composition is mixed, and its properties vary 
significantly, indicating it is recently backfilled soil. 

To the south of the site, there is a layer of silty clay with a thickness of 3.5 to 
5.5 meters, distributed 3.3 to 5.2 meters below ground level. In the central west-
ern part of the site, localized areas contain silty clay with a thickness of 9 to 11 
meters, found 4 to 5 meters beneath the surface. To the north of the eastern side, 
there is a thicker layer of miscellaneous fill, approximately 7 meters deep, with 
a local presence of about 14 meters of silty clay beneath it. On the southern side 
of the east, the miscellaneous fill is thinner, with silty clay buried at a depth of 
approximately 1.2 to 5.2 meters thick, with a total thickness of about 5 to 6 me-
ters. To the north of the site, the shallow layer of miscellaneous fill is relatively 
thick, about 7 meters, underlain by better-quality silty clay with no distribution 
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of silty soil. 

2.5. Layout of Monitoring Points for Foundation Pit Stability 

Monitoring points prioritized horizontal displacement and groundwater levels as 
critical stability indicators, selected based on historical failure mechanisms in riv-
erside mega-excavations and real-time safety protocols. These dominant risk fac-
tors were continuously tracked at key locations to capture their interdependent 
behavior through machine learning-driven analysis. 

1) Observation of Horizontal Displacement of Deep Soil Masses 
Along the periphery of the excavation pit, deep soil displacement inclinometer 

casings are installed according to the diagram provided. The casing holes for the 
basement area extend 3 meters deeper than the retaining piles. Lateral displace-
ment is highly sensitive during excavation and serves as a critical indicator to de-
termine the safety of the support system [16]. The horizontal displacement of deep 
soil masses around the pit is observed and collected using the Huashi Control 
ADM series array inclinometer casings. As shown in Figure 3, the monitoring 
points for soil horizontal displacement are numbered X1 through X20. 
 

 

Figure 3. Layout of pit monitoring points. 
 
2) Groundwater Level Monitoring 
Groundwater observation pipe holes are buried on the inner and outer sides of 

the pit’s surface according to the diagram provided, to monitor changes in the 
water table outside the pit during excavation and operation. By combining obser-
vations from these wells, the monitoring points for the external phreatic water 
level should be spaced along the longitudinal axis of the pit at intervals of 20 to 50 
meters, with at least one point at each end of the pit. In areas with complex hy-
drogeological conditions, the density of monitoring points should be increased 
appropriately. These points should preferably be arranged at locations such as the 
connections of diaphragm walls, the overlaps of mixing pile construction, corners, 
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near adjacent buildings (structures), areas with dense underground pipelines, and 
they should ideally be placed about 2 meters outside the waterproof curtain. As 
depicted in Figure 3, the groundwater level monitoring points are numbered S1 
through S12. 

3. BP Neural Network Foundation Pit Monitoring Modeling 
3.1. BP Neural Network 

Back Propagation (BP) neural network is a multilayer feedforward machine learn-
ing method based on the gradient descent algorithm, also known as the error 
backpropagation multilayer feedforward neural network. It is a multi-layer feed-
forward network trained by the error backpropagation algorithm. Its principle in-
volves training and learning input samples to analyze the mapping relationship 
between sample parameters, making it highly suitable for solving nonlinear prob-
lems [17]. It is one of the most widely used neural network models and also one 
of the most theoretically mature neural network [18]. The BP neural network typ-
ically includes an input layer and an output layer, as well as one or more hidden 
layers. This special structure solves the problem of difficulty in learning for hidden 
layers, which was a constraint on the development of multilayer neural networks, 
allowing multilayer networks to effectively address highly nonlinear mapping is-
sues. The learning process of the BP neural network consists of two processes: 
forward propagation and backward propagation. Figure 4 illustrates the forward 
propagation of the BP neural network. The learning samples x1 - xn serve as input 
information, entering from the input layer. After being processed by the weights 
and thresholds of the hidden layer, they are transmitted to the output layer, ulti-
mately resulting in output values y1 - ym. It is important to note that when the 
output value has a large error, the error backpropagation continues. The weights 
connecting the layers are adjusted based on the error information to reduce the 
error, eventually achieving the desired output [19]. 
 

 

Figure 4. Topological structure of neural network. 
 

The BP neural network is used to train and predict the horizontal displacement 
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of the soil around the foundation pit. The establishment and training process of 
the model mainly includes the following steps: 

1) Determination of Input and Output Layers 
As the construction environment of the foundation pit evolves over time, pre-

dicting data for the next construction phase through measured data can effectively 
avoid interference from other factors and minimize the impact of human factors. 
The 71st displacement value was predicted by 70 consecutive deformation data, 
so there were 70 neurons in the input layer and 1 neuron in the output layer. 

2) Determination of Hidden Layer Node Numbers 
First, three methods are employed to obtain the number of hidden layers, lead-

ing to three different counts. We identify the minimum and maximum node num-
bers and then verify the model prediction errors one by one starting from the 
minimum until reaching the maximum. Finally, we select the hidden layer node 
count with the smallest model error. The three methods are as follows: 

1n nm=                            (1) 

1 2logn a=                            (2) 

1n a n m= + +                          (3) 

The final determination of the optimal range for the number of hidden layer 
nodes is [6] [17]. At this time, the model converges quickly, operates with small 
errors, and achieves high prediction accuracy. After experimental verification, it 
was found that when the number of hidden layer nodes is 10, the model error is 
minimal, and the effect is the best. 

3) Selection of Training Samples 
In this study, we utilize real measured deformation data of the foundation pit 

as the input quantity for the model. We select a total of 70 days of actual measured 
data from the beginning of the construction to the end of the foundation pit ex-
cavation as the training samples input into the model. These training samples 
cover the entire period of foundation pit excavation construction, enabling com-
prehensive and effective training of the model to achieve the purpose of engineer-
ing application. 

3.2. GA-BP Neural Network 

Genetic algorithm (GA) is a computational method that simulates natural se-
lection and genetic mechanism, which is often used to solve optimization prob-
lems [20]. Through genetic algorithm optimization, BP neural network can ob-
tain a better combination of weights and bias values, thereby improving pre-
diction accuracy and generalization ability, and improving prediction effi-
ciency [21]. 

The training scheme of GA-BP model includes: importing data files, and the 
time point prediction interval is 1. Read the main spatial variables, including train-
ing data, network parameters and optimization parameters. Decode the genetic 
algorithm chromosome, convert it into the weight and bias of the neural network, 
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and write it into the network structure. After that, the samples are reshaped and 
segmented to form model input and output. In this process, the data is normalized 
and the data format is converted. A BP neural network with five hidden nodes is 
created as the initial training model. The genetic algorithm is used to optimize the 
weight and bias of the BP neural network, and the population parameters, accu-
racy, selection operator, etc. are set, trained and optimized. Then, the population 
initialization is carried out, and the genetic algorithm is optimized to calculate the 
optimal parameters of the population. Finally, according to the optimal parame-
ters, the weight and bias information of the neural network are updated. The hy-
perparameters of the neural network are set as follows: the number of iterations is 
1000, the target error threshold is 2 × 10−4, and the learning rate is 0.01. The pop-
ulation initialization assignment is performed, the genetic algebra is 10, and the 
population size is 5. 

3.3. LSTM Neural Network 

Long short-term memory (LSTM) network is a special variant of recurrent neural 
network. The LSTM unit is composed of forgetting gate, input gate and output 
gate. It can determine whether the data is updated or discarded by the logic con-
trol of the gate unit, which overcomes the shortcomings of RNN weight influence, 
gradient disappearance and explosion, so that the network can converge better 
and faster, and can effectively improve the prediction accuracy [22]. 

In order to use LSTM neural network for time series prediction, the following 
key contents need to be processed. Firstly, the read data is cleaned and sorted 
into training set according to certain rules. After that, the structure of the neural 
network is defined, including input layer, LSTM layer, fully connected layer and 
regression layer, and the initial learning rate is set to 0.01. Then, adam solver is 
used to train the LSTM network for 1000 rounds. At the same time, the learning 
rate attenuation strategy is configured to monitor the training progress and dis-
play the training curve. Finally, the training data is standardized, and the previ-
ous data is used to predict the next step, and the backward cycle prediction is 
performed. 

4. Monitoring and Analysis of Foundation Pit Stability 
4.1. Horizontal Displacement of Deep Soil 

In Figure 3, among a series of monitoring points for soil displacement in the foun-
dation pit, monitoring points X1 and X4 are located in the middle of the surround-
ing retaining area of the pit near the river, monitoring point X2 is near the support 
point of the crown beam on the side away from the river, and monitoring point 
X3 is close to the corner point of the pit on the side away from the river. These 
four monitoring points have certain representativeness. Therefore, the horizontal 
displacements near these monitoring points are analyzed accordingly. The curve 
of soil horizontal displacement at different depths of inclinometer tubes X1 - X4 
over time is shown in Figure 5. 
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(a)                                                (b) 

 
(c)                                               (d) 

Figure 5. Change curve of soil horizontal displacement with time near the foundation pit retaining structure. (a) Horizontal 
displacement of soil at different depths of inclinometer X1; (b) Horizontal displacement of soil at different depths of incli-
nometer X2; (c) Horizontal displacement of soil at different depths of inclinometer X3; (d) Horizontal displacement of soil 
at different depths of inclinometer X4. 

 

It can be observed that the trend of soil displacement changes at different mon-
itoring points is similar. During the first 50 days of monitoring, the foundation 
pit is undergoing excavation. As the depth of excavation continuously increases, 
the surrounding soil pressure is redistributed under the influence of self-weight 
soil pressure and additional pressures from upper construction machinery, pedes-
trians, and surrounding buildings, causing a certain degree of horizontal displace-
ment in the soil around the foundation pit [23]. This stage also sees the largest soil 
displacement. The monitoring points X1 - X4 show that the displacement values 
at different locations may differ due to spatial effects, being influenced differently 
by factors such as rock and soil layer distribution, groundwater level, and upper 
loads, but their maximum horizontal displacements all occur during this stage. 
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Starting from the 45th day, the foundation pit excavation ends and the cushion 
and foundation construction is completed. Meanwhile, the support system is fully 
constructed, significantly reducing the rate of foundation pit deformation and ef-
fectively suppressing the tendency of surrounding soil to shift towards the pit. 
From the 55th day onwards, the horizontal displacement at the monitoring points 
tends to stabilize. 

Looking at the soil displacement at different depths, due to the combined use 
of lattice struts and PC pile joint support, the shallow soil deformation at about 
2.5 m depth is relatively small, with the maximum horizontal displacement occur-
ring at around 6.0 m depth, and the deep inclinometer curve showing a bulging 
shape in the middle. At depths greater than 12.0 m, the amount of soil horizontal 
displacement is very small, and in the stable stage after support, the maximum 
displacement is less than 6.0 mm. 

Additionally, in Figure 5, it is observed that during the same period at the same 
depth, the horizontal displacement at monitoring points X1 and X4 is larger than 
that at X2 and X3. Analyzing this difference structurally, monitoring points X1 
and X4 are located in the middle of the periphery of the foundation pit, where the 
soil pressure on the retaining structure is higher, and the stiffness of the struts and 
PC piles is limited, resulting in relatively larger horizontal displacements [24]. In 
contrast, monitoring point X3 is located near the corner point of the foundation 
pit, where the active soil pressure on the retaining structure can be relieved 
through arching effects, and the nearby soil deformation is usually the smallest in 
the foundation pit [25]. Monitoring point X2 is near the crown beam support, 
which has a large stiffness and can effectively restrict the deformation of the 
nearby retaining structure, so its horizontal displacement is also relatively small 
[26]. 

4.2. Change of Groundwater Level Around Foundation Pit 

In the groundwater monitoring points shown in Figure 3, monitoring point S1 is 
adjacent to displacement monitoring point X1, and S4 is located near displace-
ment monitoring point X4 outside the perimeter retaining area close to the river. 
Monitoring point S2 is adjacent to displacement monitoring point X2, while mon-
itoring point S3 is located near displacement monitoring point X3 outside the pe-
rimeter retaining area far from the river. The changes in groundwater levels have 
a significant impact on the deformation and stability of the foundation pit. There-
fore, by taking the water level variations at the four groundwater monitoring 
points S1 to S4 and combining them with the soil displacement data in section 4.2, 
an analysis of the foundation pit’s stability can be conducted. The depth of 
groundwater levels at monitoring points S1 to S4 over time is depicted in Figure 
6. 

It can be observed that for monitoring points S1 and S4, which are closer to the 
river, during the first 50 days of monitoring, the water level outside the pit de-
clined almost linearly, and after 55 days, the rate of decline significantly decreased. 
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Unlike S1 and S4, the monitoring points S2 and S3, which are farther from the 
river, experienced a noticeable lag effect in water level decline during excavation. 
For the first 15 days of monitoring, due to the longer drainage path, there was 
little change in the groundwater level, with some slight recovery and fluctuations. 
After 40 days of monitoring, the water level began to drop significantly and uni-
formly, with a higher rate of decline compared to the same period for monitoring 
points S1 and S4. 

Analyzing the horizontal displacement of soil at X1 to X4 in conjunction with 
the changes in groundwater levels reveals that the maximum rate of horizontal 
displacement change occurred at points X1 and X4 within the first 15 days, while 
at points X2 and X3, the maximum rate of change occurred between 30 and 40 
days. This lag is attributed to the delayed decline in water level at points X2 and 
X3, resulting in a delayed dissipation of pore water pressure, and consequently, a 
delayed consolidation and deformation of the soil. This difference also indicates 
that the change in groundwater level has a substantial influence on the develop-
ment of horizontal displacement of soil around the foundation pit. 
 

 

Figure 6. Change curve of groundwater level with time near foundation pit envelope. 
 

During the first 50 days of monitoring, the groundwater level outside the pit 
exhibited a nearly linear decline. However, after 55 days, the rate of decline sig-
nificantly decreased. In contrast to S1 and S4, the monitoring points S2 and S3, 
which are located away from the river, showed a distinct lag effect in the water 
level drop during excavation. For the initial 15 days of monitoring, due to the 
longer drainage path, the change in groundwater level was minimal, with slight 
recoveries and fluctuations observed. It was only after 40 days of monitoring that 
a significant and uniform decline in water level occurred, with a greater rate of 
decline compared to the same period for monitoring points S1 and S4. 

Analyzing the horizontal displacement of soil at X1 to X4 in conjunction with 
the changes in groundwater levels revealed that the maximum rate of horizontal 
displacement change occurred at points X1 and X4 within the first 15 days, while 
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at points X2 and X3, the maximum rate of change occurred between 30 and 40 
days. This lag is attributed to the delayed decline in water level at points X2 and 
X3, resulting in a delayed dissipation of pore water pressure, and consequently, a 
delayed consolidation and deformation of the soil [27]. This difference also indi-
cates that the change in groundwater level has a substantial influence on the de-
velopment of horizontal displacement of soil around the foundation pit [28]. 

In the displacement monitoring, it was also observed that at the same time and 
depth, the horizontal displacement at monitoring points X1 and X4 was greater 
than at X2 and X3. Analyzing this discrepancy in terms of groundwater level 
changes, it is evident that because monitoring points X2 and X3 are farther from 
the river and have a relatively longer drainage path, the contemporaneous ground-
water level in the vicinity of these measuring points was higher than that at X1 
and X4. This resulted in a reduced tendency for soil to extrude into the pit due to 
the dissipation of pore water pressure. 

5. Rationality Verification of Neural Network Model and  
Prediction Analysis of Foundation Pit Deformation 

5.1. Model Training Effect 

Combined with the above analysis, among several foundation pit monitoring 
points, the horizontal displacement of soil at X1 monitoring point is always rela-
tively large, and the groundwater level is relatively high, which is the key position 
for foundation pit stability monitoring. 
 

 

Figure 7. Relative error distribution based on BP neural network prediction. 
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A total of 70 records of soil horizontal displacement data at monitoring point 
X1, spanning the full 70-day evolutionary period (Days 0 - 70), were dedicated as 
the training set for neural network development. This duration comprehensively 
captures the critical deformation progression established in Section 4.1: an initial 
rapid deformation phase followed by progressive deceleration culminating in sta-
bilized slow deformation. Crucially, post-Day 70 deformation extends this stabi-
lized regime without introducing new failure mechanisms or acceleration trends. 
Upon completing model training, the finalized network was applied to forecast 
soil deformation at X1 for Days 71 - 100, generating depth-dependent horizontal 
displacement prediction curves. To dynamically validate model performance, 
these predictions were rigorously compared against actual monitoring values 
from the same period (Days 71 - 100). Prediction accuracy was quantified using 
mean absolute error (MAE) and root mean square error (RMSE) [29], with results 
visualized in Figures 7-9. 

Figure 7 shows the relative error distribution of prediction results based on BP 
neural network. From the relative error value, most of the predicted values are less 
than the measured values. At the same time, it can also be observed from the dia-
gram that the accuracy of the model gradually decreases with time. By the sixth 
day, the maximum relative error has exceeded 0.1, the RMSE is 0.653, and the 
MAE reaches 0.53 mm. This is because the deformation trend of foundation pit 
has time memory characteristics, that is, the past deformation history will have an 
impact on the future deformation trend. Due to the lag of training samples, the 
prediction model cannot accurately reflect this characteristic, thus affecting its 
prediction accuracy [30]. This also shows that there is still room for improvement 
in the prediction effect of the BP model, which still needs further optimization. 
 

 

Figure 8. Relative error distribution based on GA-BP neural network prediction. 
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Figure 8 shows the relative error distribution of the prediction results based on 
GA-BP neural network. It can be seen from the diagram that the prediction effect 
of GA-BP neural network is obviously better than that of traditional BP neural 
network in the first 5 days. The maximum relative error is less than 0.04, the RMSE 
value is within 0.03, and the MAE is within 0.25 mm. It has high accuracy in short-
term prediction. However, after the fifth day, the relative error of the predicted 
value gradually increased, and the prediction effect was close to the traditional BP 
neural network. At the same time, the GA-BP model also has the problem that 
most of the predicted values are less than the measured values with the extension 
of the prediction time. This may be due to the over-fitting of the BP model on the 
training set caused by genetic algorithm optimization, which makes it perform 
poorly in the test set or the actual data. The above results show that GA-BP neural 
network has a good backward short-term prediction effect (≤ 5 d) for this project, 
which is suitable as a prediction model for short-term deformation monitoring 
and control of foundation pit, but it does not perform well in backward long-term 
prediction. 

 

 

Figure 9. Relative error distribution based on LSTM neural network prediction. 
 

Figure 9 shows the relative error distribution based on the prediction results of 
LSTM neural network, including the horizontal displacement of X1 monitoring 
point within 30 days from the 70th day. As can be seen from the diagram, the 
RMSE value of LSTM on the 5th day is 0.146, and the MAE is 0.12 mm. The above 
indicators are lower than the GA-BP model, indicating that it has higher accuracy 
in the depth range of the measuring point, and the effect of short-term predictive 
control is good. In the backward long-term predictive control, RMSE, MAE and 
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the maximum relative error value have increased, and the model accuracy has a 
downward trend. This is because the influence caused by the excavation of the 
foundation pit cannot be calculated in the model. It needs to be solved by con-
stantly updating the training samples and expanding the training set [31]. From 
the specific situation of the parameters, when the backward prediction time is 25 
days, the RMSE value is 0.395, and the accuracy of the model is significantly higher 
than that of the GA-BP neural network. In the same period, the MAE value is 0.32 
mm, and the maximum relative error in the key monitoring depth range of 2.5 - 
6.0 m is less than 0.06, which meets the requirements of the construction scheme 
[32]. This shows that compared with the first two models, the LSTM neural net-
work can still maintain high accuracy and relatively small error in a long-term 
backward prediction, which can provide a more effective reference for medium-
long-term foundation pit deformation warning and engineering construction. 

5.2. Foundation Pit Deformation Prediction 

Following the validation of machine learning performance during the 71-100-day 
period, we executed medium-to-long term prospective forecasting to evaluate 
foundation pit stability. In order to study whether the soil deformation around 
the foundation pit will affect the stability of the foundation pit, we continue to pay 
attention to the key position X1 monitoring point of deformation monitoring, and 
carry out medium-long-term prediction of soil deformation near the maximum 
displacement deformation depth (4.0 - 6.0 m) of the soil. On this basis, the stability 
of the foundation pit project is analyzed. Combined with the analysis of the pre-
vious section, by updating the training samples, the LSTM model is used to predict 
the horizontal displacement of the soil at the X1 monitoring point in the depth 
range of 4.0 - 6.0 m. This updated model subsequently generated horizontal dis-
placement predictions for Days 101 - 146, extending 46 days beyond the initial 
training horizon. 
 

 

Figure 10. Medium-long-term prediction values of horizontal displacement of soil at dif-
ferent depths at X1. 
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The resulting forecasts (Figure 10) deliver critical insights into soil deformation 
evolution within this high-risk depth interval. It can be seen that during the 45 
days prediction period, the maximum deformation at the X1 monitoring point is 
still near the depth of 5.0 m. During this period, for the key monitoring depth area 
of 4.0 - 6.0 m, the deformation of the soil is stable, and the maximum deformation 
is strictly controlled within the extremely low range of 1.0 mm, which is far lower 
than the warning value specified in the relevant engineering specifications [33]. 
From the perspective of deformation, it can be considered that the foundation pit 
structure has a certain ability to resist external unfavorable factors, and theoreti-
cally excludes the risk of large-scale deformation or damage. Based on the above 
deformation prediction analysis, it not only realizes the prediction and evaluation 
of the effectiveness of supporting measures, but also provides a reliable practical 
reference for the establishment and optimization of the early warning mechanism 
of foundation pit deformation in similar projects. 

6. Conclusions 

Deformation prediction and stability research are one of the key research direc-
tions in deep and large foundation pit engineering. Based on the deep and large 
riverside foundation pit project of Ziguang New Intelligent Base in Xiaoshan Dis-
trict of Hangzhou, this study obtains and analyzes the actual response data of the 
foundation pit project through real-time monitoring. Machine learning technol-
ogy is used to predict the deformation of soil around the foundation pit, and the 
advantages and disadvantages of various neural network models are analyzed. 
Furthermore, combined with the appropriate model, the medium and long-term 
deformation of the deep soil near the retaining structure of the foundation pit is 
predicted, and the prediction and evaluation of the effectiveness of the support 
measures are realized. The main conclusions of this study are as follows: 

1) The horizontal displacement of the soil outside the retaining structure of the 
foundation pit mainly occurs in the excavation stage, and there is a significant 
spatial effect. At the same depth in the same period, the horizontal displacement 
of the soil is the smallest near the negative corner of the foundation pit, the second 
near the support point of the crown beam, and the largest near the diagonal sup-
port around the foundation pit. By adopting the combined support of lattice brac-
ing and PC pile in time, the deformation in the excavation stage can be effectively 
controlled. 

2) In the foundation pit engineering near rivers and lakes, the speed of pore 
water pressure dissipation is different due to different drainage paths. The change 
of groundwater level away from the river is relatively lagging behind, which leads 
to significant differences in the change rate of horizontal displacement in each 
area of the foundation pit, and has a great influence on the maximum horizontal 
displacement value of the soil around the foundation pit. Therefore, in the process 
of foundation pit excavation, the drainage system should be reasonably arranged 
in different areas of the foundation pit according to the actual hydrogeological 
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conditions. 
3) In this study, BP, GA-BP and LSTM models were used to train and predict 

the horizontal displacement values of key monitoring points. The comparison 
with the actual monitoring data shows that the maximum relative error is more 
than 0.1 and the RMSE is 0.653 when the BP model is used to predict the 6th day, 
and the accuracy is difficult to meet the requirements. The GA-BP model demon-
strates high short-term forecasting accuracy, with maximum relative error <0.04 
and RMSE <0.030 during the initial 5-day period. However, after the 5th day, the 
relative error of the predicted value increased significantly. When the LSTM model 
was predicted backward to 25 days, the RMSE value was 0.395, and the accuracy 
of the model was significantly higher than that of the GA-BP neural network. The 
maximum relative error is less than 0.06 in the range of 2.5 - 6.0 m key monitoring 
depth, which meets the construction safety requirements. It can provide a more 
effective reference for medium and long-term foundation pit deformation warn-
ing and engineering construction. 

4) By updating the training samples, the LSTM model is used to predict the 
horizontal displacement of the soil at the X1 monitoring point in the depth range 
of 4.0 - 6.0 m. It is found that the maximum deformation value generated in this 
area is controlled within a very low range of 1.0 mm, which is far lower than the 
warning value stipulated in the relevant engineering specifications, and the risk of 
large-scale deformation or damage is excluded in theory. Based on deformation 
predictions, this analysis enables evaluating supporting measures and optimizing 
early-warning mechanisms for analogous projects. Future work will incorporate 
complementary parameters like stress responses to enhance predictive capabili-
ties. 
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