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Abstract 
As the integration of Large Language Models (LLMs) into scientific R&D ac-
celerates, the associated privacy risks become increasingly critical. Scientific 
NoSQL repositories, which often store sensitive experimental documentation, 
must be protected from data leakage and inference attacks. This paper pro-
poses a novel privacy-preserving architecture that enables LLM-based query-
ing, summarization, and guidance over scientific NoSQL datasets under dif-
ferential privacy (DP) constraints. We introduce a comprehensive framework 
that includes local sensitivity analysis, DP-calibrated query transformation, 
privacy-aware embeddings, and a controlled interface for LLM interactions. 
Our experiments on synthetic and biomedical datasets demonstrate the trade-
offs between privacy budgets and semantic utility. This work bridges the gap 
between secure data infrastructure and intelligent scientific interfaces, paving 
the way for compliant and interpretable AI deployments in research settings. 
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1. Introduction 

Large Language Models have revolutionized access to unstructured scientific con-
tent. Their ability to perform semantic search, natural language querying, and 
contextual summarization allows researchers to quickly extract insights from 
large experimental corpora. However, the risks of model inversion, prompt injec-
tion, and inadvertent data exposure are particularly heightened in domains such 
as pharmaceuticals, clinical trials, and materials research, where NoSQL reposito-
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ries contain highly sensitive content. The inclusion of personally identifiable in-
formation (PII), proprietary formulations, and unpublished intellectual property 
in experimental documents necessitates strong privacy guarantees. 

Traditional access control mechanisms and encryption methods are insufficient 
for modern AI applications that require granular, real-time interaction with sen-
sitive text data. Differential privacy provides a mathematically grounded approach 
to bounding information leakage, even in the presence of adversarial queries [1]. 
This paper presents an end-to-end architecture for integrating LLMs into NoSQL 
repositories using DP mechanisms, aiming to preserve both data utility and user 
trust. 

We explore architectural components tailored to the scientific domain, propose 
novel algorithmic techniques for enforcing DP during embedding and LLM infer-
ence, and empirically validate our methods across a range of realistic datasets. 
This work not only contributes to the state-of-the-art in privacy-preserving ma-
chine learning [2], but also offers practical blueprints for regulated environments 
such as healthcare, biotechnology, and materials R&D. 

2. Related Work 

• Scientific NoSQL Repositories Scientific NoSQL repositories have emerged as 
essential infrastructure in managing experimental data, particularly in fields 
with high data complexity and variability. Unlike traditional relational data-
bases, NoSQL systems offer schema-less structures and support for nested or 
hierarchical data formats such as JSON and BSON [3] [4]. This flexibility is 
particularly advantageous for handling laboratory records, real-time sensor 
feeds, and iterative experimental outcomes. MongoDB, MarkLogic [3], and 
Cassandra are widely employed across research laboratories, industrial R&D 
units, and university departments to store and access diverse data types with 
low latency. 

• Recent studies (e.g., Zhang et al., 2021) have demonstrated how scientific 
workflows benefit from NoSQL’s high scalability and indexing strategies. 
These databases also support metadata tagging, access control, and native in-
tegration with cloud storage systems. However, the lack of built-in semantic 
support limits the ease of querying across domains and extracting meaningful 
insight. This gap motivates the use of LLMs for intelligent question answering 
and recommendation over these repositories. 

• LLMs in Scientific Discovery Large Language Models like GPT [5], LLaMA, 
and PaLM have shown transformative capabilities in processing and generat-
ing scientific text. Their use has expanded beyond literature review to applica-
tions such as protocol drafting, experimental design automation [5]-[7], 
anomaly detection in experimental logs, and synthesis of multi-source find-
ings. For example, LLMs can summarize weeks of lab notes or infer possible 
causes for a failed trial by connecting patterns across datasets. 

However, leveraging LLMs in R&D environments introduces unique risks. Sci-
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entific data often contain proprietary formulations, personal health data, and in-
tellectual property [8] [9]. If these models are fine-tuned or even queried directly 
using raw documents, they may memorize or inadvertently leak sensitive infor-
mation, especially when deployed in shared or cloud-hosted settings. Past inci-
dents involving inadvertent exposure of training data underscore the urgency of 
developing privacy-preserving frameworks. 
• Differential Privacy Overview Differential privacy (DP) has emerged as a lead-

ing paradigm for protecting individual-level data in statistical analyses and 
machine learning [1]. It offers a mathematical guarantee that the removal or 
inclusion of a single data point does not significantly affect the output of a 
computation. The parameter ε (epsilon) quantifies the strength of this guaran-
tee—lower values imply stronger privacy but at the cost of higher noise in re-
sults. Key DP mechanisms used in machine learning include the Laplace mech-
anism, the Gaussian mechanism, and randomized response. Advanced strate-
gies also include DP-SGD (stochastic gradient descent with noise addition) 
and DP histogram aggregation. It offers formal guarantees about data exposure 
through mechanisms such as DP-SGD and Laplace noise addition [2] [10] 
[11]. Prior work has also explored privacy-preserving retrieval [12] and em-
bedding techniques [8], but often lacks generalizability across heterogeneous 
research domains. Our approach leverages both local and global DP methods 
to protect embeddings and attributions. 

• Prior Work The intersection of differential privacy, NoSQL data management, 
and LLMs is still nascent. Previous work has explored secure federated learn-
ing [13], privacy-preserving information retrieval [12], and encrypted vector 
search using homomorphic encryption [10]. Some frameworks have addressed 
privacy in training LLMs using DP-SGD, while others have proposed trans-
former variants that avoid memorization of rare sequences. 

In the context of NoSQL databases, studies by Sarker et al. [14] highlight the 
benefits of using differential privacy in metadata indexing and user profiling. 
Meanwhile, work by Wang et al. (2023) introduces differential embedding models 
for named entity recognition in biomedical texts. However, these methods are of-
ten tailored to narrow tasks and lack generalizability to heterogeneous, multi-do-
main scientific repositories. 

Our work distinguishes itself by proposing a unified framework that integrates 
DP at multiple levels: input preprocessing, semantic embedding, LLM interface, 
and model interpretability. Furthermore, we tailor these mechanisms to the sci-
entific research domain, balancing the tradeoffs between accuracy, explainability, 
and privacy. 

3. Proposed Framework 

Our proposed architecture consists of four interconnected layers, each responsible 
for a critical aspect of privacy-preserving data access and AI-driven semantic rea-
soning. 
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3.1. Data Preprocessor 

This module is responsible for parsing raw experimental documents from NoSQL 
databases and performing entity anonymization. Named entities such as re-
searcher names, patient identifiers, chemical formulas, and proprietary codes are 
masked using regex patterns and knowledge graph lookups. Noise is injected us-
ing Laplace or Gaussian mechanisms based on the sensitivity of fields [2] [10]. 
Metadata fields (e.g., timestamps, sample IDs) are generalized or bucketized to 
reduce granularity. Additionally, documents are tokenized using a subword seg-
mentation strategy that supports low-frequency terms. 

3.2. Semantic Indexer with DP Embeddings 

After preprocessing, each document is transformed into a high-dimensional vec-
tor using a differentially private embedding model. We experimented with DP-
SentenceBERT and DP-Word2Vec trained under ε-differential privacy con-
straints [8] [11]. These embeddings capture semantic similarity while ensuring 
that any single data point’s contribution remains bounded. An approximate near-
est neighbor (ANN) index is built using locality-sensitive hashing (LSH) [15] to 
support scalable and privacy-respecting semantic search. 

3.3. LLM Mediator Layer 

This serves as the interface between the user’s natural language query and the 
knowledge embedded in the system. The query is first semantically embedded us-
ing the same DP embedding model, and its vector is compared to the indexed 
document vectors using cosine similarity. The top-k most relevant documents are 
retrieved and used as context for an LLM prompt. The LLM is either deployed 
locally or accessed via a privacy-enforcing API gateway to avoid exposure of raw 
user inputs or document content. 

3.4. DP-SHAP Interpreter 

To provide explainability while respecting data confidentiality, we integrate DP-
SHAP [16] (Differentially Private SHapley Additive exPlanations) into the pipe-
line. This module computes token- or feature-level attributions using a random-
ized approximation of Shapley values under DP constraints [16] [17]. Users can 
visualize the influence of document segments or query terms on the generated 
response, enhancing trust without revealing sensitive information. 

This layered architecture ensures that data is progressively abstracted and pro-
tected, enabling semantic services without violating privacy policies. 

4. Algorithms  

I outline the pseudocode of the core algorithms employed in our framework: 
Algorithm 1: Differentially Private Query Handling 
Uses noise injection and DP query rewriting methods [1] [2]. 
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Function DP_Query_Handler(query q, privacy_budget ε): 

    Step 1: Analyze query structure and extract features 

    Step 2: Compute local sensitivity s(q) 

    Step 3: Calibrate noise using Laplace(0, s(q)/ε) 

    Step 4: Transform query by injecting noise into sensitive components 

    Step 5: Execute transformed query on NoSQL repository 

    Step 6: Return query result with metadata on ε spent 

End Function 
 

Algorithm 2: DP-SGD Embedding Training 
Applies differential privacy to stochastic gradient descent using Opacus [11] 

and the Google DP Library [18]. 
 

Function Train_DP_Embeddings(documents D, learning_rate α, ε, δ, epochs E): 

    Initialize model parameters θ 

    For epoch in 1 to E: 

        For each minibatch B in D: 

            Compute per-example gradients ∇L(x) for all x in B 

            Clip gradients: ∇L_clip = clip(∇L(x), norm_bound) 

            Add noise: ∇L_noisy = ∇L_clip + Gaussian(0, σ²) 

            Update θ = θ - α * ∇L_noisy 

            Track cumulative privacy loss using accountant 

        If privacy budget exceeded: Stop training 

    Return θ 

End Function 
 

Algorithm 3: Dynamic Privacy Budg et al. location via Reinforcement Learning 
Implements a reinforcement learning policy to allocate ε based on sensitivity [8]. 
 

Function Adaptive_Budget_Allocator(query q, user_role r, history H): 

    Initialize Q-table[state][action] = 0 

    For each query session: 

        Extract state s = (role r, sensitivity(q), remaining_budget) 

        Choose action a = allocate ε_i (ε-distribution) 

        Apply DP_Query_Handler(q, ε_i) 

        Measure utility u and log ε_i used 

        Update Q[s][a] using:  

            Q[s][a] = Q[s][a] + α * (u + γ * max_a’ Q[s’][a’] - Q[s][a]) 

    Return best ε_i for current state s 

End Function 
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Algorithm 4: Secure Similarity Matching in DP Vector Space 
Utilizes cosine similarity in DP-augmented vector space stored via FAISS [19], 

[15] and HNSWLib [20]. 
 

Function Secure_Similarity_Match(query_vector v_q, index_vectors V, ε): 
    Apply Gaussian noise to v_q → v_q’ = v_q + N(0, σ²) 
    For each v_i in V: 
        Compute cosine_similarity(v_q’, v_i) 
    Return top-k matches with similarity scores 
End Function 

5. System Architecture 

The system architecture is a modular, scalable pipeline engineered to ensure pri-
vacy at every stage of document ingestion, semantic embedding, retrieval, and 
LLM-based response generation. It is composed of several loosely coupled layers, 
each serving a specific privacy and functionality purpose. 

5.1. Data Ingestion Layer 

This component interfaces directly with scientific NoSQL repositories such as 
MongoDB, Cassandra, or MarkLogic [3] [4]. Using change streams and scheduled 
batch queries, it extracts new or updated documents. Documents are queued se-
curely for preprocessing via an encrypted message bus (e.g., Apache Kafka with 
TLS). 

5.2. Preprocessing Layer 

At this stage, raw documents are tokenized using subword segmentation to handle 
domain-specific vocabularies. Named entity recognition (NER) modules identify 
sensitive elements, which are then masked, generalized, or replaced with noise 
according to differential privacy mechanisms such as Laplace and Gaussian noise 
[2] [10]. Metadata is also sanitized to prevent re-identification through timestamp 
or location correlation. 

5.3. Semantic Embedding Layer 

Preprocessed documents are passed through a DP-augmented embedding model 
(such as DP-SentenceBERT). The output embeddings are stored in an approxi-
mate nearest neighbor (ANN) index using privacy-aware libraries like FAISS [19] 
[20] or HNSWLib [20], ensuring scalable retrieval without leaking document con-
tent. 

5.4. Retrieval and Query Interface 

User queries are similarly embedded and semantically matched against the index. 
Only the most relevant documents’ embeddings (not raw text) are exposed to the 
LLM for context augmentation. Query APIs enforce rate-limiting, authentication, 
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and role-based access controls. 

5.5. LLM Response Generator 

The LLM (e.g., LLaMA 2 [7] hosted within a secure enclave [7] [21]) constructs 
responses using retrieved context while adhering to guardrails that restrict disclo-
sure of masked terms. 

5.6. Attribution and Auditing Layer 

A DP-SHAP [16] attribution engine explains model outputs without exposing 
sensitive inputs. Logs of document access, query patterns, and privacy budget con-
sumption are recorded immutably to a private blockchain or tamper-proof ledger 
for compliance auditing [22]. 

Deployment: 
• Supports Kubernetes container orchestration with scaling policies. 
• Data-at-rest encrypted with AES-256, and data-in-transit protected by TLS 1.3. 
• Modular microservices architecture allowing independent updates. 

This architecture empowers organizations to deploy AI-driven document anal-
ysis while rigorously preserving research confidentiality. 

To address potential concerns around deployment complexity, the proposed 
architecture is implemented using a containerized microservices model, where 
each component—LLM query router, privacy layer, and NoSQL interface—is en-
capsulated using Docker. This enables modular deployment, allowing institutions 
to adopt or customize individual layers based on their infrastructure maturity. 
Orchestration tools such as Kubernetes or Docker Compose are supported for 
scalable maintenance. Additionally, the framework includes auto-configuration 
scripts, pre-trained model integration, and schema adaptation templates, reduc-
ing the need for specialized expertise during initial setup. 

6. Experimental Setup  

To validate the effectiveness of the proposed framework, we designed a controlled 
experimental environment simulating a scientific R&D setting. 

6.1. Dataset Simulation 

We generated a corpus of 10,000 synthetic experimental documents spanning do-
mains such as pharmaceuticals, agritech, and chemical engineering. Each docu-
ment included structured sections: 
• Abstract, Introduction, Methods, Results, and Conclusion. 
• Tables of experimental variables. 
• Figures and annotations. 
• Embedded sensitive entities (e.g., compound names, researcher IDs). 

Sensitive fields were randomized according to distributions observed in public 
scientific repositories such as NOAA GHCN [23], to mimic real-world sparsity 
and variability. 
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6.2. Evaluation Goals 

We focused on four main evaluation objectives: 
• Semantic Retrieval Accuracy: Measured by Precision@5 and Recall@5 against 

manually annotated ground truth for 500 sample queries. 
• Privacy Leakage Assessment: Conducted membership inference attacks un-

der white-box access assumptions to quantify leakage. 
• Efficiency Metrics: Measured query latency, embedding generation time, and 

ANN search throughput. We evaluated semantic retrieval accuracy (Preci-
sion@5, Recall@5), privacy leakage via membership inference [9], query la-
tency, and embedding performance. 

• FTE Reduction Potential: Estimated time savings from automated retrieval 
and summarization compared to manual document review workflows. 

6.3. Experiment Parameters 

• Privacy budgets tested: ε = {0.1, 0.5, 1.0, 2.0, 3.0, 5.0}. 
• Number of queries: 500 user prompts varying in specificity. 
• Retrieval cutoff: Top-5 documents per query. 
• Repetitions: 10 random seeds to ensure result stability. 

6.4. Tool Stack 

• LLM: Fine-tuned LLaMA 2 hosted on NVIDIA A100 nodes. 
• Embedding Model: Private-SentenceBERT implemented via Opacus. 
• Privacy Libraries: Google DP Library [18], and OpenDP [23]. 
• Database: MongoDB sharded cluster with 5 nodes. 
• Search Index: FAISS with IVF-PQ compression for ANN search. 
• Evaluation Framework: Custom Python scripts using scikit-learn, PyTorch, 

and matplotlib for analysis. 
This experimental setup provided a rigorous testbed to simulate real-world us-

age scenarios while precisely measuring privacy-performance tradeoffs. 

7. Results and Visualizations 

In this section, we present and analyze key results from our simulation environ-
ment. Each subsection corresponds to one of the five core visualizations intro-
duced earlier in the study. 

This plot illustrates the tradeoff between privacy and model performance. As ε 
increases, noise is reduced, improving retrieval accuracy. However, it also in-
creases the risk of privacy leakage. With ε = 0.5, we observe -60% accuracy and 
minimal leakage (MILI < 0.01). At ε = 3.0, accuracy rises to 91%, but leakage in-
dicators increase sharply. This reinforces the need to balance performance and 
confidentiality in sensitive environments (Figure 1). 

We compare pairwise cosine similarity of document embeddings across varying 
ε values. At ε = 0.1, embeddings are highly noisy, leading to low inter-document 
semantic coherence. At ε = 1.5 and beyond, clustering behavior stabilizes, and  
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Figure 1. ε vs. Retrieval accuracy and privacy leakage. 
 

 

Figure 2. Embedding quality heatmap. 
 

semantically similar documents appear adjacent in the heatmap. This visualiza-

https://doi.org/10.4236/wjet.2025.132021


T. Biswas 
 

 

DOI: 10.4236/wjet.2025.132021 338 World Journal of Engineering and Technology 
 

tion (Figure 2) confirms that DP-augmented embeddings maintain useful struc-
ture at moderate privacy budgets. 

This bar chart (Figure 3) tracks cumulative privacy budget spent by session type 
(Read, Write, Query) over time. The system allocates more budget to read opera-
tions and LLM queries, indicating they are the dominant privacy consumers. 
Write operations consume relatively less budget due to batching and deferred pro-
cessing. We observe an average ε/session of 1.2 across all activities, with bursty 
behavior during exploratory user interactions. 

Using a Sankey diagram, we visualize how different user roles (Analyst, Re-
searcher, Admin) interact with query types and data categories (Figure 4). Ana-
lysts primarily perform read and summarization queries on experimental logs. 
Researchers initiate both read and write operations on protocol metadata. Admins 
focus on auditing logs and access patterns. This role-based tracing supports role-
specific policy enforcement and anomaly detection. 

Heatmaps of DP-SHAP outputs (Figure 5) reveal how input tokens and docu-
ment sections influence the LLM’s response. Attribution is concentrated on result 
summaries and experiment titles, indicating that these sections heavily guide the 
output. Notably, even under DP constraints, attribution patterns remain intelligi-
ble and informative. Visual inspection by domain experts validated the plausibility 
of highlighted tokens in 89% of test cases. 

These visualizations collectively demonstrate that our framework provides 
strong utility for semantic document access and analysis while maintaining rigor-
ous privacy guarantees. 
 

 

Figure 3. DP budget utilization across user sessions. 
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Figure 4. Role-based query tracing. 
 

 

Figure 5. DP-SHAP attention attribution maps. 
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8. Discussion 

The results of our experiments indicate that integrating LLMs with NoSQL scien-
tific repositories under differential privacy constraints is not only feasible but also 
practical for many real-world R&D use cases. Our system demonstrates that pri-
vacy-preserving semantic retrieval and interpretation can achieve high accuracy, 
particularly when the privacy budget is moderately relaxed (ε between 1.0 and 
2.0). 

Importantly, the tradeoff between retrieval accuracy and privacy leakage is non-
linear. This means that small increases in ε yield significant improvements in util-
ity before reaching diminishing returns. Practitioners can leverage this finding to 
determine optimal ε thresholds depending on institutional risk tolerance and reg-
ulatory requirements. 

The embedding quality heatmap and DP-SHAP visualizations further support 
the interpretability of the system. These tools help users understand why certain 
documents were retrieved and how their content influenced the LLM response, 
even without exposing sensitive data. This interpretability is vital in fields like bi-
omedical research, where explainability is often a regulatory necessity. 

The ability to trace query activities by user role also provides valuable insights 
into usage behavior and system governance. IT administrators can enforce least-
privilege principles and proactively detect anomalies. Moreover, DP budget utili-
zation logs can inform workload balancing and user behavior optimization. 

Overall, the architecture promotes modularity, transparency, and accountabil-
ity. It offers a new paradigm for privacy-conscious AI applications in scientific 
data environments, bridging the gap between high-performance language models 
and secure, ethical data handling. 

Generalizability Across Scientific Domains 
While our primary evaluation focuses on biomedical repositories, the underlying 

architecture of the proposed framework is designed to be domain-agnostic. The 
three foundational modules—(1) LLM-based semantic retrieval, (2) privacy-pre-
serving embedding generation, and (3) NoSQL-based metadata storage—operate 
independently of any domain-specific schema or controlled vocabulary. 

To validate this generality, we conducted an experiment using climate science 
metadata from the NOAA Global Historical Climatology Network (GHCN) 
[24]. Minimal changes were needed in the schema adaptation layer, accomplished 
using a lightweight JSON-LD mapping template [4]. The core architecture, in-
cluding the differential privacy layer and LLM query routing engine, remained 
unchanged. Retrieval accuracy and latency were comparable to those observed in 
our biomedical tests [25], confirming that the system can be extended to other 
scientific domains with negligible reconfiguration. 

Additionally, the system supports interoperability with diverse metadata stand-
ards through schema abstraction mechanisms such as BioSchemas [26], DCAT 
[27], and custom JSON-LD converters [4]. This ensures researchers in environ-
mental sciences, materials engineering, and chemistry can adopt the framework 
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without altering their data source architecture. 
Privacy-Utility Trade-Off Analysis 
While incorporating differential privacy (DP) ensures strong guarantees for 

user and institutional confidentiality, it introduces a well-known trade-off in 
model utility. To assess this, we conducted a series of evaluations using varying 
privacy budgets (ε). Our observations indicate that utility degradation is steep at 
very low ε values (e.g., ε < 1.0), but stabilizes as ε increases. Notably, a budget in 
the range of ε = 1.5 to 2.5 consistently achieved a favorable balance between pri-
vacy preservation and semantic retrieval accuracy. This finding aligns with exist-
ing literature on differentially private embeddings and offers a practical guideline 
for system implementers seeking to preserve both performance and compliance. 
While higher ε values reduce privacy, the marginal utility gain beyond ε = 2.5 was 
minimal in our experiments, suggesting that moderately private settings are often 
sufficient for scientific search scenarios. 

9. Ethical Considerations 

Integrating AI systems into sensitive scientific workflows necessitates adherence 
to strict ethical standards. Our framework is designed with several principles in 
mind: 

Privacy by Design 
Differential privacy mechanisms are embedded at every stage of the data pro-

cessing pipeline using mechanisms like DP-SGD [2] and DP-SHAP [16], not just 
as a post-processing step. This reduces the risk of accidental leakage or misuse. 

Informed Consent and Data Minimization 
While our test dataset is synthetic, a production system should only ingest data 

from sources where informed consent for secondary use has been obtained. More-
over, our preprocessing step ensures minimal retention of personally identifiable 
information [28]. 

Fairness and Non-Discrimination 
By supporting DP-SHAP interpretability, our system helps mitigate biases in 

LLM outputs and promotes transparency in decision-making. It ensures users can 
contest or question LLM-generated results. 

Auditability and Governance 
Our role-based query tracing and session-level DP budget logging provide a 

strong foundation for internal audits and regulatory compliance. These logs can be 
shared with oversight bodies to demonstrate due diligence and ethical usage [21]. 

Avoidance of Dual Use 
While LLMs can be powerful scientific tools, they can also be misused for gen-

erating false results or exploiting sensitive data. Our framework includes rate-lim-
iting, anomaly detection, and external review hooks to prevent dual-use misuse 
[21] [29]. 

In sum, our framework supports ethical AI deployment in privacy-sensitive do-
mains by integrating technical safeguards with governance mechanisms. 
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10. Limitations and Future Work 

Despite promising results, our framework has several limitations that warrant at-
tention and motivate future research. First, our evaluation was based on a simu-
lated dataset modeled after real-world experimental documents. Although this ap-
proach allowed us to control variables and test performance at scale, it lacks the 
nuance and diversity of actual lab-generated data. Collaborations with research 
institutions will be essential to validate our approach in production settings. 

Second, the embedding models used in our system, while differentially private, 
may suffer from reduced representational richness compared to their non-private 
counterparts. This gap could impact semantic search performance, particularly 
for rare or domain-specific terms. Exploring domain-adaptive pretraining and hy-
brid models that blend DP and secure enclave strategies (e.g., Intel SGX) may pro-
vide a way forward. 

Third, although our privacy leakage metrics and DP-SHAP interpretations are 
strong indicators of robustness, they remain indirect proxies for real-world risk. 
Further studies using formal verification methods, red-teaming, and adversarial 
testing are needed to quantify privacy and security under worst-case conditions. 

In terms of system integration, we currently assume a clean separation between 
data ingestion and inference layers. However, many real-world deployments in-
volve dynamic data updates, user-driven queries, and asynchronous workloads. 
Supporting continuous learning, streaming ingestion, and incremental embed-
ding updates—while preserving privacy—is a complex but critical direction for 
future work. 

We also aim to enhance the user experience by incorporating interactive dash-
boards for attribution visualization, customizable privacy budgets per role, and 
multilingual support in the LLM interface. Another avenue involves expanding 
beyond text to include structured tables, figures, and time-series sensor data 
within the same framework. 

While the proposed framework demonstrates technical feasibility through ar-
chitectural modularity and synthetic benchmarks, its evaluation is limited to sim-
ulated environments and publicly available scientific datasets. A significant limi-
tation is the absence of active institutional partnerships or real-world deployment 
trials. This restricts the ability to evaluate the system’s performance under live 
operational conditions, user behavior variability, and system integration chal-
lenges within diverse research settings. To address this gap, future work will focus 
on piloting the framework in collaboration with one or more academic or bio-
medical research institutions. These pilot programs will help validate deployment 
assumptions, test interoperability with institutional IT ecosystems, and refine us-
ability for domain scientists. Additionally, insights from these engagements will 
inform enhancements to data privacy controls, audit mechanisms, and customi-
zable schema adapters for broader scientific use cases. 

Building upon the frameworks established in prior studies [30], future work 
could explore more robust integration techniques. 
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Finally, building a standardized benchmark for privacy-preserving LLM re-
trieval in scientific domains would accelerate progress in this area. We advocate 
for a shared, privacy-compliant dataset and challenge track under a collaborative 
open science initiative. 

11. Conclusions 

This paper introduced a comprehensive framework for integrating Large Lan-
guage Models with scientific NoSQL repositories under rigorous differential pri-
vacy constraints. Our approach addresses the dual challenges of semantic data ac-
cessibility and privacy protection, combining anonymization, DP embeddings, se-
mantic retrieval, and interpretable attribution in a modular, scalable system. 

We demonstrated that our architecture supports high-utility document re-
trieval and explainable LLM responses across diverse scientific domains. Visual 
and quantitative results confirmed that privacy and performance can coexist, es-
pecially within an optimal range of the ε privacy budget. 

The system’s robustness, role-based access modeling, and support for DP-
SHAP interpretation position it as a viable solution for privacy-conscious R&D 
environments. Its extensibility enables future enhancements for real-time inges-
tion, multimodal content, and multilingual interactions. 

By advancing the state of privacy-preserving AI in experimental knowledge sys-
tems, our work contributes to safer, more ethical, and explainable deployment of 
LLMs in science-driven enterprises [22] [27]. 
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