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Abstract 
The research addresses the prevalence of gassy soil, containing methane 
(CH4), within the soil particles of southeast coastal areas of China, such as the 
Quaternary deposit in the Hangzhou Bay area. This soil exhibits spatial varia-
bility in the distribution of gas pressure, posing a potential threat of engineer-
ing disasters, including fire outbreaks and blasting, during the construction of 
underground projects. Consequently, it is crucial to assess the risk state of gas 
pressure, involving accurate identification and reduction of associated uncer-
tainty, through site investigation. This is indispensable prior to the com-
mencement of underground projects. However, during the site investigation 
stage, the random field parameters that quantify the spatial variability distri-
bution of gas pressure (e.g., mean value, standard deviations, and scale of fluc-
tuation) are unknown, introducing corresponding statistical uncertainty. 
Therefore, the most significant consideration for planning site investigation 
from an engineering perspective involves determining the risk state of gas 
pressure while considering the statistical uncertainty of these random field pa-
rameters. This consideration heavily relies on the engineering experience 
gained from current site investigation practices. To address this challenge, the 
study introduces a probabilistic site investigation optimization method de-
signed for planning the site investigation scheme for gassy soils, including de-
termining the number and locations of boreholes. The method is based on the 
expected state-identification probability, representing the probability of iden-
tifying the risk state of gas pressure, and takes into account the statistical un-
certainty of random field parameters. The proposed method aims to deter-
mine an optimal investigation scheme before conducting the site investiga-
tion, leveraging prior knowledge. This optimal scheme is identified using Subset 
Simulation Optimization (SSO) in the space of candidate site investigations, 
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maximizing the value of the expected state-identification probability at the 
minimal value point. Finally, the paper illustrates the proposed approach 
through a case study.  
 

Keywords 
Gassy Soils, Site Investigation, Subset Simulation Optimization (SSO),  
Uncertainty 

 

1. Introduction 

The prevalence of gassy soils is widely distributed in the eastern coastal areas of 
China, particularly in the Hangzhou Bay area, Zhejiang province, as shown in 
Figure 1. Gassy soils, originating from the anaerobic decomposition of organic 
materials [1], are predominantly methane-dominated, with CH4 constituting over 
90% of the samples in the Hangzhou Bay area in Table 1 and Table 2. The spatial 
variability in the distribution of gas pressure in these soils poses potential risks, 
such as fire outbreaks and blasting, during underground construction projects [2]. 
To mitigate these risks during underground construction, a site investigation 
scheme is imperative. The scheme, specifying the number and locations of bore-
holes, strategically places them to measure gas pressure values using a modified 
Cone Penetration Test (CPT) device, demonstrated in Figure 2. 
 

 
Figure 1. The enrichment area of gassy soils in the eastern coastal area of China. 

 
Table 1. Gas composition of tunnel across the Qiantang River [3]. 

Borehole number Number of gas sample CH4/% N2/% CO2/% CO/10−6 

C-02 1 91.6 5.7 2.69 110 

C-04 2 95.2 2.2 2.58 85 

Additional 1 3 94.6 1.9 3.44 96 

Enrichment area 
of Gassy soils
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Figure 2. Site investigation of gassy soil with modified CPT device [3]. 

 
Table 2. Gas composition in wells at the south of the Qiantang River [3]. 

Borehole number Number of gas sample CH4/% N2/% CO2/% CO/10−6 

C26 1 90.4 7.67 1.92 230 

C31 2 92.8 5.31 1.88 125 

C35 3 91.5 6.96 1.53 180 

 
However, due to the substantial cost and human commitments associated with 

site investigations for gassy soils, the data obtained are limited in engineering 
practice. Predicting the state of gas pressure (safe or dangerous) at unknown 
points based on the acquired data becomes essential. However, such predictions 
relying on limited data, introduce uncertainty, particularly considering that the 
random field parameters (e.g., mean value, standard deviations, and scale of fluc-
tuation) characterizing the spatial variability distribution of gas pressure remain 
unknown during the site investigation stage and result in corresponding statistical 
uncertainty. In light of these challenges, determining the optimal site investigation 
scheme, including the optimal number of boreholes and their corresponding lo-
cations, becomes a pertinent and open question. This optimization is crucial for 
effectively identifying the risk state and reducing associated uncertainty at un-
known locations before the construction of underground projects. 

As previously discussed, it is crucial to carefully determine the number and lo-
cations of boreholes to effectively identify the risk state and reduce corresponding 
uncertainty at unknown locations. This task is challenging, particularly consider-
ing the statistical uncertainty associated with random field parameters that quan-
tify the distribution of gas pressure. While some studies have explored gassy soils 
in the Hangzhou Bay area, these predominantly focused on aspects such as the 
formation and composition of biogenic gas [2], features and distributions of gas 
pools [3], and exploration methods [4] [5]. Some researchers have discussed plan-
ning investigation schemes for gassy soil, primarily focusing on decreasing uncer-
tainty in gas pressure distribution at unknown points, often overlooking the 
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identification of the risk state at these locations and disregarding the statistical 
uncertainty of random field parameters [6]-[12]. 

This study introduces a probabilistic site investigation optimization method to 
determine the optimal scheme for investigating gassy soils. The method utilizes 
the expected state-identification probability to recognize the risk state of gas pres-
sure and quantify corresponding uncertainty at unknown points. To decrease the 
uncertainty of the identified risk state, the site investigation scheme seeks the 
larger value of the expected state-identification probability at each unknown 
point. The scheme with the maximal value of expected state-identification proba-
bility at the minimal value location (i.e., the expected state-identification proba-
bility) is then identified using SSO in the space of candidate site investigation 
schemes generated through discretization [13]-[15]. The candidate scheme satis-
fying the condition that its maximal expected state-identification probability at 
the minimal value location exceeds a given threshold probability is determined as 
the optimal scheme. 

The research is structured with an introduction, followed by a demonstration 
of the proposed framework. Subsequently, the generation of the space of candi-
date site investigation schemes, quantification of expected state-identification 
probability, and optimization of the optimal scenario using SSO are covered in 
detail. Lastly, the implementation procedure of the proposed approach is pre-
sented and illustrated through a case study in the Hangzhou Bay area. 

2. Framework for Probabilistic Site Investigation  
Optimization for Gassy Soils 

Accurately identifying the risk state (safe or dangerous) of gas pressure and quan-
tifying the corresponding uncertainty before construction is crucial to prevent en-
gineering disasters caused by gassy soils. Typically, site investigations of gassy soils 
are conducted to estimate the risk state of gas pressure at unknown locations, re-
lying on a limited amount of investigation data. To address this, an effective in-
vestigation scheme is significant that not only accurately identifies the risk state 
at unknown locations but also reduces the uncertainty associated with the identi-
fied gas pressure risk state. This study introduces a probabilistic site investigation 
approach for gassy soils to fulfill this purpose. It is important to note that this 
study focuses on the one-dimensional spatial variability of gas pressure in the hor-
izontal direction, ignoring consideration of vertical spatial variability, which may 
be explored in future studies. 

The proposed framework, illustrated in Figure 3, comprises three key steps: 
generation of the space of candidate site investigation schemes, quantification of 
expected state-identification probability, and optimization of borehole locations 
using SSO. The approach commences with the generation of all possible candidate 
site investigation schemes, achieved through a discretization procedure based on 
the site investigation range of gassy soils and a given discretization interval. It is 
crucial to emphasize that the determination of the discretization interval should 
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align with the specific requirements and accuracy standards of the site investiga-
tion. After obtaining the space of candidate site investigation schemes, the ex-
pected state-identification probability is employed to identify the risk state and 
quantify corresponding uncertainty at unknown locations. This is calculated us-
ing simulation data, given that real gas pressure data cannot be obtained at the 
scheme design stage. To reduce the uncertainty of the risk state at each unknown 
point, the candidate site investigation scheme must ensure that the expected state-
identification probability at the minimum value point has the maximum value. 
This optimization problem can be addressed using SSO. The candidate scheme 
that guarantees the value of the expected state-identification probability at the 
minimum value point surpasses a given probability threshold is determined as the 
optimal scheme. 
 

 
Figure 3. The framework of proposed probabilistic site investigation approach for gassy 
soils. 
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3. Space of Candidate Site Investigation Schemes 

The determination of candidate site investigation schemes, relying on the number 
and placement of boreholes, is achieved through a discretization process. Con-
sider the length, L, of the site investigation field. The points of interest, denoted 
as Lm (where m = 1, 2, 3, …, N), adhere to Lm = (m − 1) with a given interval ∆L. 
Here, N is calculated as INT [L/∆L], where INT [·] denotes the rounding function 
returning the integer part of L/∆L. All values of Lm (m = 1, 2, 3, …, N) can be 
represented as a vector LN = [L1, L2, …, LN], as shown in Figure 4, encompassing 
a total of N possible values of Lm. 
 

 
Figure 4. Site investigation scheme Sn = [x1, x2, …, xk, …, xn]. 
 

Assuming that investigation schemes are denoted by a vector Sn = [x1, x2, …, 
xk, …, xn], representing borehole locations horizontally. xk signifies the location of 
the k-th borehole, and n denotes the number of boreholes. The potential value of 
xk should correspond to an element (i.e., a feasible discretization point Lm (m = 1, 
2, 3, …, N)) in LN. Based on this, each possible value of x1-xn constitutes the can-
didate scheme Sn, and it can be deduced that there is a total of n

NC  candidate site 
investigation schemes. 

In practical engineering scenarios, based on the data of scheme Sn, engineers 
need to predict the risk state, denoted as the expected state-identification proba-
bility, at unknown locations. These locations are represented by the vector LN-n = 
[y1, y2, …, yj, …, yN-n], where boreholes are not placed to measure gas pressure. 
The value of yj should belong to the set Ωo, representing feasible values of Lm, while 
not being identical to any values among x1, x2, …, xk, …, xn. The number of un-
known points yk, representing the difference between the total number of points 
of interest (i.e., Lm (m = 1, 2, 3, …, N)) and the number of points (xi (i = 1, 2, …, 
n)) corresponding to scheme Sn, is determined as N-n. 
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In the context of engineering practice, the primary focus is determining the risk 
state and associated uncertainty of the unknown point, yj. Identification of the risk 
state at an unknown location and the effective reduction of uncertainty related to 
the identified gas pressure risk state are pivotal considerations in the site investi-
gations from an engineering perspective. These objectives can be accomplished by 
maximizing the expected state-identification probability. The specifics regarding 
the quantification of the expected state-identification probability will be covered 
in the subsequent Section 4.  

4. Definition of Expected State-Identification Probability 
4.1. Simulated Data with Prior Knowledge of Gas Pressure 

To assess the expected probability, ( )( )a jE p y nS , at the point yj, simulated data 
is employed. This data is generated based on prior knowledge of gas pressure, 
mean values μ, standard deviations σ, and the scale of fluctuation λ. Given that 
real gas pressure data (i.e., Zbr) is unavailable at the scheme design stage, simulated 
data becomes crucial. For instance, when considering mean values μ, standard de-
viations σ, and the scale of fluctuation λ varying within their respective typical 
ranges [μmin, μmax], [σmin, σmax], and [λmin, λmax], these parameters can be treated as 
uniform random variables defined by their typical ranges. Prior knowledge of ran-
dom field parameters can be derived from historical data available in global data-
bases as well as data specific to the site under consideration. In cases where no 
prevailing knowledge exists, the potential ranges of random field parameters can 
be determined based on their typical values reported in the literature. This ap-
proach provides a relatively uninformative prior knowledge, allowing for the in-
corporation of parameter uncertainty in the analysis. Random samples of μ, σ, and 
λ can be generated, denoted as μs,i, σs,i, and λs,i (where i = 1, 2, 3, …, Ne), represent-
ing Ne sets of random samples. For each set of μs,i, σs,i, and λs,i, the simulated data 
at discretization point Lm (where m = 1, 2, 3, …, N) can be expressed as Zs,i(LN) = 
[Zs,i(L1), …, Zs,i(Lm),…, Zs,i(LN)](i = 1, 2, 3, …, Ne). In this study, Zs,i(LN) is simu-
lated using Karhunen-Loeve (K-L) expansion [16] [17], and the formulation is as 
follows: 

 ( ) ( ) ( ), , ,
1

s i m s i s i j j m
j

Z L v f Lµ σ ζ θ
∞

=

= +∑  (5) 

where Zs,i(Lm)(i = 1, 2, 3, …, Ne) is the gas pressure data simulated using the sample 
μs,i, σs,i and λs,i; Lm is the discretization points with the given the length, L, of site 
investigation field concerned and corresponding interval ΔL. ζ(θ) is independent 
standard normal random variable; vj and fj(x) are the eigenvalues and eigenfunc-
tions of the covariance function, which is taken as a squared exponential correla-
tion function in this study:  

 ( ) ( )2exp s,iρ τ τ λπ = −
 

 (6) 

where τ is the separate distance between two locations in the horizontal direction; 
ρ(τ) is the autocorrelation coefficient between the gas pressures at the two 
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locations. For the sake of conciseness, details of the random field simulation based 
on K-L expansion are not provided here. Interested readers may refer to related 
reference [16] [17].  

4.2. Prediction of the Gas Pressure Values with Gaussian Process 

The simulated gas pressures at borehole locations (i.e., x1, x2, …, xk, …, xn) of 
scheme Sn are denoted as vector Zbr,i(Sn) = [Zbr,i(x1), …, Zbr,i(xk), …, Zbr,i(xn)]. Em-
ploying Zbr,i(Sn), Gaussian Process (GP) is applied to predict the gas pressure val-
ues at the unknown location [y1, y2, …, yj, …, yN-n], denoted as Zc,i(LN-n) = 
[Zc,i(y1), …, Zc,i(yj), …, Zc,i(yN-n)]. Zc,i(LN-n) comprises random variables with a 
joint Gaussian distribution, expressed as  

( ) ( ) ( )( ) ( ) ( )( )( ), , ~ ,cov ,N µc,i N-n N-n n br,i n c,i N-n c,i N-n c,i N-nZ L L S Z S Z L Z L Z L  
[18], ( )( ) 1 2

, , ,
N ny y yµ µ µ µ
−

 =  c,i N-nZ L  and  

( ) ( )( )
11 1 1 2

2 1 2 2 2

1 2

, , ,

, , ,
cov ,

, , ,

N n

N n

N n N n N n N n

y yy y y y

y y y y y y

y y y y y y

σσ σ

σ σ σ

σ σ σ

−

−

− − − −



= 

 







c,i N-n c,i N-nZ L Z L  respectively. 
jyµ   

(j = 1, 2, 3, …, N-n) is the expectation of the gas pressure value Zc,i(yj) at the loca-
tion yj. j ky yσ  (j = 1, 2, 3, .., N-n; k = 1, 2, 3, …, N-n) is the covariance between 
Zc,i(yj) and Zc,i(yk). 

4.3. Calculation of Expected State-Identification Probability with  
Simulated Data 

Given that the multi-dimensional variable ( )c,i N-nZ L  represents a joint Gauss-
ian distribution with an expectation ( )( )m c,i N-nZ L  and covariance  

( ) ( )( )cov ,c,i N-n c,i N-nZ L Z L  [18], it follows that the marginal distribution Zc,i(yj) 
(j = 1, 2, 3,…, N-n) is also a Gaussian distribution. The probability of Es and Ed 
can be achieved using Equations (7) and (8), respectively. 

 ( ) ( )( ),
j

j j

yi
s j c i j

y y

R
p y p Z y R

µ

σ

 −
 = < = Φ
 
 

 (7) 

 ( ) ( )( ) ( ), 1i i
d j c i j s jp y p Z y R p y= ≥ −  (8) 

where ( )i
s jp y  and ( )i

d jp y  are the probability of Es and Ed respectively, given 
data Zbr,i(Sn). Zc,i(yj) is the gas pressure at yj that is a Gaussian random variable 
with expectation 

jyµ  and standard deviation 
j jy yσ . It is worth pointing out that 

j jy yσ  is the diagonal elements of ( ) ( )( )cov ,c,i N-n c,i N-nZ L Z L .  
To assess the uncertainty in gas pressure distribution, Monte Carlo simulation 

is employed for the repetitive prediction of gas pressure using GP based on the Ne 
simulated data Zbr,i(Sn) = [Zbr,i(x1), …, Zbr,i(xk), …, Zbr,i(xn)] (i = 1, 2, 3, …, Ne). 
This results in Ne sets of expected values of predicted gas pressure, denoted as 

( )c,i N-nZ L  (i = 1, 2, 3, …, Ne). With each set of simulated data Zbr,i(Sn) (i = 1, 
2, …, Ne), the probabilities of Es and Ed are computed as pi

s(yj) and pi
d(yj) (i = 1, 
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2, …, Ne) using Equations (7) and (8). Subsequently, the mean values of pi
s(yj) and 

pi
d(yj) corresponding to the Ne sets of simulated data Zbr,i (i = 1, 2, …, Ne) are 

determined with Equations (9) and (10): 

 ( ) ( )
1

1 eN
i

se j s j
ie

p y p y
N =

= ∑  (9) 

 ( ) ( )1de j se jp y p y= −  (10) 

where pse(yj) and pde(yj) are the mean values of pi
s(yj) and pi

d(yj) corresponding to 
the Ne sets of simulated data Zbr,i (i = 1, 2, …, Ne). Ne is the total number of simu-
lated data Zbr,i(Sn) (i = 1, 2, …, Ne).  

Substitute Equations (9)-(10) into Equation (4), ( )( )minaE p y nS  can be ex-
pressed as Equation (11). 

 

( )( ) ( ) ( )

( ) ( )

( ) ( )

min 1 1
1

2 2
1

1

1min max ,1 ,

1max ,1 , ,

1max ,1

e

e

e

N
i

a s se
ie

N
i
s se

ie

N
i
s N n se N n

ie

E p y p y p y
N

p y p y
N

p y p y
N

=

=

− −
=

  = −  
  

 
− 

 
 − 
 

∑

∑

∑



nS

 (11) 

The next section makes uses of SSO to identify the optimal scheme ∗
nS  among 

the candidate site investigation scheme space. 

5. Definition of Expected State-Identification Probability 

As discussed in the “Space of Candidate Site Investigation Schemes” section, a 
total of n

NC  candidate schemes are generated by randomly selecting n discretiza-
tion points from Ωo. The process of identifying the scheme ∗

nS  with the highest 
value of ( )( )minaE p y nS  at the location ymin can be expressed as the optimiza-
tion problems in Equation (12): 

 
( )( )( )

{ }
min

1 2, , , ,

max

, n

a

kx

y

x

p

x

E

x=  

n
nS

n

S

S
 (12) 

As demonstrated in Equation (12), the optimization of the borehole locations 
is carried out with the expected state-identification probability, ( )( )minaE p y nS , 
at the ymin location as the objective function. Solving the optimization problem 
(Equation (12)) to determine the scheme ∗

nS  and its corresponding  

( )( )minaE p y ∗
nS  can be challenging due to the potentially large number ( n

NC ) of 
candidate schemes. In this study, SSO, a well-established global optimization al-
gorithm, is employed to address Equation (12). Within the SSO framework, the 
optimal scheme, ∗

nS , characterized by the maximum ( )( )minaE p y ∗
nS , is identi-

fied by exploring the design space of candidate schemes in a stochastic manner. 
Theoretically, ∗

nS  can be found among the candidate schemes by solving the fol-
lowing reliability analysis problem in Equation (13) [13]: 
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 ( ) ( )( ) ( )( )( )min mina aP F P E p y E p y ∗= >n nS S  (13) 

where ( )( ) ( )( ){ }min mina aF E p y E p y ∗= >n nS S  is an auxiliary failure event. 
( )P F  represents the probability that event F occurs, which becomes to zero as 

scheme Sn is equal to ∗
nS .  

A number of conditional samples of a series of nested intermediate failure 
events satisfying 1 2 3 sNF F F F F⊃ ⊃ ⊃ ⊃ =  is generated with SSO, with which 
( )P F  is expressed as Equation (14): 

 ( ) ( ) ( ) ( )1 1
2

s

s

N

N m m
m

P F P F P F P F F −
=

= = ∏  (14) 

where ( )( ) ( )( ){ }min minm a m aF E p y E p y= >n nS S , m = 1, 2, 3, …, Ns. ( )1P F  is 
equal to ( )( ) ( )( )( )min 1 mina aP E p y E p y>n nS S ;  

( )( ) ( )( ) ( )( ) ( )( )1 min 2 min min minsa a N a aE p y E p y E p y E p y ∗< < < =n n n nS S S S  
are an increasing sequence of Ns intermediate threshold values, which are deter-
mined adaptively with simulated samples so that the sample estimates of P(F1) and 
P(Fm|Fm−1) are always equivalent to a specific value of conditional probability p0 
(e.g., 0.1). For a given number of boreholes, each set of random samples of feasible 
locations constitutes a random candidate scheme. The Subset Simulation ap-
proach begins with direct Monte Carlo simulation to generate a specified number, 
NL, of random schemes. Subsequently, the expected state-identification probabil-
ity values of these random schemes are calculated and ranked in ascending order 
to identify a number, p0NL, of seed schemes. These seed schemes define the first 
threshold, F1, and another NL - p0NL random schemes satisfying F1 are simulated 
using Markov Chain Monte Carlo simulation (MCMCS). Similar procedures are 
then iterated to progressively explore m = 2, 3, ..., Ns levels, level by level. The 
implementation of SSO involved with related parameters (e.g., conditional prob-
ability p0 and Ns) setting, details of which can refer to related reference [15].  

For various values of n, representing the number of boreholes in scheme Sn, 
employ the SSO approach mentioned earlier to identify the corresponding ∗

nS . If 
the value of ( )( )minaE p y ∗

nS  at the ymin point associated with ∗
nS  exceeds a pre-

defined threshold probability value, denoted as p*, then ∗
nS  is designated as the 

optimal scheme. The specific procedure for determining ∗
nS  using the proposed 

method will be covered in the subsequent section. 

6. Illustrative Example 
6.1. Candidate Investigation Schemes 

To illustrate the application of the proposed approach in this study, an example 
of site investigation for gassy soils from the literature is adopted [6], focusing 
solely on the horizontal spatial variability of gas pressure. The cross-sectional 
length, L, in this example is 1023 m, discretized at 5 m intervals, resulting in a total 
of 205 discretization points, Lm (m = 1, 2, 3, …, 205), where Lm = 5(m − 1) (m = 
1, 2, 3, …, 205). For varying investigation schemes, the number, n, of boreholes 
ranges from 10 to 30 at intervals of 5, i.e., 10, 15, 20, 25, 30. 
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Consider the case of n = 25, and the corresponding scheme S25 = [x1, x2, …, 
xk, …, x25]. The space of candidate schemes encompasses 25

205C  instances of S25, 
randomly selected from the 205 discretization points (i.e., Lm (m = 1, 2, 3, …, 
205)). The set of unknown points is denoted as L180 = [y1, y2, …, yj, …, y180]. Each 
yj (j = 1, 2, 3, …, 180) must belong to the feasible value set of Lm, without being 
equal to any values among x1, x2, …, xk, …, x25. 

The scheme ∗
25S , maximizing the value of ( )( )min 25aE p y S  at the ymin point 

can be determined from the space of candidate schemes. This determination relies 
on simulated data generated with prior knowledge of gas pressure. The given prior 
knowledge in the literature assumes μ = 0.278 MPa, σ = 0.097 MPa, and λ = 50 m. 
However, since precise knowledge during the site investigation stage is unavaila-
ble, the mean values μ, standard deviations σ, and scale of fluctuation λ are con-
sidered as uniform random variables within their typical ranges specifically, μ ∈ 
(0 kPa, 300 kPa], σ ∈ (0 kPa, 125 kPa], and λ ∈ (0 m, 100 m] in this study, covering 
the prior knowledge assumption (i.e., μ = 278 kPa, σ = 97 kPa, and λ = 50 m) used 
in the literature [6]. 

The impact of gassy soils is contingent on the gas pressure’s specific value. Gen-
erally, gassy soils are deemed hazardous if the gas pressure is greater than or equal 
to 100 kPa; otherwise, the risk associated with gassy soils is considered negligible. 
Consequently, R is set at 100 kPa in this study, defining Es (Safe event) and Ed 
(Dangerous event) as the event with gas pressure less than 100 kPa and its com-
plementary event, as shown in Table 3. 
 
Table 3. Definition of ignorable and risky events. 

Events Gas pressure (kPa) Notes 
Es (0, 100) Safe event 
Ed  [100, +∞) Dangerous event 

 
As outlined in the “Definition of expected state-identification probability” sec-

tion, the proposed approach uses the value of ( )( )a jE p y nS  to ascertain the 
presence of gas pressure risk at certain locations. In general, if the value of 

( )( )a jE p y nS  is substantial, indicating the likely risk, the uncertainty associated 
with the presence of risk can be disregarded. Employing verbal probability de-
scriptors in Table 4, the threshold value (i.e., p*) for determining the presence of 
risk is set at 0.9 (very likely) in this example. Since p* exceeds 0.9, Es or Ed is highly 
likely to occur based on whether ( )( ) ( )a j se jE p y p y=nS  or ( )de jp y , respec-
tively. The optimal scheme chosen by the proposed approach must ensure that the 

( )( )a jE p y nS  values at each unknown location are all greater than 0.9, regard-
less of whether ( )( ) ( )a j se jE p y p y=nS  or ( )de jp y . 
 
Table 4. Verbal descriptors and their probability equivalents [19]. 

Verbal 
descriptor 

Virtually 
impossible 

Very 
unlikely 

Equally 
likely 

Very 
likely 

Virtually 
certain 

Probability equivalent 0.01 0.10 0.50 0.90 0.99 
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6.2. Expected State-Identification Probability Given Different  
Investigation Schemes 

For instance, consider S25 = [x1, x2, …, xk, …, x25] with the borehole number of n 
= 25. To determine the optimal scheme, ∗

25S , from the array of candidate schemes 
(i.e., 25

205C ), the value of ( )( )minaE p y 25S  at the ymin point must be calculated. 
Initially, Ne (Ne = 500), of random field parameters μ, σ, and λ were generated 
from prior knowledge (i.e., uniform distribution within typical ranges for μ, σ, 
and λ). Using each set of μ, σ, and λ samples, Zs,i is simulated using Equation (5) 
and (6), where the gas pressures at borehole locations in S25 constitute a set of 
simulated data denoted as Zbr,i(S25). For each Zbr,i(S25), the mean ( )( )180µ c,iZ L  
and covariance ( ) ( )( )180 180cov ,c,i c,iZ L Z L  of the predicted gas pressure at the 
unknown points L180 are obtained with GP. pse(yj) and pde(yj)) corresponding to 
the Ne sets of simulated data Zbr,i(S25) are then used to calculate ( )( )25a jE p y S  
at each L180 location. 

As discussed in Section 5 titled “Optimization of borehole location with SSO”, 
SSO is employed to locate the optimal scheme ∗

25S  that maximizes the value of 
( )( )minaE p y 25S  at the ymin point in the space of candidate schemes, where p0 

and Ns are set as 0.1 and 30, respectively, and 1000 samples are simulated in each 
level. Figure 5 illustrates the intermediate threshold value of ( )( )minaE p y 25S  
at different simulation levels as m increases. With an increase in the number of 
simulation levels (i.e., m), ( )( )minaE p y 25S  increases and reaches a value of 
0.910 at m = 4. In this example, the SSO is executed until the 20th level to ensure 
the convergence of ( )( )minaE p y 25S , after which the ( )( )minaE p y 25S  at m = 
4 is considered as the estimate of the maximal ( )( )minaE p y 25S  values. 
 

 
Figure 5. Evolution of the intermediate threshold value of the state-identification proba-
bility during SSO of S25. 
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For varying borehole number (i.e., n), Figure 6 displays the optimized maximal 
( )( )minaE p y nS  values using SSO for n = 10, 15, 20, 25, and 30, respectively. The 

results indicate that as the value of n increases to 20 (i.e., S20), the maximal 
( )( )min 20aE p y S  values surpass 0.9. This suggests that all ( )( )20a jE p y S  val-

ues at each location L185 (i.e., y1, y2,…, and y185) are greater than 0.9. For schemes 
with a larger number of boreholes (e.g., S25 and S30), the proposed approach iden-
tifies optimal schemes, such as ∗

25S  and ∗
30S , where all ( )( )a jE p y nS  values 

exceed 0.9, as demonstrated in Figure 7. However, it’s important to note that the 
optimal schemes (i.e., ∗

25S , ∗
30S ) corresponding to S25 and S30, as optimized by 

the proposed method, require more investigation efforts due to the larger number 
of boreholes compared to S20. Therefore, considering the investigation effort, n = 
20 is determined to be the optimal number of boreholes, and the corresponding 
scheme ∗

20S  is selected as the optimal scheme.  
 

 
Figure 6. Evolution of the intermediate threshold value of the expected state-identification 
probability during SSO for different numbers of boreholes. 
 

 
Figure 7. Expected state-identification of the optimal experimental schemes with different 
number of boreholes. 
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The specific horizontal coordinates of the optimal scheme ∗
20S  are illustrated 

in Figure 8 with blue-filled circles. The expected state identification for all un-
known locations (i.e., LN-n) along the horizontal direction is obtained and depicted 
in Figure 8. It’s noteworthy that some of L185 correspond to  

( )( ) ( )20a ej d jE p yp y =S  (indicated by green triangles representing safe gas 
pressures), while others correspond to ( )( ) ( )20a ej r jE p yp y =S  (depicted by 
red squares denoting dangerous gas pressures). For locations where pa = pde(yj) 
and pa ≥ 0.9, it is highly likely that the gas pressure is not risky. Conversely, for 
locations where pa = pre(yj) and pa ≥ 0.9, there is a high likely that the gas pressure 
is risky. 
 

 
Figure 8. Expected state-identification probability of location LN-n along the horizontal di-
rection corresponding to optimal scheme 20

∗S . 

6.3. Comparison with Bayesian Compressive Sampling 

To assess the effectiveness of the optimal scheme determined by the proposed 
method, a comparison with Guan et al.’s approach for planning a site investigation 
scheme is crucial. Guan et al.’s approach utilizes Bayesian compressive sampling 
(BCS) and information entropy to automatically determine sample size and opti-
mal sampling locations for predicting the gas pressure distribution, given specific 
values (i.e., μ = 278 kPa, σ = 97 kPa, and λ = 50 m) of random field parameters. 
As outlined in Section 7.2, titled “Expected state-identification probability given 
different investigation schemes”, the optimal scheme determined by the proposed 
method is ∗

20S , with a corresponding optimal number of boreholes of 20. Utiliz-
ing the mean value and standard deviation of gas pressure predicted with simu-
lated data corresponding to the optimal scheme ∗

20S , the coefficient of variation 
(COV) for each unknown location is obtained, as illustrated in Figure 9. 
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Figure 9. COV of location LN-n along the horizontal direction corresponding to optimal 
scheme 20

∗S . 
 

In Figure 9, it can be seen that the maximum COV among all unknown loca-
tions (i.e., LN-n) determined by the proposed method in this study is 44.37%. This 
value is close to the maximum COV (42.69%) obtained by Guan et al.’s approach 
when the number of boreholes is 20. It is important to note that, in this study, the 
mean values μ, standard deviations σ, and scale of fluctuation λ are defined as 
uniform random variables within their respective typical ranges (i.e., μ ∈ (0 kPa, 
300 kPa], σ ∈ (0 kPa, 125 kPa], and λ ∈ (0 m, 100 m]) rather than specific values 
(i.e., μ = 278 kPa, σ = 97 kPa, and λ = 50 m) as in Guan et al.’s approach. This 
choice introduces larger uncertainty and relatively less informative prior knowledge 
on random field parameters. Therefore, the result that the maximum COV (44.37%) 
determined by the proposed method, given the same number of boreholes (n = 20), 
is relatively larger than that of Guan et al.’s approach is reasonable. This finding 
substantiates the effectiveness of the method proposed in this study. 

6.4. Effect of the Range of Prior Knowledge 

Employing the proposed approach, the determination of the optimal scheme re-
lies on the prior knowledge concerning the random field parameters of gas pres-
sure. In the previous discussion, the prior knowledge has been defined as μ ∈ (0 
kPa, 300 kPa], σ ∈ (0 kPa, 125 kPa], and λ ∈ (0 m, 100 m]), referred to as Priori I 
in this research. To discuss the impact of varying prior knowledge, this subsection 
explores a new set of parameters (i.e., μ ∈ (0 kPa, 150 kPa], σ ∈ (0 kPa, 62.5 kPa], 
and λ ∈ (0 m, 50 m]]), denoted as Priori II, in the determination of the optimal 
scheme using the proposed method. 

Figure 10 demonstrates the ( )( )minaE p y nS  values of optimal schemes with 
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varying numbers (n) of measuring points, determined using Priori I and II. The 
results are depicted by lines with squares and circles, respectively. For a specific 
number of measuring points, the ( )( )minaE p y nS  associated with Priori II sur-
passes that of Priori I. This indicates that, with the same number of measuring 
points, gas pressure exhibits lower uncertainty when considering Priori II com-
pared to Priori I. This discrepancy arises from the relatively higher informative-
ness of Priori II, leading to a more substantial reduction in uncertainty concerning 
gas pressure variability given an equivalent amount of measurement data. While 
the proposed approach was developed based on the squared exponential correla-
tion function, it can be adapted to accommodate other correlation functions. Dur-
ing the optimization phase of the scheme, the choice of correlation function can 
be made based on existing knowledge of gassy soil. If multiple correlation func-
tions are considered, the uncertainty associated with model selection should be 
integrated into the optimization process. Bayesian model selection methods can 
be utilized to quantify this uncertainty. Incorporating the proposed method to 
address model selection uncertainty will be a focus of future research endeavors. 
 

 
Figure 10. Comparison of the expected state-identification probability of optimal schemes 
obtained using different prior knowledge for different numbers of boreholes. 

7. Summary and Conclusions 

The study has devised a probabilistic method for optimizing site investigation, 
aiming to determine the most effective investigation scheme while considering the 
statistical uncertainty associated with random field parameters. This approach al-
lows for the accurate identification of the risk state and simultaneous reduction of 
the corresponding uncertainty. The key findings are summarized as follows: 

1) The space of potential site investigation schemes is established through 
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discretization along the horizontal dimension of gassy soil areas. The expected 
state-identification probability, quantifying the risk and uncertainty of gassy soils, 
is computed using simulated data based on GP. An optimization process is em-
ployed to identify the site investigation scheme with the maximum expected state-
identification probability at the minimum value location. This scheme is consid-
ered optimal if its probability value surpasses a predetermined threshold. 

2) The proposed approach is applied and validated using a site investigation 
example from the literature concerning gassy soils. Results demonstrate that, for 
a given number of measuring points (n), the maximal expected state-identifica-
tion probability at the minimum value location increases progressively with an 
elevated number of simulation levels. This value ultimately converges to a maxi-
mum. The determined optimal scheme corresponds to n = 20 measuring points, 
identified by the SSO, as it exceeds the specified threshold probability value (0.9). 

3) The effectiveness of the proposed method is verified by comparing it with an 
alternative approach for planning site investigation schemes. Using the optimal 
number of measuring points determined by our method (n = 20), the maximum 
COV of gas pressure among all unknown locations is found to be 44.37%, surpas-
sing the 42.69% obtained through the alternative approach. The advantage of our 
proposed site investigation method lies in its consideration of the prior knowledge 
of parameters, defined as uniform random variables within typical ranges, align-
ing more closely with actual engineering conditions. This results in larger uncer-
tainty but provides a more informative and realistic representation of prior 
knowledge on random field parameters. Notably, the method allows for the iden-
tification of gas pressure risk states during the site investigation stage, a facet over-
looked in previous studies. 
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