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Abstract 
We study the acoustomagnetoelectric (AME) effect in two-dimensional gra-
phene with an energy bandgap using the semiclassical Boltzmann transport 
equation within the hypersound regime, 1qk l �  (where qk  represents the 

acoustic wavenumber and l  is the mean free path of the electron). The Boltz-
mann transport equation and other relevant equations were solved analytically 
to obtain an expression for the AME current density, consisting of longitudinal 
and Hall components. Our numerical results indicate that both components of 
the AME current densities display oscillatory behaviour. Furthermore, geomet-
ric resonances and Weiss oscillations were each defined using the relationship 
between the current density and Surface Acoustic Wave (SAW) frequency and 
the inverse of the applied magnetic field, respectively. Our results show that the 
AME current density of bandgap graphene, which can be controlled to suit a 
particular electronic device application, is smaller than that of (gapless) gra-
phene and is therefore, more suited for nanophotonic device applications. 
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1. Introduction 

Ever since the discovery of (gapless) graphene, a two-dimensional (2D) material 
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having an intrinsic strength of 42 N·m−1, electron mobility of more than 42,000 
cm2·V−1·s−1, thermal conductivity of 5000 W·m−1·K−1 and Young’s modulus of 
1000 GPa [1] [2], research into two-dimensional (2D) systems has been on the 
ascendancy. Despite these intriguing properties, graphene has not been fully 
utilized for device applications due to several factors, prominent of which is the 
absence of a bandgap in its electronic structure. As a result, several methods 
have been proposed to overcome the challenge imposed on this novel material 
by its lack of bandgap. Theoretically, it has been suggested that an energy gap 
can be induced into the structure of a bilayer of gapless graphene whenever a 
high electric field is applied vertically across it [3] [4]. Practically, it is feasible to 
introduce an energy gap into a gapless graphene by placing it on a substrate as 
demonstrated in the case of graphene on a boron nitride (BN) substrate [5]. The 
BN substrate is made up of layers of these two crystals that alternate on a regular 
basis in a specific direction and as such modulates the gap produced in the gra-
phene. Therefore, unlike its gapless counterpart, bandgap graphene is more 
suitable for nanophotonic device applications. Some of the key advantages of 
bandgap graphene include its tunability, high carrier mobility, broadband ab-
sorption, and the possibility of its integration with silicon photonics. These 
properties enable applications such as high-speed photodetectors, optical modu-
lators, sensors, flexible electronics, and integrated photonics. Bandgap gra-
phene’s unique combination of characteristics holds promise for advancing 
technologies in communication, sensing, and optical signal processing. 

Surface acoustic waves (SAWs) are modes of elastic energy propagating along 
the surface of an elastic medium (such as a piezoelectric material) and result 
from coupling between longitudinal and shear waves. Surface acoustic waves 
have been used to study acoustic charge transport (ACT) in low-dimensional 
systems such as gapless graphene. An acoustoelectric effect occurs whenever 
there is a strong interaction between the piezoelectric fields associated with a 
SAW propagating on a piezoelectric substrate and a charge carrier system [6]. 
Consequently, acoustoelectric (AE) currents are generated whenever the piezo-
electric potentials trap and transport charge at the speed of sound [7] [8]. Since 
its discovery in the 1950s, the AE effect has been extensively studied in both 
metals and bulk and low-dimensional semiconductors. The AE effect has been 
investigated theoretically in carbon nanotubes (CNTs) and superlattices (SLs) 
[9], as well as experimentally in vanadium oxide films [10]. Other studies have 
examined the valley AE effect in 2D materials such as a transition metal dichal-
cogenide monolayer coupled to a piezoelectric substrate [11].  

The Boltzmann transport equation (BTE) has been used in conjunction with 
SAWs to theoretically study AE current as either a classical coherent force or a 
noncoherent quasi-monochromatic phonon flux [6] [12] [13] [14]. This ap-
proach to electron description is valid for high temperatures. Here, SAWs were 
used to transport and manipulate charge carriers in a crystal. The SAW propa-
gates by dragging conduction electrons, and the electric current has been shown 
to possess the shape of Shubnikov–de Haas oscillations [14] [15]. When the 
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magnetic field is inverted, as in the case of the acoustomagnetoelectric (AME) ef-
fect, the AE current also displays periodic Weiss oscillations due to the commen-
surability between the spatial period in the crystal, the cyclotron orbit size, and 
resonances at the SAW frequency. Other magneto-oscillations such as geometric 
resonances (GRs) have been reported both theoretically and experimentally. 

Theoretical studies have examined quantum Hall effects, conductivity and 
higher current density harmonics in both gapless and bandgap graphene [16] 
[17]. Other studies also focused on AME effect in graphene nanoribbons [6] [18]. 
However, to the best of our knowledge, no study has been reported on the elec-
tronic properties of graphene having an energy gap due to the AME effect. This 
study will therefore, investigate the AME effect in a graphene with an energy 
bandgap by employing the BTE within the hypersound regime, 1qk l �  (where 

qk  represents the acoustic wavenumber and l  is the mean free path of the 
electron), a condition in which the hypersound wavelength is far smaller than 
the electron mean free path.  

2. Theory 

The AME effect in the bandgap graphene is studied using the semiclassical BTE 
by deriving an expression for the AME current. The study focused only on the 
situation where an electron is reflected in two dimensions off of the surface of 
the graphene crystal. The piezoelectric potential mechanism serves as the foun-
dation for the electron-acoustic phonon interaction. The dispersion relation of 
the bandgap graphene is expressed in the form [17]: 

1
2

2 2 1 4cos cos cos
3 3 3

y yx
p

p a p ap a
ε γ

          = ∆ + + +        
           

       (1) 

where 2.7 eVγ ≈  is the electron transition energy between neighbouring sites 
of the graphene lattice, Δ is the bandgap half-width, p is the quasimomentum of  

the electron, 3
2
ba =
�

, 0.142 nmb =  is the distance between neighbouring car-

bon atoms in graphene and �  is the reduced Planck’s constant. 
Consider a SAW which is typically produced by patterned metallic gates 

known as Interdigital Transducers (IDTs) on top of a piezoelectric substrate as 
schematically shown in Figure 1 [16].  

Along the wave’s direction of travel, the SAW produced by the IDT creates an 
electric field. When the rf signal is applied to the IDTs, the spacing of the pitch 
could be used to determine the SAW wavelength so that its product with the rf 
frequency equals the sound velocity in the crystal. Under this condition, the 
piezoelectric field modulates the electron density and charge carrier velocity. As 
a result, the AE current becomes the constant component of the electric current 
density. In the presence of an external magnetic field, the stationary sec-
ond-order adjustment to the distribution function with respect to the SAW’s 
piezoelectric field can be used to calculate the acoustoelectric current. In this 
case, the BTE has the form: 
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Figure 1. A two-dimensional electron gas (2DEG) with parabolic or lin-
ear (graphene) spectrum located on a piezoelectric substrate and exposed 
to a surface acoustic wave (SAW) with the wave vector k and an external 
permanent magnetic field B (adapted from Ref. [16]). The SAW is cre-
ated by the interdigital transducers (IDTs).  

 

( ) ( ) [ ]{ } { }, ,iv e E r t E r t v B f f f
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where f  is the quasi-equilibrium distribution function, ( ),f r t  is the dis-

tribution function, v is the velocity of electron and 1υ
τ

=  with τ  being the 

effective relaxation time, which is assumed to be constant. Here, e p
ev
µ

τ =  with  

eµ  representing the charge mobility. The total electric field is given as 
( ) ( ) ( ), , ,iE r t E r t E r t= +� , where ( ),iE r t  is the induced electric field and B is 

the applied magnetic field. 
The AE current is determined by expanding the distribution function and 

electron density up to the second order with respect to the total electric field. 
Specifically, ( ) ( ) ( ) ( )0 1 2 3, , ,f r t f f r t f r t O f= + + +  where 0f  is the equilib-
rium distribution function. The first-order correction is given as  

( ) ( ) ( )*
1 1 1
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where q s qv kω = , sv  representing the velocity of sound, *
1f  is the complex 

conjugate of 1f  and qk  and qω  are the wavenumber and wave frequency, 
respectively. 

Assume the SAW travels along the x-axis and an external magnetic field is ap-
plied perpendicular to the direction of travel of the wave. Under this condition, 
the time-independent acoustoelectric current can be derived from the stationary 
second-order correction to the distribution function 2f  of the electron with 
respect to the SAW field as: 

( ) 22
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2
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where ( ) ( )cos ,sinnv vφ φ φ= , 1 2
ττ = , oE  is the amplitude of the piezoelectric 

field, e is the electron charge, pv
p
ε∂

=
∂

 and 1f  is the solution of the BTE 

(Equation (2)) and can be expressed as: 
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where c
eBv

p
ω =  is the semiclassical cyclotron frequency and ( )u gJ β  is the 

Bessel function of the uth order with argument q
g

c

k v
β

ω
= . The derivative of the 

chemical potential ( ),r tµ  with respect to the charge density is expressed as: 
2

n m
µ∂ π
=

∂
�                           (6) 

The first-order correction to the charge density 1n  is derived from the solu-
tions of the induced E-field and the continuity equation as: 
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En
e v R g k
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                     (7) 

where the xx-component of the conductivity tensor  
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with 
2
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τσ =  being the Drude conductivity. The x-component of the diffu-

sion vector  
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and  
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                 (10) 

is the dielectric function, dε  is the substrate’s dielectric constant and 0ε  is the 
permittivity of free space. The absorption of the SAW’s piezoelectric field by the 
mobile electron in the 2D system is described by Equation (10). 

Substituting Equation (5)-Equation (7) into Equation (4), the AME current 
density is obtained as: 
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where AME
xj  and AME

yj  are the longitudinal and Hall AME current densities, 

respectively and 
q

g
c

iω
τα

ω

+
= . Simplifying Equation (10) yields 
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where 
2

2
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g
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e p
επ
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�

 and 1 ciγ ω τ= +  

3. Results and Discussion 

The AME effect in a degenerate 2DEG has been studied using the semiclassical 
BTE together with other relevant equations, resulting in the derivation of an ex-
pression for the AME current. The argument gβ  of the Bessel functions in 
Equations (9), (11) and (12) is of particular relevance and can be expressed as  

q q
g

c s c

k v v
v
ω

β
ω ω

= = , which is similar to the well-known expression for geometric  

resonances (GRs) in terms of the ratio of frequencies and determines the strength 
of the resonances. In contrast, gβ  in our study describes the ratio of space scales  

as 2 r
g q r

q

ck cβ
λ
π

= = , where rc  is the cyclotron radius, which is similar to Weiss 

oscillations [16]. 
To further provide a practical meaning to our analytical results, the AME cur-

rent is examined in this section as two distinct components: the longitudinal 
(x-component) AME current drag and the Hall (y-component) AME current drag. 
Our numerical analysis took into account the following variables which can be re-
alized experimentally [16] [19]: 12 25 10 cmn −= × , 15 14.1356 10 eV sh − −= × ⋅ , 

50dε = , 0 10 kV mE = , 33.5 10 m ssv = × , 2.7 eV∆ = , 4 210 cm V seµ = ⋅ , 

00.44m m=  where 0m  is the mass of free electron.  
Figure 2 shows a plot of the longitudinal (x-component) and Hall (y-component) 

of AME current densities, ,
AME
x yj  as functions of SAW frequency, qω  for vari-

ous values of the magnetic field, B. 
It is observed that as qω  increases, AME

xj  increases from the negative region 
to a threshold value within the neighborhood of 0AME

xj =  and oscillates. Simi-
lar observations are made for the dependence of the Hall AME current density on 
SAW frequency for the same values of B. This is because the charge carriers  
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Figure 2. Dependence of AME current density 
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nance-related oscillations. Additionally, when 1cω τ � , the absorption exhibits 
resonant behavior with the field, a behaviour which is typically observed in 
crossed electric and magnetic fields. 

Figure 3 represents the dependence of longitudinal and Hall AME current 
densities ,

AME
x yj  on the inverse magnetic field, 1B−  for different values of the 

SAW frequency qω .  
Figure 3 shows that AME

xj  increases to some threshold value and decreases 
asymptotically with small oscillations afterwards. As 1B−  increases, AME

yj  in-
creases asymptotically from the negative region and oscillates at some point on-
ward. This is because the energy of the carriers depends on the effective scatter-
ing time τ, and the charge carriers often move in a direction opposite to the di-
rection of the applied magnetic field. Similar conclusions were reached in [16]. 
In contrast, the bandgap graphene has a smaller AME current, which can be 
tuned depending on the requirements of a particular device application and this 
highlights the novelty of our study. Both plots show virtually perfect oscillations 
superimposed as they monotonically tend to zero current. In the case where the 
spatial periodic structure of the SAW is present, this result might be interpreted 
as Weiss oscillations. Based on the commensurability between the electron cy-
clotron diameter at Fermi energy and the period of the electron modulation, this 
phenomenon is also observed to be periodic in the inverse magnetic field. The 
experimental setup shown in Figure 1 [16] is suitable for verifying the phenom-
ena for both components of the AME current density in the bandgap graphene 
as well. However, compared to gapless graphene, bandgap graphene is expected 
to perform far better because the bandgap can be tuned in a variety of ways, 
which will improve the electron population thereby making it suitable for use in 
electronic device applications.  

Figure 4 shows a plot of the longitudinal (x-component) and Hall (y-component) 
of the AME current densities, ,

AME
x yj  as functions of SAW frequency, qω  for 

various values of the energy bandgap half-width ∆.  
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Figure 3. Acoustomagnetoelectric current density 
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It can be inferred from Figure 4 that as qω  increases, both components of 
the AME current density increase to a threshold value and oscillate about that 
point where both AME

xj  and AME
yj  equal zero. This results from the depend-

ence of the energy on the bandgap half-width of the bandgap graphene. Addi-
tionally, the amplitudes of oscillations displayed in both graphs increase with 
increasing bandgap. Thus, increased bandgap half-width values lead to higher 
AME currents. As a result, the current density can be tuned using the bandgap 
half-width for device applications. 

4. Conclusion 

The AME current in graphene with an energy bandgap, where the energy is de-
pendent on the bandgap created and the effective scattering time, has been stud-
ied using the semiclassical Boltzmann’s transport equation. For a fixed magnetic 
field, the longitudinal and Hall components of the AME current density have 
been found to oscillate in response to the surface acoustic wave frequency. For a 
fixed surface acoustic wave frequency, the AME current oscillates in proportion 
to the inverse magnetic field, and the Hall component changes its sign in re-
sponse to the Bessel function. The ratio of the surface acoustic wave and cyclo-
tron frequencies or the ratio of the cyclotron radius and the surface acoustic 
wave wavelength can be used to represent the argument of the Bessel functions. 
The former occurs in Weiss oscillations of magnetoresistance when a static field 
is present, whereas the latter is usually used to describe optical geometric reso-
nances. The study further demonstrated that the AME current density of the 
bandgap graphene, which can be tailored to a specific electronic device applica-
tion, is smaller than that of gapless graphene and is, therefore, better suited for 
nanophotonic device applications. 
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