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Abstract 
Based on the density functional theory within the local density approximation 
(LDA), we studied the electronic, elastic, and dynamic properties of AgNbO3 
and AgTaO3 compounds under pressure. The elastic constants, optic and 
static dielectric constants, born effective charges, and dynamic properties of 
AgNbO3 and AgTaO3 in cubic phase were studied as pressure dependences 
with the ab initio method. For these compounds, we have also calculated the 
bulk modulus, Young’s modulus, shear modulus, Vickers hardness, Poisson’s 
ratio, anisotropy factor, sound velocities, and Debye temperature from the 
obtained elastic constants. In addition, the brittleness and ductility properties 
of these compounds were estimated from Poisson’s ratio and Pugh’s rule 
(G/B). Our calculated values also show that AgNbO3 (0.37) and AgTaO3 (0.39) 
behave as ductile materials and steer away from brittleness by increasing 
pressure. The calculated values of Vicker hardness for both compounds indi-
cate that they are soft materials. The results show that band gaps, elastic con-
stants, elastic modules, and dynamic properties for both compounds are sen-
sitive to pressure changes. We have also made some comparisons with related 
experimental and theoretical data that is available in the literature. 
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1. Introduction 

Silver niobate AgNbO3 and silver tantalate AgTaO3 are perovskite compounds 
that have not been intensively studied apart from structural phase transitions 
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and dielectric measurements, contrary to other perovskites such as BaTiO3, Ba-
TaO3, LiNbO3, LiTaO3, KNbO3 and KTaO3. Most studies on AgNbO3 and Ag-
TaO3 were focused on Raman scattering, structural phase transitions, and di-
electric measurements. One of the first Raman measurements of AgNbO3 over a 
large temperature was performed by A. Kania et al. [1]. The space groups for 
calcined AgNbO3 powder were investigated from 24˚C to 630˚C. Pure AgNbO3 
undergoes successive phase transitions from the ferroelectric orthorhombic 
phase (Pbcm) to the paraelectric orthorhombic phase (Cmcm) at 347˚C, then to 
the tetragonal phase (P4/mbm) at 377˚C, and finally to the cubic phase (Pm3m) 
at 530˚C [2]. Dielectric and domain structure investigations (300 K - 750 K) 
have been carried out for ceramics and two types of single crystals of silver ni-
obate AgNbO3. An additional phase of the orthorhombic symmetry has been 
found in the temperature range 630 K - 638 K [3]. Yashima et al. have success-
fully addressed the longstanding issue of the crystal structure of ferroelectric 
AgNbO3. Convergent-beam electron diffraction (CBED) measurements on a single 
domain region of AgNbO3 allow us to unambiguously identify its space group as 
non-centrosymmetric Pmc21 [4]. Although the crystal structures of AgMO3 were 
similar to those of NaMO3 (M: Nb, Ta), it is found that the band gaps of AgTaO3 
and AgNbO3 were 3.4 and 2.8 eV, respectively, being 0.6 eV smaller than the 
band gaps of NaTaO3 (4.0 eV) and NaNbO3 (3.4 eV) [5]. It was found from the 
electronic band structure study, using the plane-wave-based density functional 
method, that a hybrid orbital of Ag 4d and O 2p formed a valence band at a 
more negative level than O 2p orbitals [5]. Arney et al. found that the measured 
optical bandgap sizes of the AgNbO3 products were in the range of ~2.75 - 2.81 
eV [6]. One of the first investigations of silver tantalate AgTaO3 was performed 
by Francombe and Lewis, who determined an orthorhombic structure with a 
monoclinic distortion of the pseudo-cubic perovskite unit cell at room tempera-
ture [7]. Kugel et al. revealed that an additional structural phase transtion oc-
curred at a low temperature, which was not clearly indicated by X-ray measure-
ments, between 10 and 873 K, on a polydomain AgTaO3 sample [8]. It was shown 
that AgTaO3 single crystals are sensitive to external stress. The uniaxial pressure 
shifts the phase transition temperature, causes an increase in the permittivity, 
and makes the anomaly more pronounced. These effects can reflect the influence 
of electrical conductivity. It was shown that AgTaO3 can be used as an element 
in a non-piezoelectric pressure sensor [9]. Because of recent developments in 
telecommunications, electro-optics, and piezoelectric components, perovskite 
niobates and tantalates have been placed on a short list of functional materials 
for future technologies [10]. 

In this work, we aimed at providing some additional information to the exist-
ing data on the physical properties of AgNbO3 and AgTaO3 compounds by using 
ab initio energy calculations, and we especially focused on the electronic, elastic, 
and dynamic properties. The layout of this paper is given as follows: the method 
of calculation is given in Section 2; the results and their discussion are in Section 
3. Finally, the summary and conclusion are given in Section 4. 
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2. Computational Methods 

AgNbO3 and AgTaO3 have cubic perovskite structures that are represented by 
space group (No. 221). There are five atoms in the cubic unit cell, and the lattice 
parameters for both compounds are given in Table 1. The electronic, elastic, and 
dynamic properties of AgNbO3 and AgTaO3 were theoretically studied by means 
of first principles calculations in the framework of density functional theory 
(DFT) and based on the local density approximation (LDA) [11] as implemented 
in the ABINIT code [12] [13]. The self–consistent norm-conserving pseudopo-
tentials are generated using the Troullier-Martins scheme [14] which is included 
in the Perdew-Wang [15] scheme as parameterized by Ceperly and Alder [16]. 
Pseudopotentials are generated using the following electronic configurations: 
For Ag, the 4d105s1 electron states, 4d45s1 electron states for Nb, 6s25d3 electron 
states for Ta, and 2s22p4 electron states for O are considered the true valence. For 
calculations, the wave functions were expanded in plane waves up to a kinet-
ic-energy cutoff of 40 Ha for AgNbO3 and AgTaO3. The Brillouin zone was sam-
pled using an 8 × 8 × 8 Monkhorst-Pack [17] mesh of special k points. 

3. Results and Discussion 
3.1. Structural Parameters 

As a first step of our study, we determined structural parameters using experi-
mental data for AgNbO3 [2] and AgTaO3 [8]. The theoretical lattice parameters 
were obtained by minimizing the ratio of the total energy of the crystal to its vo-
lume, are given in Table 1. Then, lattice constants were carried out as depen-
dence pressures in the range from 0 to 15 GPa, and all calculations were per-
formed using these theoretical lattice parameters. Our structural estimation is in 
agreement with the available experimental and theoretical data (see Table 1). 

 
Table 1. The calculated equilibrium lattice parameters, band gaps, elastic constants, bulk modulus, shear modulus, and Young’s 
modulus, together with the theoretical and experimental values for AgNbO3 and AgTaO3. 

Material Reference a (Å) Eg (eV) C11 C12 C44 B G E 

AgNbO3 

LDAcal. 3.9468 1.63 513.3 107 49.1 242 90 241 

LDA [18] 3.9584 1.53       

LDA [19] 3.9530 1.34       

GGA [20] 3.9790 1.51       

GGA [21] 3.9929 1.40    190   

GGA [22] 3.9510 1.60    210   

Exp. [2] 3.9598 2.8       

AgTaO3 

LDAcal. 3.9537 2.22 530.8 105.2 53.5 247 97 257 

LDA [18] 3.9545 1.54       

LDA [23] 3.9490 1.53       

GGA [21] 3.9929 2.08    190   

GGA [22] 3.9588 1.64    219   

Exp. [8] 3.9484 3,4       
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3.2. Electronic Properties  

The electronic band structures of AgNbO3 and AgTaO3 have been calculated in 
high-symmetry directions in the first Brillouin zone. The band structures and to-
tal (DOS) and partial (PDOS) densities of states for cubic AgNbO3 and AgTaO3 
are shown in Figure 1 and Figure 2. As seen in Figure 1 and Figure 2 the Fermi 
level (EF) is set at zero energy and specified by a horizontal dashed red line. 
High-symmetry points in the Brillouin zone include Γ(0, 0, 0), X (0, 1/2, 0), M 
(1/2, 1/2, 0) and R(1/2, 1/2, 1/2). The calculated electronic band structures for 
both crystals are similar. It is clear for both crystals that the band gap appears 
between the top-most valence band at M-point and the bottom-most conduction 
band at X-point for AgNbO3 and Γ-point for AgTaO3. Accordingly, both AgNbO3 
and AgTaO3 have an indirect band gap. The calculated indirect band gap values 
for AgNbO3 and AgTaO3 are 1.63 eV and 2.22 eV, respectively. We have found 
indirect band gaps of 1.533 eV for AgNbO3 and 1.537 eV for AgTaO3 in ours pre-
vious study [18]. These calculated values may also be smaller than experimental 
values because it is well known that the band gap calculated by DFT is smaller 
than that obtained from experiments. DFT generally underestimates the band gap 
in semiconductors and insulators [24]. The calculated equilibrium lattice para-
meters and band gaps, together with the theoretical and experimental values for 
AgNbO3 and AgTaO3 are given in Table 1. The calculated band gap values for 
these compounds are in good agreement with other DFT results, as shown in Ta-
ble 1. We also calculated the influence of external pressure on the band gaps of 
AgNbO3 and AgTaO3, which is given in Figure 3. The calculations show that di-
rect band gaps increase linearly as a function of pressure for both compounds, 
but indirect band gaps do not change much with pressure. It is well known that 

 

 
Figure 1. The calculated electronic band structure of 
AgNbO3 (a) and AgTaO3 (b) in cubic structure.  
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Figure 2. The calculated total DOS and partial PDOS for AgNbO3 (a) and AgTaO3 (b) in cubic 
structure. 

 

 

Figure 3. Pressure dependence of the calculated direct (a) and indirect (b) band gaps of 
AgNbO3 and AgTaO3.  

 
the influence of pressure on Eg for most materials in a wide pressure range is linear 
( ( )0g gE E AP= + + ). Our calculations show that 31.32 10 eV GPaA −= ×  
(AgNbO3) and 31.64 10 eV GPa−×  (AgTaO3) for direct optical transition in the 
X-high symmetry point, 6.47 × 10−3 eV/GPa (AgTaO3, between M-Γ high sym-
metry points), and 1.98 × 10−3 eV/GPa (AgNbO3, between M-X high symmetry 
points) for indirect transition. 

To further clarify the nature of the electronic band structure of AgNbO3 and 
AgTaO3, we have also calculated the total (DOS) and partial (PDOS) density of 
states, as shown in Figure 2(a) and Figure 2(b). As can be seen in Figure 2(a) 
and Figure 2(b), the DOS and PDOS for both crystals are quite similar. In both 
crystals, the bottom band between about −18 eV and −16 eV contains three val-
ance bands that originate from O 2s orbital. In the calculated electronic band 
structure of AgNbO3 and AgTaO3 (see Figure 1(a) and Figure 1(b)), between 
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−6 eV and Fermi level (zero) there are fourteen valence bands. While Ag 4d or-
bitals between −6 and −5 eV are localized, the top of the valence band between 
−5 and 0 eV mainly consists of the oxygen O 2p states hypridized with Nb 4d 
and Ta 5d states for AgNbO3 and AgTaO3 respectively. The top of the valence 
band is mainly formed O 2p. In general, in perovskite compounds such as NaN-
bO3, i.e., in perovskite compounds having an A-site atom without d orbital elec-
trons, the top of the valence band consists of only O 2p constituents, and the or-
bital component of Na at the A-site does not appear in the valence band [20]. It 
is found to be in good agreement with the valence band width of AgNbO3 calcu-
lated by A. Shigemi [20]. In cubic phase for both crystals, the fourteen valence 
bands at Γ point are separated into four triply degenerate levels and one doubly 
degenerate level. These splittings are produced by the crystal field and the elec-
trostatic interaction between O 2p orbitals. In the conduction band, thirteen 
bands are split into two triply degenerate levels and two doubly degenerate levels. 

3.3. Elastic Properties 

Elastic constants are the most important characteristics of solids, and their 
knowledge is essential to understanding many of their properties. Elastic con-
stants, in particular, determine the elasticity and mechanical stability of crystals. 
There is considerable interest in the elastic properties of the high-pressure phas-
es of distinct crystals. An accurate experimental determination of elastic con-
stants under pressure is often rather difficult, and here computer modeling can 
play an important role in establishing the properties of specific phases. Many 
response properties of materials can be calculated using the method of density 
function pertubation theory [25] [26]. There are three kinds of perturbation, 
such as electric field, atomic displacement, and strain, that were recently in-
cluded in the ABINIT package [27]. By treating different perturbations, it can be 
calculated quantities such as elastic constants, born effective charges, piezoelec-
tric coefficients, optical dielectric constants, and static dielectric constants. In 
this work, elastic constants, born effective charges, dielectric constants, and the 
phonon spectrum were calculated directly by applying atomic-displacement and 
electric-field perturbations. For cubic crystals, there are only three independent 
elastic constants, such as C11, C12 and C44. From knowledge of elastic constants, 
other quantities can be calculated, such as bulk modulus (B), shear modulus (G), 
Young’s modulus (E), and Poisson’s ratio (ν). Mechanical stability leads to re-
strictions on the elastic constants, which for cubic crystal are [28], 

( )11 44 11 12 11 12 12 110, 0, , 2 0,C C C C C C C B C> > > + > < <        (1) 

It is well known that shear modulus and bulk modulus are measures of the 
hardness of a solid. The bulk modulus is a measure of resistance to volume 
change by an applied pressure, whereas the shear modulus is a measure of resis-
tance to reversible deformations upon shear stress [29]. Accordingly, the iso-
tropic shear modules determine hardness better than the bulk modulus. For cu-
bic crystal structure, the bulk modulus B and the shear modulus G are given [30] 
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[31] [32],  

11 122
3V R

C CB B B +
= + =                      (2) 

( )44
1 2 3
5VG C C= +                         (3) 

44

15
6 9RG

C C
=

+
                         (4) 

where VB  and VG  represent the Voigt bulk modulus and the shear modulus 
respectively, and RB  and RG  the Reuss bulk modulus and the shear modulus, 
respectively. 

( )11 12
1
2

C C C= −                           (5) 

According to the Voigt-Reuss-Hill approximation [33], 

( ) 2V RG G G= +                           (6) 

Young’s modules E and Poisson’s ratio ν can be obtained by  

9 1, 1
3 2 3

BG EE
B G B

ν  = = − +  
                     (7) 

The Debye Temperature may be obtained from the average sound velocity 

mV  [34], 
1 3

3
4

A
D m

Nn V
k M

ρ  Θ =   π   

                       (8) 

where   is Planck’s constant, k is Boltzmann’s constant, NA is Avagadro’s 
number, n is the number of atoms per formula unit, M is the molecular mass per 
formula unit, ρ is the density, and Vm is obtained from following Equation (9), 

1 3

3 3
1 2 1
3m

t l

V
V V

−
  

= +  
   

                       (9) 

where tV  and lV  are the transverse and the longitudinal elastic wave velocities, 
respectively, which can be calculated from Navir’s equations [35], 

t
GV
ρ

=                             (10) 

3 4
3l

B GV
ρ
+

=                          (11) 

The calculated elastic constants, bulk modulus (B), shear modulus (G), and 
Young’s modulus (E), for AgNbO3 and AgTaO3 are listed in Table 1. The pres-
sure dependence of the calculated elastic constants, bulk modulus (B), shear 
modulus (G), and Young’s modulus (E), for AgNbO3 and AgTaO3 is given in 
Figure 4. It can be seen from Table 1 that our calculated values also satisfy all 
stability conditions (see ref [28]), as denoted by Equation (1). C11 elastic constant 
shows resistance to linear compression along x − y- or z-axes of the crystal, while 
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C12 and C44 elastic constants are related to the flexibility of the crystal. The values 
for AgTaO3 are bigger than AgNbO3. Therefore, AgTaO3 is more resistant than 
AgNbO3 against linear compression along x − y- or z-axes of the crystal. We can 
obviously see from Figure 4(a) and Figure 4(b) that the C11 elastic constant in-
creases with pressure dependence but C12 and C44 does not change much with 
pressure. The bulk modulus values for AgNbO3 and AgTaO3 were found to be 
242 GPa and 247 GPa, respectively. As seen in Table 1, our calculated values for 
both compounds are close to the calculated values using GGA in WIEN2K soft-
ware by A. Mahmood [22]. As seen from Figure 4(c) and Figure 4(d), bulk 
modulus (B), shear modulus (G), and Young’s modulus (E) also have a trend to 
increase with increasing pressure for both compounds. However, the bulk mod-
ulus and Young’s modulus for both compounds are more sensitive to the change 
in pressure compared to the shear modulus. We could not compare our results 
to the literature since there are no experimental and theoretical data on elastic 
constants, shear modulus (G), Young’s modulus (E), and Poisson’s ratio (ν) for 
both compounds. 

To understand the nature of the anisotropy of both compounds, the profiles of 
the 2D and 3D planar projection plots of the elastic modulus and constants were 
drawn [35] and given in Figure 5 and Figure 6. In these figures, minimum val-
ues are shown in green and maximum values in blue. The completely circular 
(2D) and spherical (3D) profiles indicate isotropy, while deviations from spheri-
cal and circular shapes reflect the degree of anisotropy in elastic modulus and 
constants of solids. Since AgNbO3 and AgTaO3 have the same cubic symmetry, 
their graphics are quite similar. Figure 5 and Figure 6(a) demonstrate the ani-
sotropy in compressibility (K). Due to a perfectly circular presentation of K on 
the xy, xz, and yz planes, K shows isotropic behavior for both compounds. The 
 

 

Figure 4. Pressure dependence of the calculated elastic constants and elastic modulus of 
AgNbO3 (a, c) and AgTaO3 (b, d).  
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 5. 2D and 3D representation of compressibility (a), Young’s modulus (b), shear modulus (c) and Poission’s ratio (d) for 
AgNbO3. 
 

direction dependence of Young’s modulus (E) is given in Figure 5 and Figure 
6(b). It can be seen from Figure 5 and Figure 6(b) that the anisotropy of 
Young’s modulus (E) on the xy, xz, and yz planes indicates anisotropic behavior  

https://doi.org/10.4236/wjcmp.2023.132004


S. Simsek 
 

 

DOI: 10.4236/wjcmp.2023.132004 66 World Journal of Condensed Matter Physics 
 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 6. 2D and 3D representation of compressibility (a), Young modulu (b), shear modulu (c) and Poission’s ratio (d) for Ag-
TaO3. 
 

due to a perfectly circular deviation. The maximum values of Young’s modulus 
are 476.28 GPa and 496 GPa for AgNbO3 and AgTaO3, respectively, while the 
minimum values of Young’s modulus are 137.98 GPa and 149.69 GPa for AgN-
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bO3 and AgTaO3. Like Young’s modulus, as seen from Figure 5 and Figure 6(c), 
the shear modulus for both compounds displays anisotropic behavior. The larg-
est value and the minimal value of shear modulus for AgNbO3 (AgTaO3) is 203.1 
(212.8) GPa and 49.1 (53.5) GPa, respectively. On the other hand, it can be seen 
from Figure 5 and Figure 6(d) that anisotropy is observed in the Poission’s ra-
tios of AgNbO3 and AgTaO3. 

Another way to identify the hardness of materials is to calculate the Vickers 
hardness (HV). Vickers hardness can be obtained from the calculated bulk mod-
ulus and shear modulus according to the following relation [36]: 

1.137
0.7080.92V

GH G
B

 =  
 

                     (12) 

The obtained Vickers hardnesses of AgNbO3 and AgTaO3 are 7.23 GPa and 
8.11 GPa, respectively. If Vickers hardness is less than 10 GPa, it is defined as a 
soft material [37]. If Vickers hardness is greater than 40 GPa, then it is defined 
as a superhard material [38]. Because their Vickers hardness is smaller than 10 
GPa, these compounds can be characterized as soft materials. The change with 
pressure of the Vickers hardness for AgNbO3 and AgTaO3 is given in Figure 7. 

Poisson’s ratio (ν) has values in the range 0 0.5υ< < . The experimental val-
ues for most materials are close to 0.3 but, in any case, are always within the 
above limits [39]. We have found that Poisson’s ratios are 0.334 and 0.327 for 
AgNbO3 and AgTaO3, respectively. Our calculated values are within this limit. 
The values of the Poisson’s ratio also reflect the degree of covalent bonding. The 
value of Poisson’s is 0.25 for ionic materials, meanwhile υ is 0.1 for covalently 
bonded materials [40]. Therefore, ionic contribution to inter atomic bonding for 
these compounds is more dominant. Besides, we clearly see from Table 2 and 
Table 3 that the values of the Poisson’s are increasing by increasing pressure for 
both materials. On the other hand, as stated Pugh [41], if G/B > 0.5, the mate-
rials behave in a brittleness manner or if G/B < 0.5, the materials then become a 
ductile. Our calculated values show that AgNbO3 (0.37) and AgTaO3 (0.39) be-
have as ductile materials, and steer away from brittleness by increasing pressure. 

 

 

Figure 7. Pressure dependence of the Vickers hard-
ness of AgNbO3 and AgTaO3.  
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Table 2. The calculated Poisson’s ratio (ν), G/B ratios, Zener anisotropy factors A and, 
universal elastic anisotropy index AU of AgNbO3 under pressure.  

Pressure (GPa) ν G/B A AU 

0.0 0.334 0.37 0.16 2.85 

2.5 0.337 0.36 0.15 3.08 

5.0 0.340 0.35 0.14 3.51 

7.5 0.342 0.35 0.13 3.64 

10.0 0.344 0.34 0.13 3.89 

12.5 0.347 0.34 0.12 4.34 

15.0 0.348 0.33 0.12 4.49 

 
Table 3. The calculated Poisson’s ratio (ν), G/B ratios, Zener anisotropy factors A and, 
universal elastic anisotropy index AU of AgTaO3 under pressure.  

Pressure (GPa) ν G/B A AU 

0.0 0.327 0.39 0.17 2.66 

2.5 0.329 0.38 0.16 2.87 

5.0 0.331 0.38 0.15 3.02 

7.5 0.335 0.37 0.14 3.47 

10.0 0.337 0.36 0.14 3.62 

12.5 0.339 0.35 0.13 3.93 

15.0 0.342 0.34 0.12 4.30 

 
The Zener anisotropy factor, A, reflects the degree of elastic anisotropy in a 

material. The Zener anisotropy factor is 1 for a completely isotropic material. 
For cubic crystals, the Zener anisotropy factor is given by [42], 

44

11 12

2CA
C C

=                          (13) 

The Zener anisotropy factors for AgNbO3 and AgTaO3 were calculated ac-
cording to pressure and listed in Table 2 and Table 3. The calculated Zener 
anisotropy factors for AgNbO3 (0.16) and AgTaO3 (0.17) are smaller than 1, 
which indicates that these compounds are entirely anisotropic. For these com-
pounds, it can be seen from Table 2 and Table 3 that the Zener anisotropy fac-
tors decrease with increasing pressure. 

Another important anisotropy factor that allows us to define elastic anisotro-
py is the universal elastic anisotropy index, AU. The universal elastic anisotropy 
index has zero for a completely isotropic material. The different values from zero 
of AU state that material is anisotropic. The universal elastic anisotropy index 
can be calculated using the following equation [43]. 

5 6U
V R V RA G G B B= + −                   (14) 

The obtained results are given in Table 2 and Table 3. As can be seen from 
Table 2 and Table 3, these compounds are anisotropic, and AgNbO3 is more 

https://doi.org/10.4236/wjcmp.2023.132004


S. Simsek 
 

 

DOI: 10.4236/wjcmp.2023.132004 69 Advances in Aging Research 
 

anisotropic than AgTaO3. We can see from Table 2 and Table 3 that the uni-
versal elastic anisotropy index for both compounds has also trended to increase 
with increasing pressure. 

We have also calculated Debye temperature, transverse, longitudinal, average 
sound velocities, and density implementing pressure from 0 to 15 GPa, which 
are shown in Table 4 and Table 5. The Debye temperature is an important fun-
damental parameter since it is closely associated with many physical properties 
of materials, such as specific heat and melting temperature. The vibrational ex-
citations originate purely from acoustic vibrations at low temperatures. There-
fore, the Debye temperature obtained from elastic constants at low temperatures 
is the same as that determined from specific heat measurements. As seen in Ta-
ble 4 and Table 5, Debye temperature, transverse, longitudinal, average sound 
velocities, and density increase as dependent pressure. The Depye temperature, 
longitudinal, and average sound velocities of AgNbO3 are higher than those of 
AgTaO3, but the calculated density of AgTaO3 is higher than that of AgNbO3. 
Unfortunately, we could not find theoretical and experimental results in litera-
ture to compare with the Debye temperature, transverse, longitudinal, and aver-
age sound velocities. 

 
Table 4. The density, transverse, longitudinal, and average elastic wave velocities, togeth-
er with the Debye temperature of AgNbO3 under pressure. 

Pressure (GPa) ρ (g/cm3) vt (m/s) vl (m/s) vm (m/s) Θ (K) 

0.0 6.722 3670.24 7350.29 4117.65 530.78 

2.5 6.789 3691.34 7435.43 4142.71 535.81 

5.0 6.855 3685.25 7489.38 4137.97 536.91 

7.5 6.918 3731.87 7607.21 4191.03 545.46 

10.0 6.979 3747.57 7679.01 4209.88 549.52 

12.5 7.039 3725.63 7702.04 4187.24 548.12 

15.0 7.097 3776.17 7823.53 4244.54 557.14 

 
Table 5. The density, transverse, longitudinal, and average elastic wave velocities, togeth-
er with the Debye temperature of AgTaO3 under pressure. 

Pressure (GPa) ρ (g/cm3) vt (m/s) vl (m/s) vm (m/s) Θ (K) 

0.0 8.193 3438.78 6776.69 3854.25 495.96 

2.5 8.274 3456.39 6848.18 3875.27 500.30 

5.0 8.352 3497.45 6954.03 3922.12 507.94 

7.5 8.428 3477.02 6978.31 3901.39 506.78 

10.0 8.501 3506.62 7061.54 3935.35 512.67 

12.5 8.572 3502.88 7099.82 3932.60 513.74 

15.0 8.642 3500.93 7143.26 3931.89 515.03 
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3.4. Born Effective Charges, Dielectric Constants and Phonon  
Spectra  

For periodic solids, the Born effective charge of an atom κ is tensor defined as 
the coefficient of proportionality at the linear order and under the condition of 
the zero macroscopic electric field, between the macroscopic polarization per 
unit cell created in direction β and a cooperative displacement of atoms κ in di-
rection α: 

 *
, 0

, 0

Z β
κ αβ

κ α ε
τ

=

∂
= Ω

∂


                     (21) 

where 0Ω  is the unit cell volume. The Born effective charge is a dynamic con-
cept in the sense that it concerns the response to an atomic displacement. From 
its definition, *Z  is a fundamental quantity in lattice dynamics: it governs, with 
the optical dielectric constant ε∞ , the strength of the Coulomb interaction re-
sponsible for the splitting between longitudinal (LO) and transverse (TO) optic 
modes [44]. 

The calculated Born effective charges *Z , optical dielectric constant ε∞ , and 
static dielectric constant sε  of AgNbO3 and AgTaO3 under pressure are given 
in Table 6 and in Table 7. In the cubic phase, they are explicitly described by a 
set of four independent numbers for ABO3 compounds. The charge of A and B 
atoms is isotropic, since their atomic positions have local spherical symmetry. 
For the oxygen atom, there are two independent elements O



 and O⊥  that 
must be taken into consideration, parallel and perpendicular to the B-O bond. 
As seen from Table 6 and Table 7, while *

AgZ , *
NbZ  and *

TaZ  tensors are iso-
tropic, *

OZ  tensors are highly anisotropic. We see that *
NbZ , *

TaZ  and *
OZ
⊥

 
significantly deviate from their nominal ionic values (+5 for Nb, +5 for Ta, and 
−2 for O). It reflects the sensitivity to atomic displacement of the partially cova-
lent nature of the Nb-O and Ta-O bonds [45]. However, *

AgZ  and *
OZ


 are close 
to their ionic charges. This implies that the bond between Ag and O is weakly 
covalent [2]. On the other hand, charge neutrality, reflecting the numerical ac-
curacy of our calculation, is fulfilled to within 10−3. We see from Table 6 and 
Table 7 that the values of *

AgZ , *
NbZ , *

TaZ  and *
OZ
⊥

 decrease as pressure in-
creases, whereas *

OZ


 increase with increasing pressure. We also calculated the 
optical dielectric constant ( ε∞ ) and static dielectric constant ( sε ) of AgNbO3 
and AgTaO3 as pressure dependence. Because of the symmetry of the crystal, the 
optical dielectric constant and static dielectric constant of AgNbO3 and AgTaO3 
have only one component in cubic phase. As seen from Table 6 and Table 7, 
there is also a trend to decrease with increasing pressure. 

Since AgNbO3 and AgTaO3 have ideal cubic perovskite structures (space 
groups 1

hO , Pm3m), there are 15 normal modes of vibration. These modes are 
shown at the zone center as following irreducible representations. 

( )1
1 24h u uO F FΓ = +                       (22) 
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Table 6. Born effective charges, optical and static dielectric constants of AgNbO3 under pressure. 

P (GPa) AgZ ∗  NbZ ∗  1OZ ∗  2OZ ∗  3OZ ∗  ε∞  sε  

nominal 1 5 −2 −2 −2   

0 
1.583 0 0

0 1.583 0
0 0 1.583

 
 
 
 
 

 
9.359 0 0

0 9.359 0
0 0 9.359

 
 
 
 
 

 
1.906 0 0

0 1.906 0
0 0 7.129

− 
 − 
 − 

 
1.906 0 0

0 7.129 0
0 0 1.906

− 
 − 
 − 

 
7.129 0 0

0 1.906 0
0 0 1.906

− 
 − 
 − 

 7.51 87.67 

2.5 
1.581 0 0

0 1.581 0
0 0 1.581

 
 
 
 
 

 
9.350 0 0

0 9.350 0
0 0 9.350

 
 
 
 
 

 
1.907 0 0

0 1.907 0
0 0 7.116

− 
 − 
 − 

 
1.907 0 0

0 7.116 0
0 0 1.907

− 
 − 
 − 

 
7.116 0 0

0 1.907 0
0 0 1.907

− 
 − 
 − 

 7.48 80.21 

5.0 
1.579 0 0

0 1.579 0
0 0 1.579

 
 
 
 
 

 
9.341 0 0

0 9.341 0
0 0 9.341

 
 
 
 
 

 
1.908 0 0

0 1.908 0
0 0 7.103

− 
 − 
 − 

 
1.908 0 0

0 7.103 0
0 0 1.908

− 
 − 
 − 

 
7.103 0 0

0 1.908 0
0 0 1.908

− 
 − 
 − 

 7.45 75.90 

7.5 
1.578 0 0

0 1.578 0
0 0 1.578

 
 
 
 
 

 
9.334 0 0

0 9.334 0
0 0 9.334

 
 
 
 
 

 
1.909 0 0

0 1.909 0
0 0 7.092

− 
 − 
 − 

 
1.909 0 0

0 7.092 0
0 0 1.909

− 
 − 
 − 

 
7.092 0 0

0 1.909 0
0 0 1.909

− 
 − 
 − 

 7.42 73.74 

10.0 
1.576 0 0

0 1.576 0
0 0 1.576

 
 
 
 
 

 
9.327 0 0

0 9.327 0
0 0 9.327

 
 
 
 
 

 
1.910 0 0

0 1.910 0
0 0 7.082

− 
 − 
 − 

 
1.910 0 0

0 7.082 0
0 0 1.910

− 
 − 
 − 

 
7.082 0 0

0 1.910 0
0 0 1.910

− 
 − 
 − 

 7.40 73.29 

12.5 
1.575 0 0

0 1.575 0
0 0 1.575

 
 
 
 
 

 
9.321 0 0

0 9.321 0
0 0 9.321

 
 
 
 
 

 
1.911 0 0

0 1.911 0
0 0 7.073

− 
 − 
 − 

 
1.911 0 0

0 7.073 0
0 0 1.911

− 
 − 
 − 

 
7.073 0 0

0 1.911 0
0 0 1.911

− 
 − 
 − 

 7.38 74.45 

15.0 
1.573 0 0

0 1.573 0
0 0 1.573

 
 
 
 
 

 
9.316 0 0

0 9.316 0
0 0 9.316

 
 
 
 
 

 
1.912 0 0

0 1.912 0
0 0 7.065

− 
 − 
 − 

 
1.912 0 0

0 7.065 0
0 0 1.912

− 
 − 
 − 

 
7.065 0 0

0 1.912 0
0 0 1.912

− 
 − 
 − 

 7.36 77.40 

 
Table 7. Born effective charges, optical and static dielectric constants of AgTaO3 under pressure. 

P (GPa) AgZ ∗  TaZ ∗  1OZ ∗  2OZ ∗  3OZ ∗  ε∞  sε  

nominal 1 5 −2 −2 −2   

0 
1.572 0 0

0 1.572 0
0 0 1.572

 
 
 
 
 

 
8.522 0 0

0 8.522 0
0 0 8.522

 
 
 
 
 

 
1.882 0 0

0 1.882 0
0 0 6.329

− 
 − 
 − 

 
1.882 0 0

0 6.329 0
0 0 1.882

− 
 − 
 − 

 
6.329 0 0

0 1.882 0
0 0 1.882

− 
 − 
 − 

 6.43 56.94 

2.5 
1.570 0 0

0 1.570 0
0 0 1.570

 
 
 
 
 

 
8.519 0 0

0 8.519 0
0 0 8.519

 
 
 
 
 

 
1.884 0 0

0 1.884 0
0 0 6.320

− 
 − 
 − 

 
1.884 0 0

0 6.320 0
0 0 1.884

− 
 − 
 − 

 
6.320 0 0

0 1.884 0
0 0 1.884

− 
 − 
 − 

 6.41 53.25 

5.0 
1.568 0 0

0 1.568 0
0 0 1.568

 
 
 
 
 

 
8.518 0 0

0 8.518 0
0 0 8.518

 
 
 
 
 

 
1.887 0 0

0 1.887 0
0 0 6.312

− 
 − 
 − 

 
1.887 0 0

0 6.312 0
0 0 1.887

− 
 − 
 − 

 
6.312 0 0

0 1.887 0
0 0 1.887

− 
 − 
 − 

 6.39 50.90 

7.5 
1.567 0 0

0 1.567 0
0 0 1.567

 
 
 
 
 

 
8.517 0 0

0 8.517 0
0 0 8.517

 
 
 
 
 

 
1.889 0 0

0 1.889 0
0 0 6.305

− 
 − 
 − 

 
1.889 0 0

0 6.305 0
0 0 1.889

− 
 − 
 − 

 
6.305 0 0

0 1.889 0
0 0 1.889

− 
 − 
 − 

 6.38 49.52 

10.0 
1.565 0 0

0 1.565 0
0 0 1.565

 
 
 
 
 

 
8.516 0 0

0 8.516 0
0 0 8.516

 
 
 
 
 

 
1.891 0 0

0 1.891 0
0 0 6.299

− 
 − 
 − 

 
1.891 0 0

0 6.299 0
0 0 1.891

− 
 − 
 − 

 
6.299 0 0

0 1.891 0
0 0 1.891

− 
 − 
 − 

 6.37 48.92 

12.5 
1.564 0 0

0 1.564 0
0 0 1.564

 
 
 
 
 

 
8.515 0 0

0 8.515 0
0 0 8.515

 
 
 
 
 

 
1.893 0 0

0 1.893 0
0 0 6.293

− 
 − 
 − 

 
1.893 0 0

0 6.293 0
0 0 1.893

− 
 − 
 − 

 
6.293 0 0

0 1.893 0
0 0 1.893

− 
 − 
 − 

 6.36 48.99 

15.0 
1.562 0 0

0 1.562 0
0 0 1.562

 
 
 
 
 

 
8.514 0 0

0 8.514 0
0 0 8.514

 
 
 
 
 

 
1.895 0 0

0 1.895 0
0 0 6.288

− 
 − 
 − 

 
1.895 0 0

0 6.288 0
0 0 1.895

− 
 − 
 − 

 
6.288 0 0

0 1.895 0
0 0 1.895

− 
 − 
 − 

 6.35 49.74 

https://doi.org/10.4236/wjcmp.2023.132004


S. Simsek 
 

 

DOI: 10.4236/wjcmp.2023.132004 72 World Journal of Condensed Matter Physics 
 

where one of the 1uF  irreducible representations corresponds to a triple dege-
nerate acoustical mode. The other three 1uF  irreducible representations are the 
infrared (IR) active optical modes, which allow for cubic symmetry. The 2uF  
irreducible representation corresponds to a silent mode, which is neither IR nor 
Raman active [46]. 

The calculated phonon dispersion curves and total DOS and partial PDOS 
densities of states for cubic AgNbO3 and AgTaO3 are plotted along the high- 
symmetry directions in the first Brillouin in Figure 8 and Figure 9. Negative 
values in Figure 8(a) and Figure 8(b) represent imaginary frequencies. The 
phonon dispersion of the AgNbO3 compound is similar to the phonon disper-
sion of AgTaO3. There are unstable modes along the direction X-M-R-Γ-M for 
both compounds, which determine the nature of the ferroelectric and antiferro-
distortive phase transitions and the dielectric and piezoelectric responses of the 
compounds. For both compounds, there is also one triply soft mode degenerate 
level (171.8 cm−1 for AgNbO3 and 171.2 cm−1 for AgTaO3) at the R point. Our 
results show that the unstable modes for AgNbO3 and AgTaO3 occupy a large 
place in the Brillouin zone. These soft modes have a flat dispersion along the di-
rection X-M-R-Γ. We see in Figure 9(a) and Figure 9(b) that the motion of Ag, 
Nb, and Ta atoms is more irruption in the low-frequency region. The majority of 
phonon modes consist of O atoms at high frequencies. When analyzing the 
phonon DOS and PDOS of these compounds, we see that unstable modes origi-
nate from O atoms. 

 

 

Figure 8. The calculated phonon band structure of AgNbO3 
(a) and AgTaO3 (b). 
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Figure 9. The calculated phonon total DOS and partial PDOS of AgNbO3 (a) and AgTaO3 
(b).  

4. Conclusion 

As a result, we have calculated the electronic structure, the total DOS and PDOS, 
the elastic constants, and the mechanical and vibrational properties of AgNbO3 
and AgTaO3 using the density functional theory based on the ABINIT code. The 
electronic structure calculation showed that both compounds have an indirect 
(M-X for AgNbO3 and M-Γ for AgTaO3) band gap. The results show that the 
calculated band gaps of these compounds are pressure dependent. It was calcu-
lated mechanical and dynamical quantities such as born effective charges, di-
electric constants, elastic constants, bulk modulus (B), shear modulus (G), Young’s 
modulus (E), Poisson’s ratio (ν) and the Depye temperatures under pressure. 
The calculated elastic constants satisfy mechanical stability conditions. Our cal-
culated values also show that AgNbO3 (0.37) and AgTaO3 (0.39) behave as ductile 
materials, and steer away from brittleness by increasing pressure. The values of 
Vicker hardness for both compounds indicate to be soft materials. The values of 

*
AgZ , *

NbZ , *
TaZ  and *

OZ
⊥

 decrease as a function of pressure, whereas *
OZ


 in-
creases with increasing pressure. We have also investigated the phonon band 
structures of AgNbO3 and AgTaO3 using the ab initio method. We determined 
that the unstable modes cause the ferroelectric, antiferrodistortive phase transi-
tions and the dielectric and piezoelectric responses of the compounds. 
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