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Abstract 
It is shown that the traditional explanation of the free electron properties, 
such as mean free electron path, drift mobility, and the relaxation time, by 
lattice vibrations, is not valid for real free randomly moving (RM) electrons 
in materials with degenerate electron gas. It is shown that the effective density 
of the free RM electrons in elemental metals is completely determined by 
density-of-states at the Fermi surface and by absolute temperature. The study 
has shown that the lattice vibrations excite not only the free RM electrons but 
also produce the same number of weakly screened ions (so-named electronic 
defects), which cause the scattering of the free RM electrons and related elec-
tron kinetic characteristics. 
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1. Introduction 

Electron transport in metals during the last century was explained on the pre-
sumption that all valence electrons are free, and can freely move, and can be 
scattered, but this proposition contradicts the Fermi-Dirac statistics [1] [2] [3]. 
In order to obtain the correct order of the conductivity and correct temperature 
variation, it was necessary to assume that the mean free electron path is of order 
a few hundred interatomic distances, and which steeply increases at low temper-
atures. 

According to quantum mechanics, the free electrons as Bloch waves can freely 
move in the ideal periodic lattice of the metal with the periodic distribution of 
the potential energy without any scattering by lattice ions [4] [5] [6]. It means 
that the scattering of the free randomly moving (RM) electrons can be only in 
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the spots where there are distortions of the periodicity of the potential energy of 
the ideal lattice structure. The distortions of the periodic potential distribution 
in real metals are caused by the presence of impurities, interstitials, vacancies, 
dislocations, limits of the grains, and by the surface of the tested samples that 
create a resistance to current flow. The electron mean free path due to the 
named defects almost does not depend on temperature, and their dominance 
appears at very low temperatures, and it causes the residual resistivity of the 
metal. But in a very wide temperature range, the resistivity depends on tem-
perature as T at a temperature above the Debye’s temperature, and at a tem-
perature below the Debye’s temperature it usually changes as T−5 [7], and it is 
considered that such resistivity dependence is caused by the lattice vibrations [8] 
[9] [10] [11] [12]. Such a model cannot explain why the real electron mean free 
path is about one or two orders larger than the interatomic distance. So, the lat-
tice vibrations play another role, and another model is needed to explain this 
role. This work is a sequel to the work [1], in which the metal properties have 
been investigated in temperature range over the Debye temperature. In this 
work, the basic metallic properties in all temperature ranges and what peculiar 
roles the lattice atom vibrations play are presented. 

2. Presentation Details and Analysis 
2.1. The Effective Density of Free RM Electrons in Elemental Metals 

According to quantum mechanics, the electrons in ideal periodicity material are 
arranged in energy bands according to the Bloch waves, and each primitive cell 
exactly contributes only one independent value of the wave vector to each energy 
band [4] [8] [13]. It does not depend on the atom or electron masses. The energy 
of the valence electron in metal is smaller than in an isolated atom. This decrease 
in the energy of the valence electrons causes the binding energy between atoms 
in metals [5] [13] [14]. The valence electron wave functions due to interaction 
with neighbor atom ions substantially overlap [8] [13] [14] but these electrons 
remain associated with the native ions. So, the valence electron charge cloud 
density is concentrated around the parent ions. The thermal vibrations of the 
lattice atoms stimulate the excitation of a small part of valence electrons, whose 
energy is close to the Fermi level energy, to leave the native atoms, and produce 
the Brownian motion in the metal. Therefore, the term of the free electrons can 
be used only for randomly moving electrons, which the effective density is de-
scribed as [1] [2]: 

( ) ( ) ( ) ( ) ( )eff 0 0
1 d dn g E f E f E E kT g E f E E E

∞ ∞
= − = −∂ ∂      ∫ ∫ ,    (1) 

where the member ( ) ( )1f E f E−    describes the probability that at a given 
temperature T electron is in the energy level E, and also it has the capability to 
leave this energy level. The Equation (1) is valid for all homogeneous materials 
with degenerate and non-degenerate electron gas. From this equation also fol-
lows that the term 
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( ) ( )( ) ( ) ( )1p E f E f E f E kTη= −∂ ∂ = −               (2) 

is the probability density function which means that an electron having the 
energy E can randomly move and change its energy due to scattering or due to 
electric field influence; η is the chemical potential. The other part of valence 
electrons (n − neff) cannot change its energy or be scattered by lattice atom vibra-
tions because the lattice atom vibration energy is too small to excite them into 
free energy levels near the Fermi level. Moreover, these electrons cannot change 
their energy because all neighbor energy levels are occupied, and energy variance 
of those electrons is equal to zero. Thus, that part of electrons is localized, and 
moves around the native ions. It is important to point that free RM electrons in 
equilibrium conditions do not interact with those (n − neff) electrons, because the 
latter due to Pauli exchange principle cannot change their energy. That part of 
valence electrons can only be excited by high energy photons as in the photoe-
mission experiment. 

Taking into consideration [12] [15], a schematic hypothetical illustration of 
density-of-states (DOS) of s-states and d-states distributions on energy for noble 
(a) and transition (b) group metals at room temperature are presented in Figure 
1. 

In the case of the noble metals (Figure 1(A)), the s-band is half-filled, but 
there is also a complex set of d-band that occupy the region lying a few elec-
tronvolts lower from the Fermi level energy [4] [15]. The yellow area below the 
curve gs(E)f(E) of the s-band represents the total density of the valence electrons 
in the conduction band; the red area corresponds to the area evaluated by Equa-
tion (1) and represents the effective density of the RM electrons for EF = 3.5 eV at 
T = 295 K. It is seen that d-band does not influence the density of the RM elec-
trons, but they can influence some optic and other properties of noble metals [4]. 

In transition metals, the d-band lies high up in conduction band and extends 
through the Fermi level energy. Considering that d-band is not completely filled,  

 

  
(A)                                           (B) 

Figure 1. Schematic hypothetical illustration of function g(E) and g(E)f(E) dependences on energy (A) 
for noble and (B) for transition group metals at room temperature. The yellow area represents the total 
density n of the valence electrons in the conduction band, and the red area represents the effective den-
sity neff of the free RM electrons; ( ) ( ) ( )5s 4dg E g E g EΣ = + . 
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a particular part of d-electrons, which energy is close to the Fermi level energy, 
can be excited, can randomly move, and can take part in the conductivity, as it 
does s-band electrons near the Fermi level energy. The total effective density of 
the RM electrons is equal to ( ) ( ) ( )eff F s F d Fn g E kT g E g E kTΣ= = +   , where 

( )Fg EΣ  is the total DOS at the Fermi surface, which is obtained from the elec-
tronic heat measurement results. A schematic illustration of the DOS distribu-
tion on energy for transition metals is shown in Figure 1(B). From the compar-
ison of Figure 1(A) and Figure 1(B), it is seen that the effective density of RM 
electrons in transition group metals due to the contribution of the d-band elec-
trons is larger than that of the noble metals [4] [15]. There rises a question, why 
the conductivity of transition metals is lower than that of the noble metals, 
though the effective density of the RM electrons in transition metals is many 
times larger? As it will be shown later, it is due to many times the smaller diffu-
sion coefficient of the free RM electrons in transition group metals. 

The thermal vibrations of the lattice atoms not only excite the free RM elec-
trons, but at the same time produce the same number of electronic defects: the 
local distortion spots of the potential periodicity. In Figure 2(A), there is pre-
sented a schematic illustration of the location of atoms in a two-dimensional lat-
tice of metal: the valence electron waves partially overlap with ones of the 
neighbor atoms, but the valence electrons do not leave the native ions, and move 
in the field of a central force of the native ions [5]. If a particular atom excites a 
free RM electron, as it is shown in Figure 2(A) in (b) row, it produces a distor-
tion of the potential U(x) periodicity, as is schematically shown in Figure 2(B) 
in (b) case. 

The mean free path of the free RM electrons is about two orders larger than 
the distance between atoms. On the other hand, the atoms which generate free 
RM electrons produce the same number of ionic spots which are not completely 
screened by electrons. Considering that the density of the free RM electrons 

( )eff Fn g E kT= , it means that on average the effective density of atoms Neff 
 

 
Figure 2. Schematic illustration of a two-dimensional pattern of metal atoms (A), and the potential U(x) distribution 
(B). In row (b) one atom excites the RM electron, and it produces the distortion of the potential periodicity. 

https://doi.org/10.4236/wjcmp.2022.122002


V. Palenskis 
 

 

DOI: 10.4236/wjcmp.2022.122002 13 Advances in Aging Research 
 

which can generate free RM electrons, and create the same density of distortion 
spots of the potential (or charge density) distribution periodicity. Thus, such 
distortion spots or electronic defects can be estimated as [16] [17] [18]: 

( )eff eff FN n g E kT== .                     (3) 

The other part of atoms (N − Neff) has not sufficient vibration (phonon) ener-
gy to generate free RM electrons near to Fermi level energy. There we want to 
point that the thermal vibrations of lattice atoms play another role, then it has 
been described in [4] [6] [7] [9] [10] [13]. The thermal vibrations of the lattice 
atoms stimulate the excitation of the free RM electrons, and at the same time 
produce the same density of electronic defects, i.e. the local distortion spots of 
the potential periodicity. 

2.2. Transport Characteristics of the Free RM Electrons in  
Elemental Metals 

As it is shown in [1] [2] [3] [17] [18] [19], the general expression of conductivity 
of homogeneous material can be expressed in the following way: 

2
eff eff driftq n D kT qnσ µ= =                    (4) 

where D is the diffusion coefficient, and μdrift is the drift mobility of the free RM 
electrons. From this expression follows that Einstein relation between diffusion 
coefficient and drift mobility driftD kT qµ =  is valid for one type of free RM 
charge carriers (electrons or holes) at any degree of degeneracy of the electron gas. 

In case of metals, the resistivity ρ of the elemental metal can be described as: 

( )21 1 Fq g E Dρ σ  = =   .                   (5) 

The resistivity ρ, and diffusion coefficient D of the free RM electrons depen-
dence on temperature for three elemental metals are presented in Figure 3. The  

 

 
Figure 3. Diffusion coefficient D of RM electrons (calculated by Equation (5)) and resis-
tivity ρ dependences on temperature for three elemental metals: Cu, Pd, and W. The dots 
are the experimental resistivity results [20]; the solid lines are the calculation data by Eq-
uation (9); the number near the chemical sign is the Debye temperature Θ in K used for 
calculations. 
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diffusion coefficient has been calculated by Equation (5) with known resistivity 
and DOS values [20]. For illustration of these temperature dependences, there 
are taken representative metals with different DOS at Fermi surface: 
• Cu for noble group with ( ) 22 1 3

F Cu 2.50 10 eV cmg E − −= × ⋅  
• W for transition group with ( ) 22 1 3

F W 3.48 10 eV cmg E − −= × ⋅ ; 
• Pd for transition group with very high DOS  

( ) 22 1 3
F Pd 27.1 10 eV cmg E − −= × ⋅ . 

Though the density of the free RM electrons neff of palladium is many times 
larger than that of the copper (Figure 4), but the resistivity of Pd is many times 
higher than that of Cu (Figure 3). It is due to that diffusion coefficient of the 
free RM electrons in Pd is many times smaller than in Cu (Figure 3). 

Considering Equation (3), the electron mean free path lF in elemental metals 
now can be expressed as: 

( ) ( )F eff eff eff F1 1l s N s g E kT= =    ,                (6) 

where seff is the effective scattering cross-section. The electron mean free path is 
caused by the free RM electrons scattering by electronic defects, which density 
increases with temperature increasing. It is seen that at temperatures above the 
Debye temperature Θ the effective scattering cross-section does not depend on 
temperature, and can be estimated from Equation (6) at T = T0 = 295 K with 
known mean free path at room temperature [21]. The electron mean free path 
dependences on temperature for three elemental metals Cu, W and Pd are pre-
sented in Figure 4(A). It is seen that at very low temperatures (T < 10 K), the 
electron mean free path of the wolfram is many times higher than that of copper, 
and analogically the resistivity of wolfram is many times smaller than that of 
copper (Figure 3). This important wolfram resistivity property can be used at 
cryogenic temperatures. 

The average relaxation time of the free RM electrons can be estimated as: 

( ) ( )F eff eff F eff F F1 1s N v s g E v kTτ = =    .              (7) 

 

 
(A)                                                   (B) 

Figure 4. (A) The effective density neff, and the mean free electron path lF, and (B) the effective relaxation time τ, and the drift 
mobility μdrift of the free RM electrons dependences on temperature for three elemental metals Cu, Pd and W. 
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Though the average scattering cross-section at temperatures above the Debye 
temperature does not depend on temperature, but considering that during scat-
tering each electron absorbs or excites one phonon, in the general case, the scat-
tering cross-section depends on the ratio of the exchange of the thermal energies 
between the free RM electrons and the electronic defects: 

( )eff eff 0 phs s Tη= Θ ,                      (8) 

where seff0 is the average RM electron scattering cross-section at room tempera-
ture, and ( )ph Tη Θ  is the phonon mediation factor estimated as the ratio be-
tween average thermal energies of the phonon to the free RM electron, which 
causes the free RM electrons scattering by electronic defects [16] [17] [18]: 

( ) ( )( )
4

0

54 d
e 1 1 e x

T
ph x

x xTη
Θ

−
= Θ

− −∫ .                (9) 

This factor at temperatures above the Debye temperature is approximately 
equal to 1, and so in this temperature range, the effective scattering cross-section 
does not depend on temperature. 

The average relaxation time and drift mobility of the free RM electrons de-
pendences on temperature are presented in Figure 4(B). Therefore, the electrical 
resistivity of the elemental metals in the overall temperature range can be de-
scribed as [16] [17] [18]: 

( ) ( ) ( ) ( )0 0 0 phT T T T Tρ ηρ ρ= + ⋅ ⋅ Θ ,              (10) 

where ( ) ( ) ( )2
0 F 01T q g E D Tρ  =    is the resistivity at room temperature T0 = 

295 K, ρ0 is the residual resistivity due to various impurities, and structural de-
fects of the lattice. The electrical resistivity dependences on temperature for 
three elemental metals Cu, Pd, and W are presented in Figure 3. The small dif-
ferences of the calculation data from experimental results can be explained by 
the fact that Debye temperature Θ is not constant and depends on temperature. 
The calculation has been carried out with constant Θ. It is shown that electron 
transport properties can be explained on the common model with randomly 
moving electrons, accounting for the peculiar role of the lattice atom vibrations, 
and it is valid for all elemental metals. 

This model follows one other important property of the free RM electron 
scattering. The current density j is described as 

eff drift eff driftqn qnσ µ= = =j E v E ,                (11) 

where E is the electric field strength, vdrift is the drift velocity of the free RM elec-
trons, μdrift is their drift mobility, which can be described as [1] [2] [3]: 

( )drift * *3 2
q qqD

kT kTm
E

mε

τ τ
µ α= = = ,              (12) 

where 

( )3 2E kTεα =                         (13) 

is the multiplier showing how many times the free RM electron energy is larger 
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than the classical energy (3/2)kT; the brackets < … > means the statistical aver-
aging. Then the drift velocity can be expressed as 

drift drift eff* *

q
m mε

τ τ
µ α= = =v E E F ,               (14) 

where eff qεα=F E  is the effective force of the electrical field acting to free RM 
electron inside of the metal, i.e. the force acting to the free electron in metal is 

εα  times larger than in the free space. The average energy change of the free 
RM electron due to electron scattering in metals is about 1.64 kT [21] which is 
about a few hundred smaller than the average electron energy EF, it is limited by 
Fermi-Dirac statistics The change in momentum due to collision of the free 
electron with ion is equal to impulse. Considering that effective scattering force 
due to multiplier εα  increases with temperature decreasing, the small energy 
changes due to free electron scattering causes the large free electron momentum 
changes. Thus, the free electron momentum direction in metals is completely 
indefinite after its every scattering at any temperature. 

3. Conclusions 

On the base of experimental data on electrical conductivity and electronic heat 
capacity of elemental metals, and considering that lattice atom vibrations excite 
the free RM electrons, and produce the same number of the electronic defects 
(not completely screened ions), the following conclusions are carried out: 
• the effective free randomly moving (RM) electron density is described by 

Equation (1), and the probability density distribution of the free RM elec-
trons on energy by Equation (2); these expressions are valid for all homoge-
neous materials with any degree of degeneracy of electron gas; 

• the effective free RM electron density in elemental metals is proportional to den-
sity-of-states at the Fermi surface and absolute temperature ( ( )eff Fn g E kT= ); 

• the effective density of the electronic defects in elemental metals is  
( )eff FN g E kT= , which causes the scattering of the free RM electrons; 

• the free RM electron scattering cross-section at temperatures above the 
Debye temperature does not depend on temperature; the phonon mediation 
factor accounting for the free RM electron scattering by electronic defections 
is described by Equation (9); 

• the resistivity of the elemental metals in the overall temperature range can be 
described by Equation (10). 
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