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Abstract 
Entanglement in quantum theory is a concept that has confused many scien-
tists. This concept implies that the cluster property, which means no relations 
between sufficiently separated two events, is non-trivial. In the works for 
some quantum spin systems, which have been recently published by the au-
thor, extensive and quantitative examinations were made about the violation 
of cluster property in the correlation function of the spin operator. The pre-
vious study of these quantum antiferromagnets showed that this violation is 
induced by the degenerate states in the systems where the continuous sym-
metry spontaneously breaks. Since this breaking is found in many materials 
such as the high temperature superconductors and the superfluidity, it is an 
important question whether we can observe the violation of the cluster prop-
erty in them. As a step to answer this question we study a quantum nonlinear 
sigma model with U(1) symmetry in this paper. It is well known that this 
model, which has been derived as an effective model of the quantum spin 
systems, can also be applied to investigations of many materials. Notifying 
that the existence of the degenerate states is essential for the violation, we 
made numerical calculations in addition to theoretical arguments to find 
these states in the nonlinear sigma model. Then, successfully finding the de-
generate states in the model, we came to a conclusion that there is a chance to 
observe the violation of cluster property in many materials to which the non-
linear sigma model applies. 
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1. Introduction 

Entanglement [1] [2] [3] is quite difficult concept even for researchers [4], be-
cause it contradicts the classical concept on the locality [5]. This difficulty has 
not been reduced when a huge number of researchers apply entanglement to 
quantum information [6] [7] [8] after the birth of the concept of quantum com-
puter [9] that originates from Deutsch [10]. Entanglement is the correlation of 
quantum objects, which can not be explained by the classical statistics. When the 
entangled correlation is found at the infinitely large distance, it leads to violation 
of the cluster decomposition [11], or the cluster property [12], which is a fun-
damental concept of physics that there is no relation between two events occur-
ring infinitely apart from each other. Since this violation was found in toy mod-
els or in the academic models [12], there are active studies on the cluster prop-
erty in the many-body systems [13] [14] [15] and in quantum field theory [16] 
[17] including QCD [18] [19]. 

In previous researches [20] [21] [22] we studied two-dimensional antiferro-
magnetic quantum spin systems on the square lattice with U(1) or SU(2) sym-
metry. We presented the methods to observe the violation of the cluster property 
on the system where the continuous symmetry breaks spontaneously [11] [23]. 
In the case of U(1) symmetry [20], we introduced, in order to make the ground 
state unique, an explicitly symmetry breaking interaction whose strength is g. 
Then we pointed out that the violation is the order of ( )1 sg N  on the finite 
lattice with sN  sites. For the quantum spin system with SU(2) symmetry [21], 
we discussed the observation of the violation introducing two kinds of explicitly 
symmetry breaking interactions. Our results there also indicated the possibility 
to observe the violation, although the effect of the violation contains the factor 
1 sN  so that fine experiments would be necessary. In the following work [22], 
however, we found this situation changes when the spin system couples with 
another spin system. We showed that the Hamiltonian in this work includes Cu-
rie-Weiss model [24] [25] [26] induced by the violation of the cluster property. 
Then we found that the effective Hamiltonian has the factor 1 sN , which is 
needed for the thermodynamical properties to be well-defined. We concluded 
that it is possible to find the effect from the violation of the cluster property 
through observing the thermodynamical properties given by Curie-Weiss model. 

In these studies where our models are quantum antiferromagnets, we recog-
nized that the degenerate states due to the spontaneous symmetry breaking in-
duce this violation. As is well known this breaking is found in many materials 
[27] [28] [29], including the high temperature superconductor. It is quite im-
portant to examine whether we can observe the violation of the cluster property 
in such materials. Therefore we are sure that to observe the violation of the clus-
ter property is not only a theoretical concern but also a subject to be experimen-
tally investigated in many systems. 

In order to make quantitative discussions, we need to find a model which ef-
fectively helps us to study the low energy behaviors in many systems. Keeping 
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this purpose in mind we now study a quantum nonlinear sigma model, which 
has been derived as the effective model for two-dimensional Heisenberg antifer-
romagnets [30] [31] [32] and has been applied to various spin systems [33] [34] 
[35] [36]. We also find many applications of this model in particle physics [37] 
[38] [39], since the chiral Lagrangian that contains it has given fruitful results on 
hadron physics [40]. The reason for such wide applications is that this model 
realizes the symmetry by the minimum degrees of freedom when the continuous 
symmetry is spontaneously broken. 

In our study of the cluster property with spontaneous symmetry breaking in the 
system on a lattice with sN  sites, the key observation is the quasi-degenerated 
states Qn  whose energy 

QnE  is the lowest one for a quantum number Qn  
related to the symmetry. In the spin systems, it has been well known that the 
energy gap 0QnE E−  is proportional to 2

Q sn N  [27]. In our work on the non-
linear sigma model, we will reveal the existence of the quasi-degenerated 
states. We then show that the energy gap in this model is also proportional to 

2
Q sn N . 
Let us describe the plan of this paper. 
In the next section, we describe our quantum nonlinear sigma model on the 

square lattice with U(1) symmetry. The first subsection is devoted to comments 
on the model which has the continuous symmetry. Then we clarify the quantum 
property of our model with the discrete symmetry in the second subsection. The 
third subsection discusses relations between these two models. 

In many researches, the nonlinear sigma model is defined by the effective ac-
tion [30] [34], where the local field is given by the finite and continuous variable 
called the angle variable. This effective action is given by the path integral so that 
it is defined by the classical variables, not by the quantum operators. In this 
work, on the contrary, we introduce the quantum theory of the discrete symme-
try using a discrete and finite variable instead of the angle variable. The reason 
for it is that in numerical approaches we need to fix the quantum number to 
calculate the lowest energy with this number. We then introduce a state 

qn , 
where ( )0,1, , 1dn L= −  with the degree of the discrete variable dL . We ex-
pect that the discrete variable is close to the angle variable when dL  is large 
enough. In order to justify the model with the discrete variable, our discussion 
starts from the Weyl relation [41] [42] [43] where the basic operators are not 
hermitian but unitary. We replace the basic operators ˆ ˆ,q p  by two kinds of un-
itary operators, ( ) ( )ˆ ˆexpqU t itq=  and ( ) ( )ˆ ˆexppU s isp= . In other words, we 
have the Weyl relation ( ) ( ) ( ) ( )ˆ ˆ ˆ ˆ eist

q p p qU t U s U s U t=  instead of the commuta-
tion relation [ ]ˆ ˆ,q p i= . Note that the commutation relation on q̂  and p̂  can 
not be represented by finite dimensional matrices, while the Weyl relation on 

( )ˆ
qU t  and ( )ˆ

pU s  can be extended to the operators ˆ
qU  and ˆ

pU  which are 
represented by finite dimensional matrices. A brief description for ( )ˆ

qU t  and 
( )ˆ

pU s  as well as for ˆ
qU  and ˆ

pU  will be found in Appendix. 
In the second subsection, we define our model on the square lattice where 
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the unitary operators ˆ
qiU  and ˆ

piU  are defined at each site i. The Hamilto-
nian of the model has two terms named A-term and B-term, which correspond 
with the kinetic term and the potential term in the ordinary nonlinear sigma 
model respectively. Here we introduce q-representation where the B-term of 
the Hamiltonian is diagonalized, and p-representation where the A-term is 
diagonalized. The Hamiltonian introduced in [31] has the symmetry that it 
does not change when we increase the angle variables at every site by the same 
magnitude. To this symmetry, we have the generator for which the quantum 
number is defined. Therefore we impose that our Hamiltonian is invariant 
under increment of the discrete variables, which correspond to the angles in 
the continuous symmetry, at every site by the same magnitude. By this inva-
riance, we can define the unitary operator for the increment transformation. 
Furthermore, we can introduce the hermitian operator ˆQn  whose quantum 
number is denoted by the integer Qn . One of features of our model is that ˆQn  
is diagonalized in p-representation. 

When dL  is quite large, we suppose the variable of our model becomes the 
angle variable. Discussing the A-term of our Hamiltonian in the large dL  case, 
we show that this term becomes the kinetic term which is the differential operators 
in q-representation. It means that A-term ( )†ˆ ˆ

pi pii U U+∑  becomes 2 2
ii θ∂ ∂∑  

in the large dL  limit, where 2 dn Lπ  becomes θ . 
Sections 3 is devoted to the theoretical discussion for the lowest energy 
( ),

Qn d sE L N  with a fixed value of Qn , while Sections 4 is to the numerical in-
vestigation for this energy. Our purpose of our work is to show that the energy 
gap ( ) ( )0, ,

Q Qn d s n d sE L N E L N=−  is proportional to 2
Q sn N . In section 3, we 

give the theoretical arguments for this form, neglecting the effect due to the 
B-term. Through this discussion, we find correction terms for the energy gap 
which would be observed on small lattices. Section 4 is to show our numerical 
results on lattices with 5sN = , 9, 16, 36 and 64 sites. In the first subsection, the 
results of 5sN =  and 9 are presented. For the 5sN =  lattice we employ the 
diagonalization so that we are not bothered by the numerical error. The results on 
the 9sN =  lattice are obtained by stochastic state selection method [44]-[51], 
where we could make the numerical errors quite small. We extensively examine 
the energy gap including the contribution from the correction terms. The results 
on both lattices support our discussion in section 3. Calculations for 16sN = , 
36 and 64 lattices are carried out by quantum Monte Carlo methods [52] [53] 
[54]. The results, which are also in good agreement to our theoretical predic-
tions, are presented in the second subsection. There we show that we successful-
ly observe the effect from the correction terms on the 16sN =  lattice beyond 
the statistical errors. On 36sN =  and 64 lattices, on the other hand, part of the 
correction effect turned out to be too small to observe. 

In the last section, we conclude that the quasi-degenerate states exist in the 
quantum nonlinear sigma model by summarizing the theoretical studies and the 
extensive examinations by numerical approaches. Also we make comments on 
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the dependence of the interaction strength on our conclusion, as well as those on 
future studies on the violation of the cluster property and the extension of our 
work to the model with SU(2) symmetry. 

2. Quantum Nonlinear Sigma Model 
2.1. Continuous Model 

In many literatures, the quantum nonlinear sigma model has been defined in the 
form of the effective action. In this work, however, we define it in the form of 
Hamiltonian following to [31]. Instead of SU(2) symmetry which is supposed in 
[31] we employ U(1) symmetry for simplicity. 

First we introduce a variable ω̂  for which the eigenvalue is ω  and the ei-
genstate is ω . 

( )ˆ , .ω ω ω ω ω ω δ ω ω′ ′= = −                 (1) 

The value of ω  is continuous and is limited to the range [ ]0,2π , since ω̂  
expresses U(1) symmetry. 

We also introduce a conjugate operator of ω̂ , which we denote p̂ω . 

[ ]ˆ ˆ, .p iωω =                           (2) 

This commutation relation implies that 

( ) ( )dˆ, .
d

p iωω ψ ψ ω ω ψ ψ ω
ω

= = −              (3) 

The eigenvalue of p̂ω  should be discrete because, for the eigenstate pω  of 
p̂ω , the inner product ( )expp i pω ωω ω=  has the same value at 0ω =  and 

2ω = π . Therefore we denote p nω =  hereafter, 

ˆ , 0, 1, 2, .p n n n nω = = ± ±                    (4) 

For models on the lattice, we introduce operators ˆ jω  and ˆ jpω  at each site j, 
where 0,1, , 1sj N= −  for the lattice size sN . They satisfy the following com-
mutation relations. 

ˆ ˆ ˆˆ ˆ ˆ, , , 0, , 0.j l jl j l j lp i p pω ω ωω δ ω ω     = = =                  (5) 

Using these operators given at every site, we define the Hamiltonian for a 
nonlinear sigma model on the square lattice by 

( )
( )

( )
1 2

0 ,

ˆ ˆ ˆˆ cos .
sN

Lattice j l n
j l n

H f p gω ω ω
−

=

≡ − −∑ ∑               (6) 

Here j denotes the site number, while ( ),l n  denotes the nearest neighbor on 
the square lattice. For this Hamiltonian, we can introduce the generator ˆ

latticeQ  
defined by 

1

0

ˆ ˆ .
sN

Lattice j
j

Q pω
−

=

≡ ∑                         (7) 

Using Equations (5) and (6) it is easy to see that 
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( )
( )

( )
( )

( )
( ) ( ){ }

,

,

,

ˆ ˆˆ ˆ ˆ, cos ,

ˆ ˆ ˆ ˆcos ,

ˆ ˆ ˆ ˆsin sin 0.

Lattice Lattice l n Lattice
l n

l n l n
l n

l n l n
l n

H Q g Q

g p p

ig

ω ω

ω ω

ω ω

ω ω ω ω

   = − −   

 = − − + 

= − − − − =

∑

∑

∑

       (8) 

2.2. Discrete Model 

We would like to obtain the energy for the quantum number of the generator 
ˆ

LatticeQ  in numerical calculations by the diagonalization or quantum Monte 
Carlo methods. Since these methods are formulated through a finitely dimen-
sional linear algebra, we employ the discrete variable instead of the continuous 
one. For this purpose, the commutation relation (5) is not suitable, because it 
can not apply to the quantum theory of the discrete variable. In order to make a 
model that has the discrete variable and that is a good approximation to the 
model with ˆ

LatticeH  of the angle variable ω , we would like to make our model 
to satisfy the Weyl relation. 

Based on the discussion in Appendix A2, we introduce two kinds of unitary 
operators ˆ

pjU  and ˆ
qjU  at each lattice site j, and impose the following Weyl 

relation to them. 

( )ˆ ˆ ˆ ˆ exp , 2 ,pj qj qj pj d d dU U U U i Lδ δ= ≡ π  
ˆ ˆ ˆ ˆ ˆ ˆ, 0, , 0, , 0, for .qj ql pj pl pj qlU U U U U U j l     = = = ≠              (9) 

Assuming the existence of an eigenstate 0 qj
 of ˆ

qjU  and the relation (9) we 
obtain, for 0,1, , 1dn L= − , the eigenstates of ˆ

qjU  or ˆ
pjU . 

( ) ( )ˆ ˆ0 , exp ,
n

pj qj dqj qj qj qjn U U n n inδ≡ = −
 

( ) ( )ˆ ˆ0 , exp .
n

qj pj dpj pj pj pjn U U n n inδ≡ =           (10) 

Here 0 pj
 is defined by 0 qj

 following Equation (63) in Appendix. We 
also obtain 

( ) ( )1 1ˆ ˆ ˆ ˆ0 1 , 0 1 .
n n

pj pj qj qjqj qj qj pj pj pjU n U n U n U n
+ +

= = + = = +  (11) 

Here 0d qjqjL =  and 0d pjpjL = , as is shown in Appendix. Also the in-
ner product 

qj pjn m  is given by 

( ) ( )
* 1 exp .dqj pj pj qj

d

n m m n inm
L

δ= = −            (12) 

The state in q-representation on the lattice is defined by 

0 1 1 0 1 110 1
, , , .

s s s
N Nqqq qN

n n n n n n− − −
≡ ⊗ ⊗ ⊗          (13) 

Similarly the state in p-representation on the lattice is defined by 

0 1 1 0 1 110 1
, , , .

s s s
N Nppp pN

n n n n n n− − −
≡ ⊗ ⊗ ⊗          (14) 

We then define a Hamiltonian ˆ
DH  for the discrete variables on the lattice by 
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ˆ ˆ ˆ ,D A BH H H≡ +  

( )
( )

( )† † †

,

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ2 , .A pl pl B ql qn qn ql
l l n

H A U U H B U U U U≡ − + − ≡ − +∑ ∑      (15) 

For ˆ
DH  we can introduce an increment operator ˆ

DQ  defined by 

( )†ˆ ˆ ˆˆ ˆ ˆ, exp .D pl D qj D qj d
l

Q U Q U Q U iδ≡ =∏              (16) 

We can obtain the eigenstate which is common to ˆ
DH  and ˆ

DQ , because 

( )
( )

( )
( )

† †

,

† †

, ,

ˆ ˆˆ ˆ ˆ ˆ ˆ, ,

ˆ ˆ ˆ ˆ ˆ ˆ ˆ, 0.

D D ql qn qn ql D
l n

ql qn qn ql pl pn pj
l n j l n

H Q B U U U U Q

B U U U U U U U
≠

   = − +   

 = − + = 

∑

∑ ∏
      (17) 

In the last equation of Equation (17), note that, for l n≠ , we have 

( ){ } ( ){ }† † †

† †

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆexp exp

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ,

ql qn pl pn ql pl qn pn pl ql d pn qn d

pl ql pn qn pl pn ql qn

U U U U U U U U U U i U U i

U U U U U U U U

δ δ= = −

= =  
† † † †ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ .qn ql pl pn qn ql pn pl pn pl qn ql pl pn qn qlU U U U U U U U U U U U U U U U= = =     (18) 

Operating ˆ
DQ  to the state 0 1 1, , ,

sN p
n n n −  given by the definition (14) we 

obtain 

( )

1

0 1 1 0 1 1
0

1

0 1 1
0

1

0 1 1
0

ˆ ˆ, , , , , ,

, , , exp

, , , exp .

s

s s

s

s

s

s

N

D N pj Np pj

N

N d jp j

N

N d jp j

Q n n n U n n n

n n n i n

n n n i n

δ

δ

−

− −
=

−

−
=

−

−
=

=

=

 
=  

 

∏

∏

∑

 





      (19) 

2.3. Hamiltonian for Large Ld 

As described in the previous section, the eigenvalue of ˆ
qjU  is discrete. When 

dL  is quite large, however, the continuous eigenvalue of ˆ
qjU  would be realized 

so that the physical quantities of our model become good approximations to 
those of ˆ

LatticeH . Consider the case 2 1d dLδ π=  . If we introduce a notation 
2d dn n Lθ δ= = π , we can replace 

qjn  by 
qjθ . Then we have 

( )ˆ exp .qj qj qjU iθ θ θ= −                    (20) 

Let us operate ( )†ˆ ˆ 2pj pjU U+ −  to a state of ( )qj qjθ θ ψ θΨ ≡ ∑  at a site j 
of the lattice. Then 

( ) ( ) ( )

( ) ( )

( ) ( ) ( ){ }

( )

† †

2
2

2

ˆ ˆ ˆ ˆ2 2

2

2

d
.

d

pj pj pj pjqj qj

d d qjqj qj

d dqj

dqj

U U U U
θ

θ

θ

θ

θ ψ θ

θ δ θ δ θ ψ θ

θ ψ θ δ ψ θ δ ψ θ

ψ θ
θ δ

θ

+ − Ψ = + −

= + + − −

= − + + −

  
 
  

∑

∑

∑

∑

    (21) 
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We apply this discussion to the whole state 0 1 1, , ,
sN q

θ θ θ −  (13). The state 

qΦ  is given by 

{ }
( )0 1 1 0 1 1, , , , , , .

s s
j

N q Nq q
θ

θ θ θ φ θ θ θ− −Φ ≡ ∑              (22) 

Hereafter we abbreviate ( )0 1 1, , ,
sq Nφ θ θ θ −  as { }( )q jφ θ . Operating ˆ

AH  in 
Equation (15) to this state we obtain 

{ }

{ }( )21
2

0 2 1 2
0

ˆ , , , .
s

s
j

N q j
A N dq q l l

H A
θ

φ θ
θ θ θ δ

θ

−

−
=

∂
Φ −

∂∑ ∑         (23) 

As for ˆ
BH  note that, for one nearest neighbor pair ( ),l n , 

( )
( ) ( ) ( ) ( ){ }
( )

† †
0 2 1

0 2 1

0 2 1

ˆ ˆ ˆ ˆ , , ,

exp exp exp exp , , ,

2cos , , , .

s

s

s

ql qn qn ql N q

l n n l N q

l n N q

U U U U

i i i i

θ θ θ

θ θ θ θ θ θ θ

θ θ θ θ θ

−

−

−

+

= − + −

= −







     (24) 

Therefore 

{ }
{ }( )

( )
( )0 2 1

,

ˆ , , , 2 cos .
s

j

B N q j l nq q l n
H B

θ

θ θ θ φ θ θ θ−

  Φ = − − 
  

∑ ∑     (25) 

With Equations (23) and (25) we obtain 

{ }

{ }( ) { }( )
( )

( )

0 2 1

21
2

2
0 ,

ˆ , , ,

2 cos .

s
j

s

D Nq q

N q j
d q j l n

l l nl

H

A B

θ

θ θ θ

φ θ
δ φ θ θ θ

θ

−

−

=

Φ

 ∂ × − − − 
∂  

∑

∑ ∑



   (26) 

3. Energy with a Fixed Number nQ 

In this section, we present a theoretical argument about the lowest energy with a 
fixed number Qn . In the first subsection, we discuss the effective Hamiltonian 
where the operator ˆQn  is clearly separated. The second subsection is to esti-
mate the energy gap using this effective Hamiltonian. 

3.1. Effective Hamiltonian 

Here we use new operators q̂lV  and ˆ
plV  instead of ˆ

qjU  and ˆ
pjU . We will 

show that we can express the increment operator ˆ
DQ  (16) by the single opera-

tor 0
ˆ

pV . In addition, we express ˆ
BH  in Equation (15) by q̂lV  ( 1l ≥ ). As for 

ˆ
AH  in Equation (15) we present an expression where ˆ

DQ  is included in an ex-
plicit form. 

First we consider an operator ˆ jm  which is defined by ˆ
pjU  as 

( ) ˆˆexp .d j pji m Uδ ≡                       (27) 

Note that ˆ jm  is hermitian. For a set of operators { }ˆ jm  ( 0,1, , 1sj N= − ) 
we can introduce a set of new operators { }l̂ζ . 
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1 1 1 1

0 0 0 0

ˆ ˆˆ ˆ, , , .
s s s sN N N N

l lj j j jl l jl lk jk lj jn ln
j l l j

a m m b b a a bζ ζ δ δ
− − − −

= = = =

≡ = = =∑ ∑ ∑ ∑     (28) 

Let us assume that the matrix lja    is orthonormal, i.e. jl ljb a=  and they 
are real. Therefore lj nj lnj a a δ=∑  and lj lk jkl a a δ=∑ . Also we assume  

0 1j sa N=  for any j, which means that 0 0 1j j sb a N= =  and  
( )0 0 1 1j j sj ja b N= =∑ ∑ . Using lja  and jlb  we define unitary operators ˆ

plV  
and q̂lV , 

( ) ( )
1 1

0 0

ˆ ˆ ˆ ˆ, .
s sjl lj

N Nb a

ql qj pl pj
j j

V U V U
− −

= =

≡ ≡∏ ∏                (29) 

Then we express ˆ
qjU  and ˆ

pjU  by q̂lV  and ˆ
plV . 

( ) ( ) ( )

( )

1
0

1 1 1 1

0 0 0 0

1

0

ˆ ˆ ˆ

ˆ ˆ ,

lj Nss s s slj kl kl ljl

s kj

aN N N Na b b a

ql qk qk
l l k k

N

qk qj
k

V U U

U U
δ

−
=

− − − −

= = = =

−

=

∑ 
= = 

 

= =

∏ ∏ ∏ ∏

∏
 

( ) ( ) ( )

( )

1
0

1 1 1 1

0 0 0 0

1

0

ˆ ˆ ˆ

ˆ ˆ .

jl Nss s s sjl lk lk jll

s kj

bN N N Nb a a b

pl pk pk
l l k k

N

pk pj
k

V U U

U U
δ

−
=

− − − −

= = = =

−

=

∑ 
= = 

 

= =

∏ ∏ ∏ ∏

∏
        (30) 

Next we show that a set of operators { }ˆ ˆ,pl qlV V  has the same Weyl relations as 
those of { }ˆ ˆ,pj qjU U  given by Equation (9). Namely, 

( )ˆ ˆ ˆ ˆ exp ,pl ql ql pl dV V V V iδ=  
ˆ ˆ ˆ ˆ ˆ ˆ, 0, , 0, , 0, for .ql qn pl pn pl qnV V V V V V l n     = = = ≠              (31) 

The first Weyl relation is verified by notifying 

( ) ( ) ( ) ( )

( ) ( ) ( )

( )

1 1 1

0 0 0

1

0

ˆ ˆ ˆ ˆ ˆ ˆ

ˆ ˆ exp

ˆ ˆ ˆ ˆexp exp .

s s slj kn lj jn

s jn lj

N N Na b a b

pl qn pj qk pj qj
j k j

N b a

qj pj d lj jn
j

qn pl d lj jn qn pl d ln
j

V V U U U U

U U i a b

V V i a b V V i

δ

δ δ δ

− − −

= = =

−

=

= =

=

 
= = 

 

∏ ∏ ∏

∏

∑

        (32) 

The rest of relations are trivial from Equations (9) and (29). By this proof we 
confirm that the set of { }ˆ ˆ,pl qlV V  is independent and complete. 

Then we will express ˆ
BH  in Equation (15) by q̂lV . For this purpose, we cal-

culate †ˆ ˆ
ql qnU U , noting † 1ˆ ˆ

qn qnU U −=  and 0 0 1l n sa a N= = , 

( ) ( ) ( ) ( )
1 1 1 1

†

0 0 0 1

ˆ ˆ ˆ ˆ ˆ ˆ .
s s s sjl kn jl jn jl jn

N N N Na a a a a a

ql qn qj qk qj qj
j k j j

U U V V V V
− − − −− − −

= = = =

= = =∏ ∏ ∏ ∏    (33) 

It should be noted that †ˆ ˆ
ql qnU U  contains no 0q̂V . Therefore we can express 

ˆ
BH  by ( )1sN −  operators q̂jV  ( 1j ≥ ). 

( )
( ) ( )

1 1

, 1 1

ˆ ˆ ˆ .
s sjl jn jn jl

N Na a a a

B qj qj
l n j j

H B V V
− −− −

= =

 
= − + 

 
∑ ∏ ∏            (34) 
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Next we express ˆ
AH  in Equation (15) by means of new operators l̂ζ  de-

fined in Equation (28). It should be noted that, from Equations (27) and (28), we 
obtain 

( )
1 1

0
00

ˆˆ ˆ ˆ ˆ ˆ ˆ, exp , .
s sN N

Q
D pj d Q Q j

jjs

n
Q U i n n m

N
ζ δ

− −

==

= = = ≡ ∑∏         (35) 

Then we can express ˆ
AH  in Equation (15) using ˆQn  and l̂ζ  ( 1l ≥ ) be-

cause 

( )
1

0

1

1

1

ˆ
ˆˆ ˆexp exp

ˆˆexp

s

s

N

pl d l d ln n
n s

N
Q

d ln n
n s

U i m i b
N

n
i b

N

ζ
δ δ ζ

δ ζ

−

=

−

=

   = = +      
   = +  
   

∑

∑
 

1
†

1

ˆˆˆ exp .
sN

Q
pl d ln n

n s

n
U i b

N
δ ζ

−

=

   = − +  
   

∑                (36) 

The result is, with 1
1

ˆˆ sN
l ln nn bη ζ−

=
≡ ∑ , 

1

0

1

0

ˆ ˆˆ ˆ ˆexp exp 2

ˆ
ˆ2 cos 1 .

s

s

N
Q Q

A d l d l
l s s

N
Q

d l
l s

n n
H A i i

N N

n
A

N

δ η δ η

δ η

−

=

−

=

        = − + + − + −       
           

    = − + −   
     

∑

∑
     (37) 

Now consider the case 1dδ  , where we expand ˆ
AH  by dδ . 

( ) ( )
( )

( )
( )

21

0 0 0

21
2

1 0

ˆ 1ˆˆ ˆ2 1
2 !

ˆ1
ˆ2 .

2 !

s

s

k kN
Qk k

A A d d l
k l k s

kk N
Qk

d l
k l s

n
H h A

N k

n
A

k N

δ δ η

δ η

−∞ ∞

= = =

−∞

= =

   −  = = − + −   
     

 −   = − +  
   

∑ ∑ ∑

∑ ∑

      (38) 

It should be noted that ( )0ˆ 0Ah =  due to the definition of ˆ
AH  and ( )2 1ˆ 0k

Ah + =  
because ˆ

AH  is hermitian. In the second order of dδ  we obtain ( )2ˆ
AH , 

( ) ( ) ( ) 21
2 2 2 2

0

21
2 2

0

21
2 2

0

ˆ1ˆˆ ˆ2
2!

ˆ ˆ
ˆ ˆ2

ˆ
ˆ .

s

s

s

N
Q

A A d d l
l s

N
Q Q

d l l
l s s

N
Q

d l
l s

n
H h A

N

n n
A

N N

n
A

N

δ δ η

δ η η

δ η

−

=

−

=

−

=

−  
≡ = − + 

 
   = + +  

   
 

= +  
 

∑

∑

∑

            (39) 

Here note that 
1 1 1 1 1 1 1

0 0 1 1 0 1 0

1 1 1

0 0
1 0 1

1ˆ ˆ ˆˆ

ˆ ˆ 0.

s s s s s s s

s s s

N N N N N N N

l ln n ln n s ln n
l l n n l n l s

N N N

s ln l n s n n
n l n

b b N b
N

N b b N

η ζ ζ ζ

ζ δ ζ

− − − − − − −

= = = = = = =

− − −

= = =

  
= = =        

 
= = = 

 

∑ ∑ ∑ ∑ ∑ ∑ ∑

∑ ∑ ∑
   (40) 
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For later use we also calculate ( ) ( ) ( )4 2 42 4ˆ ˆˆ
A A d A dH h hδ δ≡ + . We obtain 

( ) ( )

( )

( )

41
4 2 4

0

2 3 41
2 4 4 3 2

0

21 1 1
2 4 4 3

2
0 0 0 0

ˆ1ˆ ˆ ˆ2
4!

ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ4 6 4
12

ˆ ˆ1ˆ ˆ ˆ
12 3 2

s

s

s s s

N
Q

A A d l
l s

N
Q Q Q Q

A d l l l l
l s s s s

N N N N
Q Q

A d l l
l l l ls s

n
H H A

N

n n n nAH
N N N N

n n
H A

N N

δ η

δ η η η η

δ η η

−

=

−

=

− − −

= = = =

 
= − + 

 
       = − + + + +      

       

= − + +

∑

∑

∑ ∑ ∑
41

2
3

ˆ
ˆ .

12

s Q
l

s

n
N

η
−  + 

  
∑

 (41) 

In Equation (41) we dropped the term of l̂lη∑  because of Equation (40). 

3.2. Energy with a Fixed Value of Qn  

In order of 2
dδ  the Hamiltonian ( )2ˆ

DH  is given by 

( ) ( ) ( )
2

2 2 2 2
0

ˆˆ ˆ ˆ ˆ ,Q
D A B D d

s

n
H H H H A

N
δ≡ + = +

 

( )

( )
( ) ( )

1 11
2 2 2
0

0 , 1 1

ˆ ˆ ˆˆ .
s ss jl jn jn jl

N NN a a a a

D d l qj qj
l l n j j

H A B V Vδ η
− −− − −

= = =

 
≡ − + 

 
∑ ∑ ∏ ∏       (42) 

When we calculate the energy in p-representation, where the basic state is 

0 1 2 1, , , ,
sN p

m m m m −  (14), the eigenvalue of the operator ˆQn  is Q jjn m= ∑ . 
Therefore the lowest energy with a fixed value of Qn  is given by 

( ) ( )
2

2 2 2
0 .

Q

Q
dn

s

n
E E A

N
δ= +                      (43) 

Here ( )2
0E  is the lowest energy from ( )2

0
ˆ

DH . We conclude that the energy gap 
,2

Q

th
n∆  with a fixed value of Qn  is given by 

( ) ( )
2

2 2,2 2
0 .

Q Q

Qth
n dn

s

n
E E A

N
δ∆ ≡ − =                   (44) 

Then let us discuss energy up to 4
dδ . The effective Hamiltonian ( )4ˆ

DH  is giv-
en by 

( ) ( ) ( ) { }
2

4 4 2 2 4 2 4
0 0 1 2 4

ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ,Q
D A B D d d Q Q Q

s

n
H H H H A A e e n e n e n

N
δ δ≡ + = + − + + +

 
1 1 1

4 3 2
0 1 2 42 3

0 0 0

1 1 1 1ˆ ˆ ˆˆ ˆ ˆ ˆ, , , .
12 3 2 12

s s sN N N

l l l
l l ls s s

e e e e
N N N

η η η
− − −

= = =

≡ ≡ ≡ ≡∑ ∑ ∑      (45) 

As for terms with ˆke  we estimate their contributions by the first-order per-
turbation theory. When the eigenstate of ( )2

0
ˆ

DH  with the eigen energy ( )2
0E  is 

(2)
0| E 〉 , the energy is given by 

( ) ( ) ( ) ( ) ( ){ } ( )

( )

4 2 2 1 2 2
0 0

2 2 4
2 2 4 4 3 2

0 3

ˆ ˆ

,
12 3 2 12

Q Q D Dn n

Q Q Q Qs
d d

s s s

E E E H H E

n n n nN
E A A

N N N
δ δ η η η

≡ + −

   
= + − + + +      
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( ) ( )
1

2 2
0 0

0

1 ˆ .
sN

k k
l

ls

E E
N

η η
−

=

≡ ∑                   (46) 

Here we see that 3η  vanishes. The reason is that ˆ
DH  is invariant under the 

exchange of ˆ
qlU  and †ˆ

qlU  as well as the exchange of ˆ
plU  and †ˆ

plU , which 
means to replace l̂η  by l̂η− . In conclusion, the energy gap up to 4

dδ  is given 
by 

( ) ( )
2 4

4 4,4 2 ,2 4
0 3 ,

12Q Q

Q Qth th
n d sq dn

s s

n n
E E A a A

N N
δ δ∆ ≡ − = −

 
( ) ( )4 2 4 4 ,2 2 2
0 0

1, 1 .
12 2

ths
d sq d

N
E E A aδ η δ η= − ≡ −             (47) 

Note that the value of ,2th
sqa  depends on not only ˆ

AH  but also ˆ
BH . 

4. Numerical Results 

Now we present our numerical results of the lowest energy from the Hamilto-
nian ˆ

DH  (15) with a fixed value of Qn , which we denote ( ),
Qn d sE L N , for 

several values of dL  on the square lattice whose size is sN . In order to obtain 
the energy for each value of Qn  we employ the basis states in p-representation, 
which consist of 0 1 1, , ,

sN p
m m m −  (14) with l Ql m n=∑ . We examine the 

numerically obtained energy gap defined by 

( ) ( ) ( )0, , , .
Q Qn d s n d s d sL N E L N E L N∆ ≡ −              (48) 

Throughout this section we fix A in ˆ
DH  to be ( ) 22 2d dLδ −− = π , so that 

2 1dAδ = , and 1B = . Note that the energy gap scarcely depends on B. Our study 
is carried out on 5sN = , 9, 16, 36 and 64 lattices with 32dL = , 36 or 64. The 
fixed value ranges from 0Qn =  to 2Q dn L= . Note that the result for d QL n− , 
which means the result for Qn− , is the same as the result for Qn  because of the 
periodicity of the operators. 

We will show that ( ),
Qn d sL N∆  is well described by ,2

Q

th
n∆  (44) or ,4

Q

th
n∆  

(47) which we discussed in the previous section. For this purpose, we introduce 
three ratios, 

( ) ( ) ( )
2

1 , , , ,
Q Q Q

Q
n d s n d s n d s

s

n
D L N L N L N

N
  ≡ ∆ − ∆ 
    

( ) ( ) ( )
2

,22 , , , ,
Q Q Q

Qth
n d s n d s sq n d s

s

n
D L N L N a L N

N
  ≡ ∆ − ∆ 
    

( ) ( ){ } ( ),43 , , , .
Q Q Q Q

th
n d s n d s n n d sD L N L N L N≡ ∆ −∆ ∆         (49) 

Here ( )1 ,
Qn d sD L N  is useful to compare numerical results with ,2

Q

th
n∆ , while 

( )2 ,
Qn d sD L N  is for the comparison with the first term of ,4

Q

th
n∆ . Since  

( ) ( )2 22 2
0 0l̂ slE E Nη η= ∑  in ,2th

sqa  of the expression (47) is beyond analytical 

arguments, we numerically estimate this expectation value by 2
0 0l̂ slE E Nη∑ , 
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where 0E  is the state of the lowest energy with 0Qn = . 

4.1. Results on Ns = 5, 9 Lattices 

In this subsection, we present the numerical results of ( )32, 5
Qn d sL N∆ = =  

and ( )32, 9
Qn d sL N∆ = = . 

The edge vectors for the 5sN =  lattice are ( )2,1  and ( )1,2− . On this 
lattice we calculate the lowest energy with 0Qn =  to 16 by means of the di-
agonalization so that we can obtain precise results to start with. The number 
of the states we should consider amounts to 5 25 732 2 3.4 10= × . For the 

9sN =  lattice, which is already too large to apply the diagonalization, we 
employ stochastic state selection method [44]-[51] to obtain  

( )32, 9
Qn d sL N∆ = = . 
Figure 1 shows our results ( )32, 5

Qn d sL N∆ = =  and ( )32, 9
Qn d sL N∆ = =  

plotted as a function of 2
Qn . We also plot ,2 2

Q

th
n Q sn N∆ =  in the figure. We see 

the data agree with ,2
Q

th
n∆  when Qn  is small. For large values of Qn , on the 

contrary, we observe a little discrepancy between the data and ,2
Q

th
n∆ . Then in 

Figure 2 we plot ( )2 ,
Qn d sD L N  and ( )3 ,

Qn d sD L N  together with ( )1 ,
Qn d sD L N  

for 32dL =  and 5sN = , where ,2th
sqa  has been calculated to be 0.98984. Here 

we can see that the theoretical prediction up to 4
dδ  agrees well with the numer-

ical results because ( )3 ,
Qn d sD L N  is almost zero in all range of Qn . As for 

( )2 ,
Qn d sD L N , on the other hand, they differ from zero in most range of Qn . 

These results tell us that the second term of ,4
Q

th
n∆  is important except for very 

small values of Qn . In Figure 3 we compare our numerical results for 9sN =  
using ( ),

Qn d sDk L N  ( )1,2,3k = . We employ two values of dL , 32dL =  and 
36dL = , for which the estimated ,2th

sqa  is 0.98431 and 0.98764, respectively. Here 
we plot the data with 2Qn ≥  only, because ( )1 ,

Qn d sL N=∆  is too small to avoid 
large statistical errors in ( )1 ,

Qn d sDk L N= s ( )1,2,3k = . For large values of Qn  
we observe large discrepancies between 

Qn∆ s and ,2
Q

th
n∆ s as well as 

Qn∆ s and 
,2th

sqa s, while ,4
Q

th
n∆ s are consistent with 

Qn∆ s. 

 

 
Figure 1. Energy gap ( )32,

Qn d sL N∆ =  defined by Equation (48) for 5sN =  and 9 as a 

function of 2
Qn . 
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Figure 2. ( )32, 5
Qn d sDk L N= =  ( 1,2,3k = ) defined by Equation (49), which measure 

differences between numerically obtained energy gaps and theoretical estimations, versus 

Qn . Black down triangles, blue up triangles and red circles are results for 1,2k =  and 3, 

respectively. 
 

 

Figure 3. ( ), 9
Qn d sDk L N =  ( 2,3k = ) defined by Equation (49) for 32dL =  and 36 

versus Qn . Blue triangles ( 2k = ) and red circles ( 3k = ) are results for 32dL = , while 

green triangles ( 2k = ) and yellow circles ( 3k = ) are results for 36dL = . 

4.2. Results on Ns = 16, 36, 64 Lattices 

For larger lattices with 16,36,64sN =  we estimate the energy gaps by means of 
quantum Monte Carlo methods [52] [53] [54]. The reasons why we employ 
these methods are that we can easily apply them to the study on these lattices 
and that we can obtain reliable results on the energy. In quantum Monte Carlo 
methods we have two technical parameters, which are inverse temperature β  
and Trotter number tl . For the lowest energy, we need large β  as well as large 

tl . Since our concern is the energy gap, we judge that β  and tl  are large 
enough if the gap calculated with some values of β  and tl  does not change 
for slightly smaller or larger values of β  and tl . Table 1 shows the results for 

( )16 32, 16
Qn d sL N=∆ = =  with several values of β  and tl . We observe the 

gaps coincide within the statistical errors for 3.5β ≥  and 112tl ≥ . We also 
calculate the energy gap using stochastic state selection method to obtain  

( )16 32, 16 15.71 0.03
Qn d sL N=∆ = = = ± . Based on these results we use values 

3.5β =  and 148tl =  in our Monte Carlo study. 
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What we want to examine is whether our results agree with ,4
Q

th
n∆  within the 

statistical error, which we will denote 
sNε  hereafter. It should be noted that 

sNε  is scarcely dependent on values of Qn . Then we need to estimate values of 

Qn  for which we can see the effect of the correction terms in ,4
Q

th
n∆ . From dis-

cussions in the previous section we see that, with 2 1dAδ = , 

( )
2 4

,4 ,2 2 2
1 2 1 2 3, , .

2 12Q Q

Q Qth th
n n d

s s

n n
c c c c

N N
δ η∆ −∆ = − + ≡ ≡         (50) 

Note that the first correction term in Equation (50), which enables us to dis-
tinguish ( )2 ,

Qn d sD L N  from ( )1 ,
Qn d sD L N , is observable in the range of Qn  

to satisfy 2 2
1 sd Ncδ η ε≥ . Similarly we should search for values of Qn  which satisfy 

the condition 2
2 sd Ncδ ε≥  in order to find difference between ( )3 ,

Qn d sD L N  and 
( )2 ,

Qn d sD L N . 
Now let us first present our results on the 16sN =  lattice. Figure 4 plots 

( ),
Qn d sDk L N  ( 1, 2,3k = ) with 32dL =  and 64dL =  as a function of Qn . 

Instead of ,2th
sqa  in the expression (47) we use 

2
,2 2

0 0ˆ1 .
2

MC d
sq l

ls

a E E
N
δ

η≡ − ∑                  (51) 

 
Table 1. Results of the energy gap ( )16 32, 16

Qn d sL N=∆ = =  given by Equation (48) ob-

tained by means of the quantum Monte Carlo method. 

β  tl  16Qn =∆
 

3.8 164 15.70 ± 0.02 

3.8 140 15.70 ± 0.02 

3.8 120 15.70 ± 0.02 

3.5 152 15.69 ± 0.02 

3.5 132 15.70 ± 0.02 

3.5 112 15.70 ± 0.02 

 

 

Figure 4. ( ), 16
Qn d sDk L N =  ( 1,2,3k = ) defined by Equation (49) for 32dL =  and 64 

versus Qn . The results for 32dL =  are plotted by pale blue up triangles ( 1k = ), green 

down triangles ( 2k = ) and orange circles ( 3k = ), while the results for 64dL =  by yel-
low down triangles ( 1k = ), blue up triangles ( 2k = ) and red circles ( 3k = ). 
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Table 2 shows numerical results on 2
0 0l̂lE Eη∑  and ,2MC

sqa  as well as 

sNε  and 2
d jcδ  ( 1,2j = ). Since the statistical error is 16 0.02

sNε = 
 for both 

32dL =  and 64dL =  we need, with ( )32 64dL = , ( )5 10Qn ≥  to see the ef-
fect of the first correction term and ( )13 18Qn ≥  to see the effect of the second 
correction term. In Figure 4 we observe that only ( )3 ,

Qn d sD L N s are consistent 
with zero. 

Next we present results of ( )64, 36
Qn d sDk L N= =  ( 1,2k = ) in Figure 5. 

Since the statistical error turns out 36 0.03
sNε = 

, we see that the minimum Qn  
to find the correction from the 1c  term is 17. In this figure we did not plot 

( )3 ,
Qn d sD L N  because, as we can see in Table 2, the correction from the 2c  

term on this lattice is too small to distinguish ( )3 ,
Qn d sD L N  from ( )2 ,

Qn d sD L N . 
As is shown in Figure 5 the difference ( )1 ,

Qn d sD L N s are consistent with zero 
until 18Qn ≤  but, even taking account of the statistical error, they clearly differ 
from zero when 19Qn ≥ . On the other hand, we see that the difference  

( )2 ,
Qn d sD L N  is consistent with zero for all values of Qn . These results sup-

port our argument on ,2th
sqa  in the expression (47). 

Finally Figure 6 plots our results on ( )64, 64
Qn d sDk L N= =  ( 1,2k = ). We 

observe that ( )1 ,
Qn d sD L N s differ from zero when 24Qn ≥ , while ( )2 ,

Qn d sD L N  
is consistent with zero for all values of Qn . 

Conclusively speaking, therefore, numerical results presented in this section 
on 5,9,16,32sN =  and 64 lattices strongly support our discussions on the 
energy gap in section 3. 

 
Table 2. Values obtained from our Monte Carlo study on 16sN ≥  lattices. 

dL  sN  ( )2
1max d cδ

 ( )2
2max d cδ

 sNε  
2

0 0ˆl sl
E E Nη∑  

,2MC
sqa  

32 16 0.31 0.05 0.02 0.818 0.98423 

64 16 0.31 0.21 0.02 0.814 0.99606 

64 36 0.14 0.03 0.03 0.820 0.99605 

64 64 0.08 0.003 0.03 0.820 0.99605 

 

 

Figure 5. ( )64, 36
Qn d sDk L N= =  ( 1,2k = ) defined by Equation (49) versus Qn . Black 

circles and red circles are results for 1k =  and 2, respectively. 
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Figure 6. ( )64, 64
Qn d sDk L N= =  ( 1,2k = ) defined by Equation (49) versus Qn . Black 

circles and red circles are results for 1k =  and 2, respectively. 

5. Conclusions and Comment to Future Study 

In this paper, we studied the quasi-degenerate states, which is essential on the 
violation of the cluster property, in the quantum nonlinear sigma model with 
U(1) symmetry. Here we present our conclusion on the quasi-degenerate states 
by summarizing previous sections. Also in addition to the influence of the inte-
raction strength on these states, we comment on the observation of the violation 
and the extension to the model with SU(2) symmetry. 

In previous researches [20] [21] [22] we have shown that it is possible to ob-
serve the violation of the cluster property in spin systems when the continuous 
symmetry breaks spontaneously. The quite important question is whether we 
can observe the violation in other systems. It is specially interesting to examine 
whether the nonlinear sigma model shows the violation or not, because this 
model can be used as the effective model in the low energy region for the system 
with the spontaneous symmetry breaking. The study on the spin system showed 
that the existence of the quasi-degenerate states is the key for the violation. If 
there exist the quasi-degenerate states whose energies are proportional to the 
squared value of the quantum number, we can apply the same discussion as that 
in the spin system to the nonlinear sigma model. Therefore in this paper, we 
have presented the extensive study on the energy of this model. 

In this work we have considered a quantum model defined on a lattice, intro-
ducing discrete and finite variables instead of the continuous angle variables. In 
order to justify these discrete variables, our discussion has started from the Weyl 
relation [41] [42] [43] for the basic unitary, not hermitian, operators. Based on 
this model we have defined the increment operator of the discrete variable ˆ

DQ . 
Then we have introduced the quantum number Qn  and calculated the energy 
with the fixed value of Qn  adopting theoretical and numerical approaches. 
Through discussions in section 3 we have theoretically calculated the energy gap 
which includes 2

Q sn N  and the correction terms. Our numerical results in sec-
tion 4, which we have obtained by the diagonalization on the 5sN =  lattice, by 
stochastic state selection method [44]-[51] on the 9sN =  lattice and by quantum 
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Monte Carlo methods [52] [53] [54] on the 16sN = , 36 and 64 lattices, showed 
good agreement with the theoretical estimations. By these numerical examinations 
as well as the theoretical studies we conclude that the quasi-degenerate states exist 
in the quantum nonlinear sigma model with U(1) symmetry. 

A few comments are in order now. 
First let us comment on the parameter B in our Hamiltonian ˆ

DH  (15), which 
we chose to be 1 in section 4. Although the estimated value of 2η  increases as B 
becomes large, the second term 2 2 2dδ η  in ,2th

sqa  in the expression (47) will 
still stay small compared to the first term 1. We therefore expect that our nu-
merical results in this paper will not be largely changed even if we use larger 
values of B. In order to confirm this expectation, we carried out several addi-
tional calculations on the 5sN =  lattice with 32dL = , increasing the value of 
B up to 50. The result is 2

0 0ˆ 0.79l slE E Nη =∑  (6.2) when 1B =  (50). 
Then the difference ( )13 ,

Qn d sD L N=  in Equation (49) becomes ~3 × 10−3 for 
50B = , which should be compared with the value ~4 × 10−4 for 1B = . Summa-

rizing the results for 50B = , we confirmed that ( )3 , 0.015
Qn d sD L N ≤  for all 

values of QN . 
The next comment is on the violation of the cluster property in the nonlinear 

sigma model with U(1) symmetry. Based on discussions in the previous work 
[20], where we studied an antiferromagnetic spin system with U(1) symmetry, 
we would need an additional interaction such as { }†ˆ ˆ

qi qiiig U U− −∑  in the Ha-
miltonian to explicitly break the symmetry. Then the model would have the 
unique ground state and the violation would be observed with the magnitude 

( )1 sg N  when we measure a correlation function in the ground state at the 
large distance. More quantitative studies will be made in future works. 

The final comment is on an extension of our work to the nonlinear sigma 
model with SU(2) symmetry. The essential element of our present work is 
founded on the formulation of the model in p-representation, where we can fix 
the quantum number Qn . In addition, we introduced discrete variables so that 
we can calculate the energy using the finite dimensional matrices for the Hamil-
tonian. Can we apply our ideas to the study of the model with SU(2) symmetry? 
The answer is perhaps yes, but more technical improvement would be required. 
The reason is the following. The nonlinear sigma model has been defined by 
fixing the magnitude of the scalar field whose Hamiltonian is the same as that of 
the free field. Then we have the variables with SU(2) symmetry only, which are 
the angles in the polar coordinate. It is difficult, however, to define the conjugate 
operators corresponding to these angle variables. Therefore we have no naive 
method to construct the nonlinear sigma model in p-representation. The tech-
nical improvement to solve this problem is under study now. 
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Appendix 
A1. Weyl Relation 

Here we present a brief description for the Weyl relation. In quantum mechanics 
for one particle the commutation relation of the hermite operator of the position 
q̂  and the operator of the momentum p̂  is a starting point. 

[ ] ( )ˆ ˆ ˆ ˆ, , , , exp .q p i q q q q p p p p p q ipq= = = = −       (52) 

In the Weyl relation, we introduce unitary operators defined by 

( ) ( ) ( ) ( )ˆ ˆˆ ˆexp , exp .q pU t iqt U s ips≡ ≡                (53) 

Here s and t are real numbers. In this representation, we define the Weyl rela-
tion by 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆexp , exp .q p p q p q q pU t U s U s U t ist U s U t U t U s ist= − = (54) 

Using these operators we have 

( ) ( ) ( ) ( )ˆ ˆexp , exp ,q pU t q q itq U s p p isp= =  

( ) ( )ˆ ˆ, .p qU s q q s U t p p t= − = +               (55) 

The third equation is led by 

( ) ( )

( ) ( )

1ˆ ˆd
2
1d exp exp .

2

p pU s q p U s p p q

p p isp ipq q s

π

π

=

= − = −

∫

∫
        (56) 

A2. Wely Relation for Discrete Variable 

In our work, we introduce an unitary operator ˆ
qU  with a discrete value n 

where 0,1, , 1dn L= −  for a finite integer dL . We then introduce another 
unitary operator ˆ

pU  which satisfies the following Weyl relation. 

( )ˆ ˆ ˆ ˆ exp , 2 .p q q p d d dU U U U i Lδ δ= ≡ π               (57) 

Note that 

( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( )

1 1ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ exp

ˆ ˆ ˆ exp

ˆ ˆ exp .

n n n

q p q p p p q p d

m n m

p q p d

n

p q d

U U U U U U U U i

U U U im

U U in

δ

δ

δ

− −

−

= = −

= = −

= = −





        (58) 

We suppose that ˆ
qU  has an eigenstate 0 qn  whose eigenvalue is  

( )0 exp iλ γ=  with a real number γ . 

0 0 0
ˆ .q q qU n n λ=                       (59) 

Here we can make 0 1λ =  by using ( )ˆ expqU iγ−  instead of ˆ
qU . Then, with 

this re-defined ˆ
qU , we obtain 

ˆ 0 0 ,q q qU =
 

https://doi.org/10.4236/wjcmp.2021.113003


T. Munehisa 
 

 

DOI: 10.4236/wjcmp.2021.113003 52 World Journal of Condensed Matter Physics 
 

( ) ( ) ( ) ( ) ( )ˆ ˆ ˆ ˆ ˆ0 0 exp 0 exp .
n n n

q p p q d p dq q qU U U U in U inδ δ= − = −    (60) 

The state ( )ˆ 0
n

pq qn U≡  is therefore the eigenstate of the unitary operator 
ˆ

qU  with the eigenvalue ( )expn dinλ δ≡ − . 
Let us consider the state ˆ 1d p dq qL U L≡ − . Then 

( )
( ) ( ){ }

ˆ ˆ ˆ ˆ ˆ1 exp 1

ˆ 1 exp exp 1 1.

q d q p d p q d dq q q

p d d d d dq q

U L U U L U U i L

U L i i L L

δ

δ δ

= − = − −

= − − − − = ⋅
    (61) 

Therefore d qL  is the eigenstate of ˆ
qU  with the eigenvalue 1 so that  

0 ei
d qqL β=  holds for a real number β . Re-defining ˆ e di L

pU β−  as ˆ
pU  we 

obtain 

0 .d qqL =                         (62) 

Let us next make a new state 0 p
 defined by 

( )
1 1

0 0

1 1ˆ0 0 .
d dL Lk

pp q q
k kd d

U k
L L

− −

= =

≡ =∑ ∑              (63) 

This state is the eigenstate of ˆ
pU  with the eigenvalue 1, because 

( ) ( )

( ) ( )

( )

1 1

0 1

1

1

1

1

1 1ˆ ˆ ˆ0 0 0

1 ˆ ˆ 0

1 ˆ ˆ 0 0 .

d d

d d

d

L Lk k

p p pp q q
k kd d

L k L

p p q
kd

L k

p q p
kd

U U U
L L

U U
L

U I
L

− +

= =

−

=

−

=

= =

 
= + 

 

 
= + = 

 

∑ ∑

∑

∑

         (64) 

We then see that ( )ˆ 0
m

qp pm U≡  is the eigenstate of ˆ
pU  with the eigen-

value ( )exp dimδ , since 

( ) ( ) ( )

( ) ( ) ( )

ˆ ˆ ˆ ˆ ˆ0 0 exp

ˆ 0 exp exp .

m m

p p q q p dp p p

m

q d dp p

U m U U U U im

U im m im

δ

δ δ

= =

= =
         (65) 

Finally we calculate the inner product 
q pn m . Note that 

{ }{ } { } ( ){ }
{ }{ } ( ) ( )

† † † † † † †

† † †

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆexp

ˆ ˆ ˆ ˆ ˆ ˆexp exp .

p q p q p p p q p p p p q d p

p p q p d q p d

U U U U U U U U U U U U U i U

U U U U i U U i

δ

δ δ

= = = −

= − = −
  (66) 

Using (64) and (66) we obtain 

( ) ( ) ( ) ( ) ( )

( ) ( )

( ) ( )

† †

1

0

ˆ ˆ ˆ ˆ0 0 0 0 exp

10 0 exp 0 exp

1 10 0 exp exp .

d

n m m n

p q q p dq p q p q p

L

d dq p q q
kd

d dq q
d d

n m U U U U inm

inm k inm
L

inm inm
L L

δ

δ δ

δ δ

−

=

= = −

 
= = − 

 

= − = −

∑   (67) 
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