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Abstract 
This paper investigates the effect of adding three extensions to Central Force 
Optimization when it is used as the Global Search and Optimization method 
for the design and optimization of 6-elementYagi-Uda arrays. Those exten-
sions are Negative Gravity, Elitism, and Dynamic Threshold Optimization. The 
basic CFO heuristic does not include any of these, but adding them substan-
tially improves the algorithm’s performance. This paper extends the work re-
ported in a previous paper that considered only negative gravity and which 
showed a significant performance improvement over a range of optimized ar-
rays. Still better results are obtained by adding to the mix Elitism and DTO. 
An overall improvement in best fitness of 19.16% is achieved by doing so. 
While the work reported here was limited to the design/optimization of 6- 
element Yagis, the reasonable inference based on these data is that any an-
tenna design/optimization problem, indeed any Global Search and Optimiza-
tion problem, antenna or not, utilizing Central Force Optimization as the Global 
Search and Optimization engine will benefit by including all three extensions, 
probably substantially. 
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1. Introduction 

In a previous paper, [1], six element Yagi-Uda arrays (Yagis) were optimally de-
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signed using Central Force Optimization (CFO) with a small measure of pseudo 
randomly injected negative gravity (see [1] for details and array geometry). CFO 
searches for the maxima of an objective function, not its minima. The effect of 
negative gravity is to improve CFO’s exploration of the decision space (DS) by 
causing probes that otherwise would coalesce around discovered maxima to dis-
perse away from those maxima and sample under-sampled regions or perhaps 
regions that were not sampled at all. Based on the results reported in [1] there is 
no question that all CFO implementations and applications likely will benefit 
from some measure of negative gravity. At a minimum the algorithm’s perform-
ance should be investigated with this added extension. 

Negative gravity, however, is not the only improvement that can be made. This 
note reports the results of adding to CFO with negative gravity two additional 
extensions: Elitism [2] and Dynamic Threshold Optimization (DTO) [3], each of 
which improves CFO’s performance still further. CFO is an evolutionary algo-
rithm (EA) that explores DS in a series of “time steps” using “probes” to sample 
the objective function. Elitism comes in two flavours: 1) Step-by-step Elitism 
that involves in a given run storing step-by-step, the DS coordinates for a speci-
fied percentage of the best probes’ locations and inserting those data into the al-
gorithm’s next step, thereby preserving best fitness information at each step. For 
the work reported various percentages of the best fitnesses’ data from each step 
were pseudo randomly inserted into the next step. 2) Run-to-Run Elitism, also 
referred to as Seed Probe Elitism, involves passing the coordinates of the best 
fitness probe(s) from a previous run to the current CFO run. For the work re-
ported here the coordinates of the best fitness probe in the previous run are 
saved in an external “seed probe” data file and inserted into the last of CFO’s 
probes in the current run. 

Dynamic Threshold Optimization is a purely geometrical method that modi-
fies the objective function’s topology on successive runs of any global search and 
optimization program (GSO, referring to both a program or to the heuristic, 
context permitting). DTO compresses the objective function’s “landscape” from 
below by filtering out all local maxima that are below a threshold value that has 
been established at the run’s start. DTO can be applied to any GSO algorithm, 
even different algorithms on successive runs. As the DTO threshold rises, more 
and more local maxima are removed so that the landscape becomes “flatter” and 
flatter. This, in turn, may (likely will) make it harder to explore DS because there 
is less topological information to guide the search. One way to address this issue 
is to increase the number of sample points during successive applications of the 
algorithm (in CFO’s case, the number of probes). Besides step-by-step elitism 
within a CFO run, in this paper DTO is implemented with run-to-run elitism as 
well. That is, the best global maximum returned by a CFO run is passed on to 
the next CFO run within the DTO shell by pseudo randomly inserting it into the 
next run’s initial probe distribution (IPD). As with step-by-step elitism, run- 
by-run elitism prevents loss of information that may be, almost certainly will be, 
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useful in searching for maxima. 
It is important to note that both elitism and DTO do not preserve the best fit-

ness step-to-step or run-to-run. The previous best fitness information, specifi-
cally its coordinates in DS, are used only to guide the search. At any given step 
or at the end of any run the best fitness may actually be lower than the value in-
serted using elitism or DTO. Of course, preservation of the global best fitness is 
possible, but that approach was not taken for the results reported here because 
doing so may actually impede the GSO’s exploration. 

2. Methodology 
2.1. CFO-GED Algorithm 

CFO is a deterministic metaheuristic. It returns the same results every time it is 
run with the same setup. This characteristic is a major advantage when trying to 
develop either a truly useful objective function, or appropriate runtime parame-
ters for real-world problems like Yagi array design. By contrast, if a stochastic 
optimizer is used, it is difficult, maybe impossible, to determine for sure whether 
or not a change in the objective function or a change in runtime parameters ac-
counts for the different, sometimes wildly different, results on successive runs 
[4]. 

However, even though CFO is deterministic it does benefit from the addition 
of a pseudo random component because doing so improves its exploration. Both 
in [1] and in the work reported here pseudo randomness was injected using 
BBP-generated π-fractions. Calculation and use of the π-fractions are discussed 
in [5], and details of CFO theory and its implementation are contained in [6] 
(note important discussion on equations of motion in §VI-B of [6]). The essen-
tial characteristics of pseudo random variables (prv’s) are that they are uncorre-
lated with the fitness function’s topology, they are uniformly distributed, and 
they are uncorrelated among themselves. π-fractions meet these requirements. A 
prv is specified by enumeration or by calculation, and thus always remains de-
terministic. By contrast, a true random variable (rv) is a priori unknowable be-
cause it must be calculated from a probability distribution. This difference is 
fundamental and important, especially when it comes to solving real-world prob-
lems with metaheuristic methods. Thus, by using prv’s CFO remains determinis-
tic at every step while including some “randomness” that improves its explora-
tion. 

A major advantage that CFO provides is its repeatability. Stochastic GSO’s 
generate results that vary from one run to the next, and there is no way of 
knowing why they are different. Was it a change in the run parameters? Was is a 
change in the objective function? Or was it the program’s inherent randomness? 
Real-world problems do not have built-in objective functions. A suitable func-
tion must be developed for each new problem, and doing so can be quite diffi-
cult if the GSO’s results are completely unpredictable. CFO by contrast permits 
rapid evaluation of changes in run parameters or in the objective function itself 
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because every run with the same setup returns the same results. Any change in 
CFO’s output is a result of changes in the program setup or in the fitness func-
tion.  

The GSO algorithm used throughout this paper is basic CFO augmented with 
the three extensions not contained in that basic algorithm: 1) Negative Gravity; 2) 
Elitism; and 3) Dynamic Threshold Optimization. The new algorithm is called 
CFO-GED, and its pseudo code appears in Figure 1. The effect of negative grav-
ity, denoted G < 0 where G is CFO’s “gravitational constant,” is discussed exten-
sively in [1]. Elitism involves storing the best fitness(es) from a previous GSO 
step or run and inserting those data into the next step or run. As discussed above, 
the first is referred to as step-by-step and the second as run-by-run, and it is 
important to note their differences because they produce different results. Both 
are used in CFO-GED. In run-by-run the single best fitness/coordinate data are 
passed on to the next run, whereas in step-by-step elitism a user-specified num-
ber of best fitnesses and locations are passed one step to the next (details in Ta-
ble 1). 

 

 
Figure 1. CFO-GED pseudo code. 
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Table 1. CFO-GED Yagi fitnesses with G < 0 and elitism (no DTO). 

Yagi Np 
% G < 0 For Comparison to Data Below-Best Yagi from Reference [1], G < 0 Only 

Target Actual Fmax gmax Z0 S (VSWR//Z0) 

[1] 20 5 6.0 49.189 11.92 dBi 59.80 Ω 1.49/2.01 

Data with G < 0 & Two Types of Elitism Only (no DTO) 

Yagi 

# 
Np 

% G < 0 Elitism: Step-by-Step Only Elitism: Step-by-Step & Seed Probe 

Target Actual % Np # pr Fmax gmax VZ0 S Fmax gmax VZ0 S 

1 20 5 5.6 5 1 52.164 12.17 50.15 1.27/1.82 52.704 12.55 69.51 1.31/1.93 

2 20 5 6.1 10 2 46.806 11.30 51.69 1.29/1.93 52.068 12.79 56.19 1.18/1.92 

3 20 5 5.4 15 3 45.433 11.52 42.79 1.66/2.30 51.621 12.42 54.49 1.52/1.64 

4 20 5 4.8 20 4 44.912 11.59 45.04 1.58/2.36 50.941 11.77 50.88 1.38/2.06 

5 50 5 5.4 2 1 52.481 12.78 77.32 1.39/2.48 53.910 12.63 62.59 1.18/1.63 

6 50 5 5.8 4 2 54.466 12.31 46.67 1.04/1.63 54.676 12.31 47.54 1.02/1.53 

7 50 5 6.3 6 3 52.331 11.71 57.83 1.03/1.43 52.476 11.80 54.30 1.06/1.53 

8 50 5 5.2 10 5 50.370 12.20 45.38 1.70/2.11 53.898 12.61 56.74 1.07/1.50 

9 50 5 4.1 16 8 50.358 12.21 55.91 1.36/2.20 53.639 11.95 42.40 1.08/1.36 

10 50 5 5.3 20 10 44.473 11.17 50.33 1.84/2.75 52.013 12.00 45.52 1.42/1.84 

Notes: Num elitist probes, # pr; Fmax = best fitness; gmax = max gain (dBi); VZ0 = Var Z0 feed impedance (Ω); S = VSWR//VZ0 (min/max). 

2.2. Dynamic Threshold Optimization 

While Elitism has been extensively used in, for example, most multiobjective al-
gorithms, ant colony algorithms, scatter search, (μ + λ) algorithms, and many 
others [2], DTO has not. Dynamic Threshold Optimization is not a GSO heuris-
tic per se. Instead it is a geometric approach to modifying the objective func-
tion’s topology to remove local maxima. DTO can be used with any GSO algo-
rithm. In this paper that GSO program happens to be CFO, but any other 
search/optimization program(s) could have been used instead, alone or in com-
bination. 

DTO operates by compressing the fitness function’s landscape from below. It 
comprises a series of passes that successively increase the objective function’s 
“floor” or threshold so as to filter out any local maxima below the threshold 
value. This is accomplished by using the auxiliary function  
( ) ( ) ( )k k kg x f x T U f x T T= − ⋅ − +      
    where ( )f x  is the objective function, 

kT  the threshold value on the kth pass, and [ ]U ⋅  the Unit Step function, viz.,  

( )
1, 0
0, 0

z
U z

z
≥

=  <
. Thus, for ( ) kf x T≥ , ( ) ( )g x f x=

  , whereas for  

( ) kf x T< , ( ) kg x T= . On each successive pass, DTO changes the topology of 
the objective function by redefining it using auxiliary function ( )g x . A more 
detailed discussion of DTO with examples appears in the Appendix. 
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2.3. Yagi Fitness Function 

There are many ways to measure an antenna’s performance, for example, as 
representative parameters: maximum directive gain, gain bandwidth, radiation 
pattern, pattern bandwidth, polarization, radiation efficiency, input impedance, 
impedance bandwidth, directionality, beamwidth, maximum sidelobe levels/di- 
rections, specific absorption rate, physical size, fabrication cost/time. In a real- 
world problem the antenna engineer must decide which of these parameters will 
be used and how they will be combined in an objective function to be maximized. 
Should they be added/subtracted? Multiplied? Made the arguments of some 
other mathematical manipulation, say, exponentiation? And so on, and so on. 
The possibilities are endless, yet some objective functions work much better than 
others, both in terms of reflecting the desired balance between antenna parame-
ters and in being “searchable,” that is, amenable to investigation by GSO. Some, 
unfortunately, are pathological, but not obviously so, and as a result they are dif-
ficult or impossible to deal with, especially when the pathology is hidden [4] [5] 
[6]. 

The work reported here uses the same (very simple) fitness function that is 
used in [1], viz., 

1 L 3 M 5 U 2 L 4 M 6 Uc c c c c cF = ⋅ + ⋅ + ⋅ − ⋅ − ⋅ − ⋅g g g S S S          (1) 

where subscripts L, M, and U denote lower, mid and upper frequencies at which 
the Yagi’s power gain (directivity multiplied by radiation efficiency), g, and 
feedpoint voltage standing wave ratio, S, are computed. This objective function 
is simple, and it is anticipated to be well-behaved and amenable to GSO while 
reflecting the desired balance between antenna parameters. The values of the 
weighting coefficients ci are: c1 = c2 = c5 = c6 = 1 and c3 = c4 = 3. They were cho-
sen for simplicity while slightly favoring midband performance with L = 204.8 
MHz, M = 299.8 MHz, U = 304.8 MHz. VSWR (Voltage Standing Wave Ratio) is 
computed relative to the feed point impedance Z0 and is denoted VSWR//Z0. 
While Z0 usually is a fixed, user-supplied parameter, typically the industry stan-
dard value of 50 Ω resistive, Variable Z0 technology (VZ0), which was used here, 
treats it the same as any other decision space variable. This approach embraces 
array current distributions that otherwise would be excluded because they fail to 
adequately match the predetermined value of Z0. Whether or not the CFO-re- 
turned value is feasible and desirable is an engineering and economic judgment, 
but more often than not impedance-matching the “non-standard” Z0 is worth-
while because the antenna’s performance is better, often much better [7]. Varia-
ble Z0 technology is now available for public use without limitation [8]. At each 
of the three frequencies L, M, U, the Method of Moments code NEC-4 [9] com-
puted the Yagi’s maximum gain and feedpoint Z0 from which VSWR//Z0 was 
computed for use in the fitness function. 

2.4. Yagi Array Prior Results 

In [1] the best CFO-returned fitness occurs with 6% negative gravity (6% G < 0 
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where G is CFO’s “gravitational constant”). Its value of 49.1892 corresponds to a 
maximum array gain of 11.92 dBi and feedpoint impedance Z0 = 59.8 ohms with 
VSWR//59.8 ranging from 1.49 to 2.01 over the optimization frequency range 
294.8 to 304.8 MHz. The reference array in that paper, that is, the CFO-opti- 
mized array with zero G < 0, has a best fitness of 47.8932 with a gain of 11.28 dBi 
and VSWR//65.56 ranging from 1.25 to 1.61. Injecting a small amount of nega-
tive gravity into CFO resulted in discovering a range of array designs whose fit-
nesses were better than or very similar to the reference array’s. This improve-
ment is attributable to enhanced DS exploration because the effect of negative 
gravity is to cause CFO’s probes to fly away from each other, apparently into re-
gions of DS that have been under-sampled or perhaps not sampled at all. In this 
paper CFO is further enhanced by including Elitism and Dynamic Threshold 
Optimization. 

3. Results 
3.1. Negative Gravity & Elitism 

Table 1 shows the fitnesses and corresponding Yagi parameters for CFO with 
Negative Gravity (“G < 0”) and with Elitism, but not with DTO. The results 
from [1] are included for comparison (the CFO runs in [1] used G < 0 but not 
Elitism). While the run in [1] was made with 550 steps, all the entries in Table 1 
were made with 1000 using the same CFO setup parameters shown in Table 1 
and Table 2 of [1]. The best CFO-GED results with only G < 0 and Elitism are 
highlighted in bold red text. 

Table 1 shows the number of probes, Np, the target and actual values of G < 0, 
and the amount of Elitism as a percentage of Np with the corresponding number 
of elitist probes # pr. Step-by-step elitism was employed, so the number of elitist 
probes shown in the table was pseudo randomly injected into the following step. 
Because CFO-GED is completely deterministic, even with π-fraction prv’s, every 

 
Table 2. Fitness Data with G < 0, Elitism and DTO. [Target 5% G < 0; Elitism, 
step-by-step 4 best probes within each run, single best probe run-to-run, no seed probe.]. 

Yagi 

# 
DTO 

Thresholds Np Nt 
Best 

Fitness 
gmax 

(dBi) 
Z0 

(Ω) 

VSWR//Z0 

Min/Max 

11 0/20/25/35/45 10/15/30/50/200 5/20/30/100/200 54.945 12.82 51.61 1.02/1.83 

12 0/20/25/35/45 10/15/30/100/300 5/20/30/100/150 55.117 12.87 48.01 1.19/1.65 

13 0/25/35/45/50 5/10/20/50/350 5/20/30/50/200 50.000 3.20 30.00 161.3/196.5 

14 0/20/25/35/45 5/10/20/50/450 5/20/30/100/200 55.603 12.53 42.75 1.08/1.41 

15 0/20/25/35/45 5/10/20/100/500 5/20/30/100/250 54.949 12.30 46.91 1.03/1.35 

16 0/20/25/35/45 5/10/20/100/500 5/20/30/100/5000 56.641 12.84 33.69 1.01/1.68 

17 0/20/25/35/45 5/10/20/50/1000 5/20/30/50/100 55.588 12.54 48.98 1.04/1.61 

18* 0/20/25/35/45 5/10/20/50/450 5/20/30/100/200 45.000 0.92 30.29 36.51/38.44 

* Re-run of Yagi #14 without Elitism, no seed probe, but with G < 0 (5% target, 3.6% actual) and DTO only. 
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run in Table 1 can be precisely recovered simply by running it again. If any 
change is made in the setup then a different fitness result is a consequence of 
that change, likewise for changing the objective function. Deterministic GSO 
programs permit the (relatively) quick comparison of how well different run se-
tups or fitness functions perform. This flexibility is essential for solving real- 
world problems, but it is not provided by stochastic GSO’s (see [6] for some spe-
cific examples). 

Turning to the effect of adding Elitism to CFO along with G < 0, the data in 
Table 1 provide convincing evidence that supplementing G < 0 with Elitism im-
proves the discovered fitnesses by quite a bit. The best fitness of 54.466 is nearly 
11% better than the best fitness in [1] which used 6% G < 0 without Elitism. Re-
gardless of the specific problem being worked, the obvious conclusion is that all 
CFO runs should be augmented with both G < 0 and Elitism because in all like-
lihood the results will be better. 

3.2. Negative Gravity, Elitism & DTO 

The next question is whether or not including DTO improves CFO’s perfor-
mance even more. Recall from Figure 1 that the DTO shell comprises a series of 
passes with progressively increasing thresholds (objective function “floors”). Set-
ting the sequence of thresholds can be tricky, quite tricky in some cases, because 
the problem’s landscape becomes sparser and sparser as the floor rises and con-
sequently adequate exploration may be impeded. DTO appears to work quite 
well with highly multimodal objective functions such as the Schfwefel’s Problem 
2.26 (see Appendix) because there is sufficient topology at every threshold to 
guide the search. When the landscape is too flat, however, DTO may miss the 
remaining maxima and return the threshold value itself as its best fitness. For the 
Schwefel 2.26 the very high level of multimodality is evident from the 2D plot in 
Figure A3, pass #1, so DTO is expected to, and in fact does, perform very well. 
But no such plot is available to assess how multimodal is the Yagi problem. In 
the problem’s twelve dimensions its landscape might resemble the Schewfel 2D’s, 
but then again it might not. This conundrum is inherent in DTO, and it requires 
consideration in setting up the DTO shell. Section A3 of this paper discusses this 
issue in greater detail, and provides some examples of setting thresholds by cal-
culation. 

For the Yagi problem, however, the first approach is setting the thresholds by 
enumeration because the fitness function is readily bounded, approximately, 
even though its maximum value is unknown. The best VSWR value of course is 
1, and a reasonable maximum gain is, say, 15 dBi midband and 10 dBi at the 
band edges, these values being based on experience with this type of array. In-
serting them into Equation (1) yields a maximum fitness of Fmax = 60. The CFO 
runs with G < 0 and Elitism suggest that reasonable best fitnesses probably are in 
the range 55 - 60, so that the highest threshold should be placed far enough be-
low this range that CFO can still effectively explore DS. Again, because CFO is 
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deterministic it is straightforward to run test cases to determine what is a suita-
ble threshold sequence, whereas a stochastic GSO might make this impossible 
from a practical point of view. 

Table 2 shows results for runs with all three added extensions, G < 0, Elitism, 
and DTO. Elitism was introduced in two ways, step-by-step and run-to-run. For 
step-by-step the four best probes at each step were pseudo randomly injected 
into the next step, whereas for run-by-run the single best probe in each run was 
injected as the last probe in the next run. Five DTO passes were made. The table 
shows the enumerated thresholds and the number of probes and time steps at 
each threshold. These run parameters are followed by the best CFO-returned 
fitness, and the Yagi’s maximum gain, Variable Z0 feedpoint impedance, and the 
corresponding VSWR range. 

The data in Table 2 show that adding DTO for the most part substantially in-
creased the best fitness, from 54.466 to 56.641, a change of 2.175 or about 4%. 
The data also show the pitfalls of choosing thresholds poorly, specifically Yagis 
#13 and 18. Yagi #13’s performance is quite poor because CFO was unable to lo-
cate any maxima that were not on the threshold itself (value of 50). In this case 
the last DTO threshold of 50 was simply too high, which depressed CFO’s ex-
ploration to the point of its not discovering any other maxima. Yagi #18 was run 
to investigate the effect of removing Elitism entirely. In this case the threshold 
values and number of probes and time steps used in Yagi #14 were replicated, 
but the DTO passes were made only with G < 0, no Elitism. As in the previous 
case, CFO was unable to locate any maxima above the threshold value of 45, and 
the result was an array with extremely poor performance. 

Table 3 summarizes the best fitness data and run statistics for the eighteen 
Yagi designs that used negative gravity, elitism and DTO, but no seed probe. 
DTO was not included for the first twelve runs through Yagi #10, but it was in-
cluded for Yagis #11 through 18. The averages fitness for the first set was 49.710. 
Including DTO improved that statistic substantially to 55.476 for the second. 
The total number of NEC runs is included as a measure of computational effort 
and ranges from a low just over twenty thousand to a high slightly above two 
and one half million. While the longest run did provided the best overall fitness, 
56.461, its length raises the important question of how much fitness improve-
ment is worth the additional computational effort. NEC runs averaged 0.037129 
sec for the work reported here. 

Adding a seed probe improves the best fitness even more as shown in Table 4. 
Each run was seeded with a probe having the coordinates of the best fitness 
probe from the previous run. For example, the seed probe for Yagi #25 was the 
best probe located by Run #24. Yagi #19 was seeded with a probe from a run that 
did not use negative gravity, elitism or DTO. Except for the shortest run, Yagi 
#21, the best fitness increased monotonically using seeded runs. The benefit of 
starting a search in the vicinity of a previous global maximum is apparent from 
these data, and would be a recommended approach for any GSO. 
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Table 3. Best fitness summary. [Target 5% G < 0; Elitism, step-by-step 4 best probes 
within each run, single best probe run-to-run, no seed probe.].  

Yagi 

# 
# NEC 
Runs 

Total 
Steps 

Steps 
to Fmax 

DTO? 
Best 

Fitness 

1 20,020 1000 691 

↑ 
No 

Avg: 49.710 
↓ 

52.164 

2 20,020 1000 995 46.806 

3 20,020 1000 835 45.433 

4 20,020 1000 974 44.912 

5 50,050 1000 941 52.481 

6 50,050 1000 972 54.466 

6(i) 137,137 1000 668 51.666 

6(ii) 136,773 500 75 51.057 

7 50,050 1000 696 52.331 

8 50,050 1000 860 50.370 

9 50,050 1000 967 50.358 

10 50,050 1000 967 44.473 

11 46,555 355 347 

↑ 
Yes 
Avg: 

55.476 
↓ 

54.954 

12 56,705 305 284 55.117 

13 73,760 305 106 50.000 

14 91,360 355 352 55.603 

15 136,460 405 314 54.949 

16 2,511,460 5155 2693 56.641 

17 104,410 355 204 55.588 

18 96,360 355 156 n/a 45.000 

Note 1: Case 6(i): Np = 137, Nt = 1000; Case 6(ii): Np = 273, Nt = 500. Note 2: For averaging, Yagis #13 & 
#18 excluded because DTO threshold was too high. Note 3: n/a → not applicable. 

 
Table 4. Run data using seed probe each run. 

Yagi # % G < 0 
Elitist 
Probes 

#/Np 

# NEC 
Runs 

Best 
Fitness 

gmax 

(dBi) 
Z0 

(Ω) 

VSWR//Z0 

Min/Max 

19 4.4 1/405 61105 56.483 13.12 42.66 1.01/1.84 

20 4.8 1/1215 183820 56.826 13.11 39.61 1.00/1.82 

21 6.2 4/320 6820 53.851 13.18 54.34 1.18/2.24 

22 

↑ 
5.6 
↓ 

↑ 
2/512 
↓ 

↑ 
204216 

↓ 

56.842 13.02 38.79 1.00/1.74 

23 56.871 12.99 38.49 1.00/1.53 

24 56.906 12.98 37.80 1.00/1.52 

25 57.066 13.03 36.62 1.01/1.67 

26 57.067 13.03 36.69 1.00/1.68 

27 57.067 13.03 36.70 1.00/1.68 

Note: For Yagis #23-27 Best Probe Coordinates from Previous Run Used as Seed Probe. 
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All DTO results presented for Yagis #11 through 18 were computed using 
specified thresholds as shown in Table 2. But that approach may not be the best. 
The thresholds for runs 19 through 27 were calculated, rather than enumerated. 
Table 5 shows threshold and best fitness data for Yagi #19 and for Yagi #27, the 
data for the other runs in Table 4 all being similar. Each run started with five 
probes, and the number of probes was doubled on each successive threshold. 
The thresholds were computed as ( )1 1 1

min max min
k k k

kT F F FC− − −= + ⋅ −  where Fmax, Fmin 
are maximum, minimum fitnesses, and C = 0.2 for k = 1, C = 0.8 for k > 1. 0

minF  
and 0

maxF  are the minimum and maximum fitnesses returned on the initializa-
tion run which is made with no threshold. The coefficient C was determined ex-
perimentally, which is easily accomplished with a deterministic GSO like CFO 
because otherwise using a stochastic GSO it is difficult or impossible to deter-
mine the effect of changing C. With a stochastic program different results may 
be a consequence of changing a coefficient, or of the algorithm’s randomness, or 
both. A deterministic algorithm like CFO removes all doubt as to why its results 
are different. 

As seen in Table 5(a) for Yagi #19 using five DTO thresholds, the best fitness 
increases significantly with increasing threshold. It ranges from a low of 37.8033 
on a threshold of –1055.3856 to a high of 56.4300 on a threshold of 54.116. For 
Yagi #27, Table 5(b), using seven thresholds, the corresponding data are fitness 
of 57.0669 with a threshold of –1312.5739, and 57.0670 on a threshold of 57.0073. 
By this run the best fitness has essentially saturated as is seen in the data in Ta-
ble 4. It is again apparent that a deterministic GSO allows the user to quickly 
converge on a run setup that minimizes computer usage while homing in on an 
optimized design. In this case, as soon as saturation of the best fitness is clear, 
then there is no point in doing additional calculations because they will not pro-
vide significantly better results.  

Table 6 provides a summary of how the best fitness is improved by extending 
CFO with Negative Gravity, Elitism and DTO. The overall improvement com-
pared to the reference run in [1] in which no extension was used is quite dra-
matic, just under 20%. It is clear that CFO performs better as a global search and 
optimization algorithm when these extensions are included. 

4. Design or Optimization? 

These observations raise a very important practical question about how to best 
design the “best” antenna, whether it be a Yagi array or any other antenna. 
Should it be “optimized” as was the sequence of Yagi designs discussed thus far, 
or should it be “designed” by specifying minimum performance criteria which, if 
met, terminate the design process. This activity is the “D” in global search 
“D/O,” design and optimization. The fact is, again as a practical matter, it almost 
always will be quicker and will utilize fewer resources to set up the antenna 
problem as a design problem instead of as an optimization problem. And to that 
end, a deterministic design algorithm makes all the difference in the world be-
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cause the antenna engineer has complete control of every aspect of the process, 
nothing being “left to chance.” 

As an example, a design run was made with the objectives of midband gain of 
at least 13 dBi and midband VSWR less than 1.5 relative to the Variable Z0- 
computed feedpoint impedance. Rather than use the fitness function in Equation 
(1) the following fitness was used instead: 

( ) ( )t M M t M M1F = − − +g g S g g S                  (2) 
 

Table 5. (a). Yagi #19; (b). Yagi #27. 

(a) 

T# Tk Fmax 

1 −1055.3856 37.8033 

2 −171.3621 49.6438 

3 5.4426 49.6438 

4 44.647 54.4482 

5 54.116 56.4300 

(b) 

T# Tk Fmax 

1 −1312.5739 57.0669 

2 −129.5613 57.0669 

3 19.7413 57.0669 

4 49.6019 57.0670 

5 55.5740 57.0670 

6 56.7684 57.0670 

7 57.0073 57.0670 

 
Table 6. CFO extension summary. 

CFO Extension 

Best 
Fitness 

Percent 
Improvement Type 

Elitism Type 
DTO 

Step-by-Step Run-to-Run Seed Probe 

NONE --- --- --- --- 47.893 0 

G < 0, Elitism yes no no no 54.466 13.72 

G < 0, Elitism yes no yes no 54.676 14.16 

G < 0, Elitism yes yes no 
yes 

(enumerated) 
56.641 18.27 

G < 0, Elitism yes yes yes 
yes 

(calculated) 
57.067 19.16 
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(a)                                              (b) 

Figure 2. (a). NEC input file, yagi #21(4); (b). NEC input file, design run. 

https://doi.org/10.4236/wet.2021.124004


R. A. Formato 
 

 

DOI: 10.4236/wet.2021.124004 66 Wireless Engineering and Technology 
 

 
(a) 

 
(b) 

Figure 3. (a). Pattern yagi #21(4); (b). Pattern design run yagi. 
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(a)                                                   (b) 

Figure 4. (a). VSWR//54.34 yagi #21(4); (b). VSWR//36.65 design run yagi. 
 

 
(a)                                                   (b) 

Figure 5. (a). Gain yagi #21(4); (b). Gain design run yagi. 
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(a)                                                   (b) 

Figure 6. (a). Zin yagi #21(4); (b). Zin design run yagi. 
 

where the variables have the same meanings as before with the new variable gt 
being the target midband gain. Using the same run parameters that were used 
for Yagi #21 this design run achieved midband gain and VSWR, respectively, of 
13.02 dBi and 1.48 relative to a feedpoint impedance of 36.65 Ω. The corres-
ponding results for Yagi #21 are a maximum gain across the band 294.8 - 304.8 
MHz of 13.18 dBi with VSWR//54.34 Ω ranging from 1.18 to 2.24. At midband, 
however, 299.8 MHz, Yagi #21 has a gain of 12.13 dBi and VSWR//54.34 Ω of 
1.23. Thus, it misses the midband gain objective but meets the VSWR objective. 

A very important difference between the Yagi #21 and this example design 
run is the computational effort. The number of NEC runs for Yagi #21 was 6820 
whereas only 700 NEC runs were required for the design run. Of course, the Ya-
gi #21 run was made at three frequencies, not one, and an entirely different fit-
ness function was used. Nevertheless it is unlikely that these differences account 
for requiring nearly ten times as many NEC runs. Rather, it is far more likely 
that the explanation lies in performing optimization instead of design. As a gen-
eral proposition, all things being equal, design is likely to be much quicker than 
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optimization, and this design run is an example of that effect.  
This example also serves to highlight the importance of a deterministic GSO. 

Let’s say the fitness function Equation (2) was modified by adding two expo-
nents, m and n, as follows:  

( ) ( )t M M t M M1 m nF = − − +g g S g g S               (2a) 

How should values be assigned to these parameters? There is no obvious 
theoretical guidance for assigning any specific values, so the inevitable approach 
is trial and error. The problem with trial and error is that there are dozens of 
combinations that might be tried, and to evaluate them on a comparative basis, 
which values work better than others, would take hundreds of runs of a stochas-
tic GSO and very likely tens of thousands of NEC runs. And this is only one 
change that might be made. It might be desirable or necessary to try many alto-
gether different fitness functions, which raises the same question: Which ap-
proach is better, a stochastic GSO or a deterministic one? Which has the same 
obvious answer, the deterministic one. 

In order to compare antenna performances, Figures 2-6 show the NEC-com- 
puted antenna performance data for Yagi #21 and for the Design Run Yagi. Both 
Yagis are quite good antennas, but depending on the application one may be 
preferred over the other. The figures are self-explanatory as to their meaning, 
and they permit a head-to-head comparison of these two arrays. 

5. Conclusion 

This paper has investigated the effect of adding three extensions to the GSO 
Central Force Optimization as applied to Yagi-Uda array design and optimiza-
tion (D/O), those extensions being: 1) A small measure of pseudo randomly in-
jected Negative Gravity, (G < 0); 2) Two types of Elitism, step-by-step and run- 
to-run; and 3) Dynamic Threshold Optimization. The basic CFO algorithm does 
not include any of these extensions. This paper extends the work reported in a 
previous paper that considered only G < 0 and which showed a significant per-
formance improvement over a range of optimized arrays. Still better optimiza-
tion results are obtained by adding to the mix Elitism and DTO. While this work 
was limited to the D/O of 6-element Yagis, the reasonable conclusion based on 
these data is that any antenna D/O, indeed any GSO problem, antenna or not, 
utilizing CFO as the GSO engine will benefit by adding all three extensions, 
probably substantially. Adding Elitism to CFO with negative gravity alone im-
proved the best fitness by nearly 11%. Adding DTO with enumerated thresholds 
and no seed probe increased the best fitness by approximately another 4%. Still 
further improvement is possible by including a seed probe (coordinates of the 
best fitness location from a previous run) and by using calculated instead of 
enumerated DTO thresholds. These modifications increased the best returned 
fitness from 56.641 to 57.067. For comparison, from [1] the best fitness without 
Negative Gravity, Elitism or DTO is 47.8932 whereas when all three are added 
the best fitness increases to 57.0670, an overall increase of 19.16%. 
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Appendix: Dynamic Threshold Optimization 

The following material is adapted from the author’s arXiv post:  
http://arXiv.org/abs/1206.0414. 

A.1. Problem Statement 

In a bounded hyperspace { }min max: | , 1, ,i i i dx x x x i NΩ = ≤ ≤ =


  (decision space, 
DS), the ix  being decision variables and x  a decision vector, determine the 
locations and values of the global maxima of the objective function  

( )1 2, , ,
dNf x x x , that is, ( ){ }max : , :d dN Nf x x f∈Ω ⊂ℜ Ω ⊂ℜ →ℜ

  . The 
value of objective function ( )f x  at each point x  is its “fitness,” and the prob-
lem’s “landscape” (topology over DS) is ( )L f x= Ω∪

 , dNx∈Ω ⊂ℜ
  

A.2. Dynamic Threshold Optimization: Theory 

DTO conceptually is quite simple. Figure A1 is a schematic illustration of how it 
works in a one-dimensional (1-D) DS. Objective function ( )f x  is multimodal 
with many local maxima and a single global maximum, and the problem is to 
locate that maximum (coordinates and value). DTO bounds ( )f x  from below 
using a series of successively increasing “thresholds,” in effect compressing DS in 
the direction of the dependent variable (from “below”) instead of, as is some-
times done, shrinking DS by reducing an independent variable’s domain (from 
the “sides”). Locating the global maximum is easier in the compressed DS because 
unwanted local maxima are progressively filtered out as the “floor” (threshold) 
rises. Because DTO is a general geometric technique, it is algorithm-independent 
so that it can be used with any global search and optimization algorithm. Al-
though DTO is described in the context of maximization, it can be applied to 
minimization as well with obvious modifications. 

Procedure ( ) * *
min, , ,OPT q x x q q  

   is a global search and optimization (GSO) 
routine that returns 1) the dN  coordinates *x  of a maximum of function  
( )q x , 2) its value *q , and 3) a minimum value minq  (no coordinates).  

[ ]OPT ⋅  may comprise any search and optimization algorithm (singly or in com-
bination with others) regardless of its type, deterministic, stochastic, or hybrid; 
and different algorithms may be used on successive calls to [ ]OPT ⋅ . 

Selecting DTO’s thresholds can be tricky because its returned values are highly 
dependent on how well the modified objective function landscape can be searched. 
One approach is to initialize DTO by applying [ ]OPT ⋅  to ( )f x  without any 
threshold. Its return values then are used to define a starting threshold that sub-
sequently is updated by applying [ ]OPT ⋅  to the auxiliary function  
( ) ( ) ( )k k kg x f x T U f x T T= − ⋅ − +      
   , where kT  is the threshold value on the 

kth DTO pass, and [ ]U ⋅  is the Unit Step function,  

( )
1, 0
0, 0

z
U z

z
≥

=  <
. Thus, for ( ) kf x T≥ , ( ) ( )g x f x=

 

, whereas for  

( ) kf x T< , ( ) kg x T= . On each successive pass, DTO changes the topology of 
the objective function by redefining it using auxiliary function ( )g x . The DTO 
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run continues until a user-specified termination criterion is met (often maxi-
mum number of passes or fitness saturation). Its pseudocode appears in Figure 
A2. 

A.3. Setting DTO Thresholds 

How to set DTO’s starting threshold and how it is updated are determined by 
the algorithm designer. It can be done by enumeration, calculation, or some com-
bination of both. One obvious starting value is the minimum fitness returned by 

[ ]OPT ⋅ , that is, 0 minT f=  (threshold by calculation). This appears to be a good 
default choice when there is no other information about the objective function 
that permits specifying specific threshold values (enumeration). But updating the 
thresholds kT  as DTO progresses is more problematic because of the floor’s 
profound impact on ( )f x ’s landscape. More and more local maxima are re-
moved from the landscape as the threshold rises, so that effectively sampling DS 
becomes progressively more difficult (the topology becomes flatter and flatter). 
In the limit of the floor rising to a global maximum, DS collapses to a plane, and 
there is no information available for performing a search. How well DS can be 
explored thus becomes more and more of an issue as the threshold rises, and the 
search algorithm’s exploration characteristics become very important. One ap-
proach to setting kT  is shown in Figure A1 in which successive thresholds are 
set to the best returned fitness, k kT g∗= , but this approach has not worked well 
in numerical tests because a good GSO often sets the threshold too high too early 
in the run. The 2-D example that follows employs a different approach, and it 
clearly illustrates the effect of flattening the landscape too much. 

 

 
Figure A1. DTO concept with thresholds at successive local maxima. 
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Figure A2. DTO pseudocode. 

A.4. 2D Example: Schwefel’s Problem 2.26 

As an example of how it works, DTO was applied to Schwefel’s Problem 2.26 in 
2D using basic CFO as the GSO algorithm (not CFO-GED). In an dN -dimen- 
sional decision space, this objective function is defined as  

( ) ( )
1

sin
dN

i i
i

f x x x
=

 =   ∑ , 500 500ix− ≤ ≤ . It has a single global maximum of 

418.9829 dN×  at [ ]420.9687 dN  ([10], p.4467). The 2D global maximum is 
837.9658@(420.9687, 420.9687). DTO was implemented with a number of passes 

10P =  with a progressively increasing threshold computed as  

( )*
min min

th
k

C k
T F F F

P
= + − , 1, ,k P=   (no threshold for 0k = ), where *F   

and minF , respectively, are the best and worst overall fitnesses returned through 
pass k . The coefficient 0.98thC =  in this case is included to keep the thre-
shold far enough below the global maximum that the landscape is not com-
pressed into a plane. This formula for setting the threshold was chosen as much 
for its ability to illustrate the DTO concept (see plots below) as for its ability to 
produce good results, and there no doubt are countless other approaches to set-
ting the threshold that will work as well or better. 

The number of CFO probes was initialized to 4pN = , and it was doubled on 
each successive pass in order to enhance CFO’s exploration. Each run comprised 

25tN =  time steps. While CFO is an inherently deterministic search and opti-
mization metaheuristic, in this case it was implemented with a random initial 
probe distribution (IPD) instead of the usual “Probe Line” IPD [11]. The reason 
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for this change, again, was to enhance CFO’s exploration in the progressively 
flatter landscape. 

The DTO/CFO algorithm returned a best overall fitness of  
* 837.965574726692F =  at the point  

( ) ( )1 2, 421.007498176246,420.959700549993x x =  using a total of 106,392 func-
tion calls. The errors in the fitness and in the coordinates, respectively, are 0.0002253 
and (−0.0387982, 0.0089995) [computed as Known minus DTO], which are quite 
small. Table A1 summarizes the DTO threshold evolution pass-by-pass and CFO’s 
best fitness. 

Figure A3 shows how DTO compresses the landscape as its threshold increases. 
The objective function is plotted at each of the 10 passes. The first pass (no thresh-
old) shows the Schwefel Problem 2.26’s complex landscape. It is highly multi-
modal with many similar amplitude local maxima. As DTO progresses more and 
more of these maxima are filtered out because the floor is higher and higher 
relative to the single global maximum. At pass #8, for example, 16 local maxima 
are visible, whereas at thresholds #9 and 10, respectively, the number of maxima 
falls to 8 and to 3. On the last pass the global maximum is clearly visible on the 
right side of the plot. 

DTO also was tested against Schwefel 2.26 in 30D. Six passes were made using 
the linear threshold scheme described above, but with 0.6thC = . Unlike the 2D 
case, a deterministic CFO implementation was used with a Probe Line IPD and 

[ ]0,1γ = , 0.1γ∆ =  (see [12] for details). Other CFO parameters were the same 
as above except for 15tN = . Passes 2 through 6, in order, had calculated thresh-
olds of −10,176.09, −7828.153, −5480.216, −3132.279, and −212.722. The best 
fitness returned by DTO was 12,569.28 at the point  

420.7353, 1, , 29ix i= =  , 30 420.7662x = . This result is quite good compared 
to the known maximum of 12,569.487 (fractional error of 1.647 × 10−5) requiring 
a total of 44,352 function evaluations. 

 
Table A1. DTO/CFO results for 2-D Schwefel Problem 2.26. 

Pass # Threshold Best Fitness 

1 none 580.2973878 

2 −347.955 837.8781823 

3 −196.617 719.2845548 

4 −70.522 837.8956233 

5 55.580 837.9282076 

6 181.693 837.9654027 

7 307.815 837.9504301 

8 433.919 837.9647313 

9 560.022 837.9650286 

10 686.126 837.9655747 
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Pass #1 

 
Pass #2 
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Pass #3 

 

Pass #4 
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Pass #5 

 
Pass #6 
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Pass #7 

 
Pass #8 
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Pass #9 

 
Pass #10 

Figure A3. DTO compression of 2D Schwefel Problem 2.26 with successive thresholds. 
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Running DTO against the 2D Schwefel 2.26 with this same deterministic CFO 
setup returns a best overall fitness of 837.965567554534@(420.997385258614, 
420.997385258614) compared to the known maximum of 837.9658@(420.9687, 
420.9687), again using 44,352 function calls because CFO this time was determi-
nistic. The DTO-computed thresholds appear in Table A2. 

A.5. Speculation 

DTO is optimization algorithm-independent because it is fundamentally geo-
metrical in nature. Procedure ( ) * *

min, , ,OPT q x x q q  
   can be any global search 

and optimization routine, some combination of routines, different ones on suc-
cessive DTO passes, or perhaps none at all. This observation raises the possibility 
of a new optimization approach that does not rely, as typically is the case, on a 
metaheuristic based on a metaphor drawn from Nature, or, for that matter, on 
any existing optimization methodology, heuristic or otherwise. Instead, it may 
be possible to develop a new optimization algorithm using only DTO’s geomet-
rical approach. 

One possible approach might be to implement ( ) * *
min, , ,OPT q x x q q  

   as a 
group of quasirandom (QR) samplings of DS at each DTO threshold (any sam-
pling scheme can be used, but QR is attractive because these sequences are de-
terministic). This approach is especially attractive because of its simplicity. The 
data in each group could be used to develop statistics characterizing DS’s topol-
ogy at that threshold. Those statistics, in turn, can provide a measure of the like-
lihood of locating maxima. As DTO’s threshold moves up, any peak at or below 
the floor cannot be a global maximum (unless the landscape is compressed into 
a plane). As the problem’s topology is progressively compressed, QR sampling 
will return more and more sample points on the floor, that is, points at which 
there is no maximum of any kind. Repeatedly sampling a given threshold devel-
ops a picture of where the current maxima (local and global) might be located. 
In the limit, every point on the floor would be visited, and the global maxima 
located precisely. Of course, only a finite number of runs can be made, but it 
seems likely that very good statistics could be developed fairly quickly as DTO’s 
threshold increases. At a minimum, this approach should be able to provide a 
reliable estimate of the likelihood of locating global maxima. 

 
Table A2. Deterministic DTO/CFO 2-D Schwefel 2.26. 

Pass # Threshold 

1 none 

2 −682.382 

3 −498.169 

4 −331.149 

5 −163.129 

6 2.887 
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Hayes’ excellent article on QR sequences [12] may provide a blueprint for a 
DTO-QR optimization algorithm. For example, the problem of determining the 
area of a leaf is analogous to computing the area under ( )f x ’s maxima (peaks) 
projected onto a particular DTO threshold. If the compressed DS is sampled  

(QR or otherwise), then 1 th

s

N
N

−  estimates the probability of being within the  

peaks’ projections ( thN  and sN  being the number of sampling points falling 
on the threshold and the total number of points, respectively). Repeating this 
procedure on each threshold a sufficient number of times builds confidence in 
the estimate. Contrary to what might be intuitive, the objective of this approach 
is to reduce this probability to zero as the threshold increases. Zero probability 
of being within the maxima’s projections corresponds to the threshold being at a 
global maximum because the landscape has been compressed onto a plane. If 
this happens, as pointed out above, all information on the maximum’s location 
is lost, so as DTO progresses information on where maxima are found must be 
preserved in order to determine the global maximum’s coordinates. 

Besides changing DS’s topology from below, statistics gathered as described 
above may be useful in shrinking DS from the “sides,” that is, truncating  
( )f x ’s domain of definition to create a smaller search space that is more easily 

explored. This might be accomplished by grouping proximate sample points 
above the threshold, that is, points within the “footprints” (projections) of local 
maxima, and then breaking the domain into smaller regions containing each 
footprint. The likelihood of locating all footprints on a given threshold increases 
with the number of [ ]OPT ⋅  runs made at that threshold. 

Of course, all of these remarks are pure speculation at this point. Whether or 
not implementing some of these ideas may lead to a new and effective optimiza-
tion methodology is an open question. But DTO appears to hold enough prom-
ise to be investigated further. One approach might be to initialize DTO with a 
deterministic algorithm such as CFO with a Probe Line IPD, because it tends to 
converge quickly to the vicinity of global maxima, followed by QR-based explo-
ration as described above (or possibly a stochastic algorithm) because of poten-
tially improved exploration. 

A.6. Final Remarks 

DTO appears to be an effective technique for adaptively changing the topology 
of the decision space in a multidimensional search and optimization problem. 
DTO should be useful with any search and optimization algorithm. Bounding 
the objective function from below removes local maxima, and as the threshold 
or “floor” is increased, more and more local maxima are eliminated. In the limit, 
the problem’s landscape collapses to a plane whose value (“height”) corresponds 
to the value of the global maximum. In that case, DS contains no information as 
to the global maximum’s location, but the maximum’s value is known precisely. 
In order to preserve location information, the DTO threshold should not be set 
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too high, thereby retaining enough structure for efficient DS exploration. 
There are many unanswered questions concerning how DTO should be im-

plemented. For example, there almost certainly are better ways to set the thresh-
old than the simple linear scheme used here. Thresholds that are progressively 
closer together probably will work better. Another question arises in connection 
with what optimization algorithm should be used. Even though DTO is algo-
rithm-independent, it may work best when different algorithms are combined to 
take advantage of their different strengths and weaknesses. For example, CFO, 
which is inherently deterministic, often converges very quickly to the vicinity of 
a global maximum (good exploitation). But its very determinism inhibits explo-
ration in decision spaces with “sparse” structure (mostly planar, few local maxima). 
By contrast, stochastic algorithms (for example, Particle Swarm, Ant Colony, or 
Differential Evolution) exhibit better exploration, but they completely lack re-
peatability when implemented using the true random variables in their underly-
ing equations (computed from probability distributions). Combining a determi-
nistic algorithm used first with a stochastic one used later may provide better 
results by emphasizing exploitation early in the run and exploration later in the 
run. Or, in the case of CFO, it might be started deterministically and then 
switched to stochastic mode (recall that the CFO used here was stochastic for the 
first 2D Schwefel 2.26 run and deterministic for the subsequent 30D/2D cases). 
Another improvement might utilize “lateral” DS compression on one of DTO’s 
thresholds. It may be possible in the DTO-compressed landscape to reliably de-
termine the global maximum’s approximate location and based on that informa-
tion shrink DS “from the sides” or “laterally” (reduce the domain of definition), 
making it easier to search the smaller DS. If DTO is a novel approach to optimi-
zation, as the author believes it is, then all of these possibilities merit considera-
tion as fruitful areas of research, and the author hopes that these remarks will 
encourage such work. 
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