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Abstract 
State-of-the-art antenna design and optimization (D/O) is increasingly being 
done using Global Search and Optimization (GSO) algorithms such as Ant 
Colony Optimization (ACO), Particle Swarm Optimization (PSO), Differen-
tial Evolution (DE), and a plethora of other evolutionary algorithms, among 
them Central Force Optimization (CFO), which is the subject of this note. 
CFO analogizes real gravity in the real Universe so that its gravity is usually 
attractive in nature, that is, “positive”. But in metaphorical CFO space the al-
gorithm designer is free to turn gravity on its head by making it negative, and 
doing so to a small extent can improve CFO’s exploration of the search space 
thus providing even better results. This extension is discussed in some detail 
and applied to a 6-element Yagi-Uda array as an example. 
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1. Introduction 

Central Force Optimization (CFO) [1]-[3] is a global search and optimization 
(GSO) metaheuristic based on gravitational kinematics, the motions of real masses 
whose trajectories are controlled by real gravity. CFO searches a decision space 
(DS) for the maxima of an objective function whose value is its “fitness” and 
whose topology on DS is unknown or unknowable 

The CFO metaphor flies “probes” that sample DS and converge on local 
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extrema. It is inherently deterministic, so that every run with the same setup yields 
precisely the same results. CFO’s exploitation of discovered extrema (quickly con-
verging on a local maximum) is quite good [4], but its exploration (sampling un-
explored regions of DS) can be inhibited by that very attribute because probes that 
have coalesced are no longer available to search elsewhere. This dichotomy 
plagues most GSO’s. To quote “‘Exploration and exploitation are the two corner-
stones of problem solving by search.’ For more than a decade, Eiben and Schippers’ 
advocacy for balancing between these two antagonistic cornerstones still greatly 
influences the research directions of evolutionary algorithms (EAs)…” ([5], em-
phasis added) and additionally discussed in [6]-[8]. Like all GSO algorithms CFO 
is subject to the inescapable tension between exploration (adequately sampling DS) 
and exploitation (quickly converging on global maxima). Using negative gravity 
may mitigate these opposing effects, thereby improving CFO’s exploration. In-
jecting a small amount hopefully discovers new maxima that otherwise would be 
missed. They may include global maxima or simply other extrema with similar 
fitness values. This note looks into this possibility with some examples. 

CFO has been used both for design and for optimization (D/O) to solve “real-
world” problems, often, but not always, in an engineering setting. Design refers to 
meeting a specified minimum performance, whereas Optimization refers to deter-
mining the greatest objective function value(s) and their location(s) in DS (the 
“best” fitnesses and coordinates). Importantly, running any GSO algorithm against 
“benchmark” functions is altogether different from D/O on typical real world prob-
lems. Benchmark functions are known analytically a priori, as are their maxima 
value(s) and their location(s) in DS. Solving benchmarks is quite different from the 
usual “real world” case of starting without any objective function at all. Therefore, 
a key element of solving the real world problem is formulating a suitable objective 
function. But accomplishing this can be daunting, especially in complex cases, and 
using a deterministic algorithm like CFO can make a big difference because there 
is no inherent randomness in CFO. This note looks into this issue as well. 

Most GSO’s are stochastic in nature, so that even with the same setup successive 
runs produce different results. In order to evaluate the effect of a change in the 
objective function, even a slight change, say, using a different coefficient in some 
term, requires multiple runs of a stochastic GSO, often tens or hundreds to build 
sufficient statistics to reliably measure the effect of that new coefficient. In stark 
contrast, CFO requires only two runs, one with the original objective function and 
a second with the modified version because all changes in the runs’ outputs are a 
consequence only of modifying the objective function, not random changes be-
cause the GSO itself is inherently stochastic. 

CFO has been effectively used with excellent results to solve problems in a wide 
range of disparate disciplines, among them, as examples: training neural networks 
[9], patch antenna synthesis [10], power system state space pruning [11], antenna 
design [12]-[19], arid region water distribution [20], UAV flight path planning 
[21], bandpass filter design [22], humanoid robot gait [23], ensembles of neural 
networks [24], satellite image fusion [25], medical image fusion [26], iris recognition 
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[27], and filter design [28]. 
This paper is organized as follows: Introduction (§1), Effect of Negative Gravity 

(§2), Benefit of Negative Gravity (§3), Conclusion (§4), References, Appendix A1 
(π Fractions), Appendix A2 (CFO). Note that appendix citations are included in 
the Reference section. 

2. Effect of Negative Gravity 

With respect to the sign of CFO’s gravity, + or −, the question is, does making it 
negative benefit CFO’s performance, and if so, why, or does it impede it? Positive 
gravity causes CFO’s probes to always move toward greater fitnesses, never away, 
and consequently to some degree positive gravity inevitably impedes CFO’s explo-
ration. In fact, CFO often converges very quickly [4], which is a favorable attribute, 
but not if rapid exploitation is accomplished at the expense of under-sampling DS, 
which may well be the case. Adding some negative gravity that causes probes to fly 
away from each other may address this issue by causing probes that otherwise would 
coalesce to explore more widely by flying into regions that have been under-sampled 
or perhaps not sampled at all. The 6-element Yagi test case reported here shows that 
a small amount of negative gravity indeed does benefit CFO’s performance, osten-
sibly because it enhances CFO’s exploration while retaining the algorithm’s ability 
to exploit already located maxima. In the next section a couple of two-dimensional 
(2D) functions will be used to illustrate the effect of negative gravity which was in-
jected using π-fractions (Appendix A1). π-fractions #0-1,000,001 are downloadable 
at https://app.box.com/s/qdd8rzrhgaozne0ag1nes9jkm0bj6ark. Those data are pro-
vided for any interested user and may be distributed without limitation. 

2.1. Stretched Sine Wave 

The first function illustrating negative gravity is the stretched Sine Wave [29] de-
fined as  
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The stretched Sine Wave is plotted below. 
 

 
Stretched Sine Wave 
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For both test functions a dense π-fraction initial probe distribution (IPD) was 
used to provide a large number of sampling points in order to visualize how CFO’s 
probe distributions evolved with positive and negative gravity by plotting the 
probe positions as the run progressed. The gravitational constants (Appendix A2) 
were G = ±2. 

Figure 1 shows the Sine Wave probe evolution with positive gravity at steps 0 
(IPD), 2, 4 and 20, in order, top to bottom. This benchmark’s maximum is zero at 
the origin of the 10x10 decision space, and the probes’ convergence on the maxi-
mum is visually evident. CFO’s positive gravity causes the probes to come together 
around the maximum. Even though the Sine Wave is circularly symmetric DS is 
not, and the effect of this asymmetry is evident in the probe distributions that 
cluster along the DS diagonals. Because of the dense IPD, the CFO run was inten-
tionally short (20 steps), and it returned a best fitness of −0.005543 at the point 
(−0.00288, 0.00106). 
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Figure 1. Probes Locations, Stretched Sine Wave, Positive Gravity, G = +2. 
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Figure 2. Probes, Stretched Sine Wave, Negative Gravity, G = –2. 
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Figure 2 shows the Sine Wave probe evolution with negative gravity in the same 
format as Figure 1. The dramatic effect of G < 0 is quite apparent—CFO’s probes 
are all forced away from the maximum and instead cluster along the DS diagonals 
in the far corners, again a result of the Sine Wave/DS asymmetry. The negative 
gravity flew the probes as far apart as possible. At the end of the run, a best fitness 
of −0.102165 was returned at the point (0.04672, +1.02846). 

2.2. Gaussian Grid 

The second negative gravity test function is the Gussian Grid. It provides another 
compelling example of the validity of CFO’s gravitational metaphor and the effect 
of negative gravity. Note that the Sine Wave is a recognized benchmark whereas 
the grid is not. An attractive force of gravity requires positive mass and a positive 
gravitational constant (Appendix A2). Because the CFO implementation em-
ployed in this note forces the mass to be positive, the effect of negative gravity is 
readily demonstrated by setting the gravitational constant G  to a negative value, 
in this case 2G = − , and as with the Sine Wave the result is quite dramatic. 

The two-dimensional Gussian Grid function is defined as 
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While the grid is not a recognized benchmark, it is useful to demonstrate CFO’s 
behavior in distributing probes with and without negative gravity. The grid is plot-
ted below. Its global maxima of 1.025 lie on the grid lines 1 0, 50x = ± ;  

2 0, 50x = ± . 
 

 
Gaussian Grid 
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In order to visualize the probes’ evolution as the run progresses, CFO again was 
run with a dense IPD, in this case a uniform grid of probes. Figure 3 shows the 
probe distribution at steps 24 and 50 with positive gravity, 2G = + . At step 24 the 
grid’s structure is quite evident, and by step 50 it is fully resolved. Interestingly, 
the grid lines passing through the origin do not contain probes for 1,2 50x > . The 
likely reason is that probes on these segments were attracted to the large probe 
concentration near the origin. This thinning effect also seems to be occurring at 
step 50 on the segments 150 50x− ≤ ≤ , 2 0x =  and 250 50x− ≤ ≤ , 1 0x =  
where the probe density near the segment center is noticeably lower than at the 
ends. 

 

 
(a) 

 
(b) 

Figure 3. (a) Step 24 with 2G = + ; (b) Step 50 with 2G = + . 
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With G < 0 the probe distribution at step 50 (end of run) is shown in Figure 4, 
in stark contrast to the positive gravity case. Instead of clustering along the grid 
lines, the probes are symmetrically forced away from maxima to the very edges of 
the decision space. With negative gravity CFO’s probes fly away from each other 
instead of clustering near the grid’s maxima. As an interesting corollary, the grid’s 
landscape contains a continuum of local maxima, but in decision spaces like this, 
that is ones containing an uncountable or a very large number of maxima, most 
GSO’s converge on only one. In many real-world problems, however, that single 
maximum may not actually be the “best”. In real-world D/O, especially engineer-
ing design, identical or nearly identical fitnesses do not necessarily correspond to 
fungible designs. As a practical matter, of many solutions with the same or nearly 
the same fitness, usually one is better than the others for reasons that may not be 
quantifiable in an objective function. For example, one design may be less expen-
sive, or easier to fabricate, or to maintain, or to distribute, and so on with regard 
to any number of ancillary considerations that are not or cannot be easily reflected 
in an objective function. In cases where there are many indistinguishable or nearly 
indistinguishable maxima, a deterministic GSO like CFO, with positive gravity 
and a small amount of negative gravity may be useful in exploring DS as a pre-
processor to aid in locating many maxima, not just one, thus expanding the range 
of solutions. 

 

 

Figure 4. Step 50 with 2G = − . 

3. Example of Negative Gravity Benefit, a “Real-World”  
Problem: 6-Element Yagi-Uda Array 

The beneficial effects of injecting a small amount of negative gravity in CFO were 
discussed in considerable detail in some previously published papers [30] [31]. 
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Highlights from that work are presented here to supplement the discussion so far. 
While the example used here is drawn from Yagi antenna design, the basic idea of 
adding some negative gravity to CFO applies to any CFO problem. The reader is 
not expected or required to have any background in antennas or electromagnetics 
and should feel free to quickly peruse this section if desired. 

The structure under consideration is the six-element Yagi-Uda array shown be-
low. Arrays of this type are used across the entire radio spectrum and range in size 
from sub-centimeter to tens of meters. The antenna comprises six parallel dipole 
elements mounted on a common axis (“boom”). One element is connected to the 
radio transmitter/receiver (“driven”, marked by the colored dot) while the others 
are not (“parasitic”). The antenna’s performance over a range of frequencies 
(“bandwidth”, BW) is measured primarily by how much energy it radiates in spe-
cific directions (“gain”) and how well it accepts power from a radio transmitter 
(“standing wave ratio”, SWR). 

 

 
 

The problem here is to maximize an objective (fitness) function that combines 
the following parameters: antenna gain, SWR and BW. The specific mathematical 
form of the fitness function is not known a priori. It must be determined by the 
designer. There is a limitless number of ways these parameters can be mathemat-
ically combined, and not all of them are suitable as measures of how well a partic-
ular Yagi design performs. The Yagi problem is eighteen-dimensional (diame-
ter/length of each element, 12 variables); five spacings along the boom; and “input 
impedance” that determines (SWR). The very first question is, what mathematical 
combination of these eighteen variables does the best job of measuring how good 
a particular design is? Not any easy question! 

3.1. Formulating a Fitness Function 

As pointed out previously, formulating a suitable fitness function can be quite 
difficult, but using a deterministic GSO like CFO makes the job much easier. This 
point is important enough that it will be further examined with a very simple ex-
ample: a base-fed monopole. Its simplicity notwithstanding, even in a case like 
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this, specifying a suitable fitness function can be problematic. 
The objective here is maximizing the bandwidth of this simplest possible an-

tenna structure: a base-fed 10.2-meter monopole (a straight wire) on an infinite 
perfectly conducting ground plane as shown below. The monopole’s bandwidth 
will be increased by adding a fixed resistor R at a height H. A GSO must determine 
the best values of R and H. Unlike the Yagi problem, this problem is only two-
dimensional (2D) so that its fitness function can be visualized. Of course, as is 
usually the case, the problem statement doesn’t come with the required objective 
function. The designer must formulate it from scratch. What is a suitable form? 
There are many parameters that can be included, among them the monopole com-
plex input impedance, ,in inR X , its radiation efficiency, ε , (reduced by adding 
R), the system characteristic impedance, Z0, and the maximum gain, maxG , all 
across a range of desired frequencies (3 - 30 Mhz in this case). The algorithm de-
signer is free to define any objective function that works well to measure the mon-
opole’s fitness by combining these parameters in any desired manner. 

 

 
 

To illustrate the difficulty in formulating a suitable objective function, three 
forms are considered for this problem, each one ostensibly suitable for the prob-
lem at hand. The candidates are: 

( ) ( ) ( )max
1

min min
,
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Their 2D landscapes are plotted below in Figures 5-7 (principal plane views). 
Visual inspection reveals that two of the three are poor choices, one of them ex-
tremely poor. The landscape for function #1, shown in Figure 5, is smoothly var-
ying. The landscape for function #3, which is shown in Figure 7, also is smoothly 
varying. Both of these candidate functions are unimodal, which generally im-
proves a GSO’s effectiveness. But in stark contrast, function f2, whose topology is 
shown in Figure 6, is an especially bad choice because it is pathologically spikey, 
in the extreme, even though at first blush its functional form seems to be good for 
maximizing BW. The fact is, f2 simply is so pathological that its spikey nature 
would make it difficult, if not impossible, for most GSO’s to locate its global max-
imum. Of course, without being able to visualize these functions, as is done here, 
there is no way of knowing how poor a choice f2 actually is. Returning to the two 
possibilities that do make sense, f1 has a narrow maximum not too different from 
surrounding fitnesses, and it is quite close to the DS boundary, which may make 
the maximum difficult to locate. By comparison, f3 has a well-defined global max-
imum that is well within DS. Of the three candidates, there is no question that f3 
clearly is the best. 

 

 
(a) 

 
(b) 
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(c) 

 
(d) 

Figure 5. Landscape for objective function ( )1 , ,50f R H . 
 

 
(a) 
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(b) 

 
(c) 

 
(d) 

Figure 6. Landscape for Objective Function ( )2 , ,50f R H . 
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(a) 

 
(b) 

 
(c) 
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(d) 

Figure 7. Landscape for Objective Function ( )3 , ,50f R H . 

 
So what happens if candidate objective functions cannot be visualized? How 

can the algorithm designer formulate a suitable fitness if, as an example, instead 
of just R and H another component is added, say, an inductor, whose value and 
location are to be determined the same way R and H must be found? Now the 
problem is 4D instead of 2D. The landscape for candidate objective functions can-
not be plotted. How can the suitability of candidate functions be assessed? Using 
a deterministic GSO like CFO makes all the difference because changes in the al-
gorithm’s results from one run to the next are entirely a result of changes to the 
fitness function, and nothing else, for example randomness in the GSO itself. A 
deterministic GSO permits direct comparison of how well candidate objective 
functions serve to actually solve the problem at hand, whereas stochastic GSO’s 
simply cannot without making many runs.  

3.2. Yagi Array Results 

Getting back to the Yagi problem, its objective was to maximize the array’s im-
pedance bandwidth and forward gain over a specified frequency range. After try-
ing several fitness functions, the following simple form was settled on: 

( ) ( ) ( )
( ) ( ) ( )

1 3 5

2 4 6

YAGI Fitness Gain L Gain M Gain U

SWR L SWR M SWR U

c c c

c c c

= ∗ + ∗ + ∗

− ∗ − ∗ − ∗
 

where L/M/U are the lower/mid/upper frequencies at which the Yagi’s power gain 
and SWR are computed. The weighting coefficients are: 1 2 5 6 1c c c c= = = = ; 

3 4 3c c= = , which intentionally favors midband performance, slightly. Their val-
ues were determined empirically by making successive CFO runs using different 
coefficient values and evaluating the results of each one, something that could not 
be done quickly with any stochastic GSO. 

Negative gravity was injected into CFO as follows. At each step negative gravity 
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was pseudo randomly assigned using π-fractions (data files available, see Appen-
dix A1). At each step in the CFO run, the value of the π-fraction was tested against 
the target level of negative gravity and the sign of gravity adjusted accordingly 
(positive or negative). CFO pseudocode and the actual vs. target amount of nega-
tive gravity are shown below in Figure 8(a) and Figure 8(b), more detail in [30] 
[31]. This algorithm is referred to as “CFO/NG”. 

 

 
(a) 

 
(b) 

Figure 8. (a) CFO-Negative Gravity Pseudocode; (b) CFO Negative Gravity using π Frac-
tions.  

 
The Yagi fitness and its maximum gain as a function of the amount of negative 

gravity are shown in Figure 9 and Figure 10. With zero negative gravity, the fit-
ness and max gain, respectively, are about 48 and 11.4 dB, which are both very 
respectable values. Adding a small amount of negative gravity at first reduces these 
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values, but when the negative gravity level reaches about six percent both the fit-
ness and gain increase dramatically, and they remain above their initial values 
with as much as about 10% negative gravity, after which they gradually decrease. 
These two plots alone convincingly demonstrate that adding some small amount 
of negative gravity can help quite a bit. The negative gravity allows CFO’s probes 
to explore more widely and to discover even better array designs. The improved 
fitness and gain correspond to solutions that were missed by CFO without nega-
tive gravity because CFO failed to fly probes into their regions of DS. In fact, com-
bining G < 0 in CFO with a couple of other extensions (Dynamic Threshold Op-
timization and Elitism) has resulted in more than 19% improvement in the fitness 
of a 6-element Yagi [30] [31]. There is no question that some small amount of 
negative gravity can be beneficial. 

 

 

Figure 9. Yagi Fitness vs. Degree of Negative Gravity. 
 

 

Figure 10. Yagi Maximum Gain vs. Degree of Negative Gravity. 
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For comparison, Figure 11 shows the Yagi gain optimized with several other 
GSO’s, two CFO variants and the original GSO that resulted in using a 6-element 
Yagi array as the reference design, namely, Dominating Line Cone Search, “DLCS” 
(curve labeled “A3” in Figure 11) [32]. Additional details are available in [33]. 
The DLCS maximum gain is barely over 10 dBi, whereas the CFO/NG value at 6% 
negative gravity is nearly 12 dBi, a very substantial improvement of nearly 20%! 
For this particular problem, 6% negative gravity provides the best maximum gain 
as is evident from the plot, which presents data for negative gravity levels between 
zero and just under 20%. If CFO/NG is being used as the GSO, it is apparent that 
runs should be made with varying amounts of negative gravity because the results 
are sensitive to how much is injected. Of course, because CFO is deterministic, as 
is pi-fraction-injected negative gravity, the observed changes in CFO’s output can 
only be a result of adding negative gravity if all other CFO parameters remain 
unchanged, which is the case here. And because the only change is adding negative 
gravity, all other CFO parameters remaining fixed, for example, the magnitude of 
the gravitational constant (only its sign was modified), there is no issue with sen-
sitivity to run parameters, which can be a major concern with stochastic GSO’s 
such as Particle Swarm or Ant Colony Optimization. 

 

 

Figure 11. Yagi Maximum Gain with Other GSO’s. 

4. Conclusion 

It is apparent that injecting a small amount of negative gravity into Central Force 
Optimization can produce substantially better results because the algorithm’s ex-
ploration of DS is improved. The examples discussed here are compelling. It is 
reasonable to speculate that injecting a small amount of negative gravity will en-
hance CFO cross the board, that is, any CFO run against any GSO problem. Of 
course, how well the negative gravity CFO extension works is likely to be problem-
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dependent, that is, providing better results on some than on others. It is therefore 
recommended that the negative gravity approach be used in all CFO implemen-
tations because there is no significant downside to running CFO/NG instead of 
CFO alone. 
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Appendix A1. π FRACTIONS 

GSO Sampling: (This material adapted from [34]). Uniformity in randomly 
generated sample points is an important consideration in GSO. Sample points 
should be generated using a truly uniformly distributed random variable (rv) cal-
culated from a probability distribution, but most if not all pseudorandom sequence 
generators fall short because their points in fact are not uniformly distributed. One 
alternative approach is using Low Discrepancy Sequences (LDS) which are becom-
ing more popular. For example, De Rainville et al. [35] [36] provide a summary of 
the uniformity problem and develop an evolutionary optimization approach for 
generating LDS. Pant et al. [37] describe an improved Particle Swarm Optimization 
(PSO) algorithm utilizing van der Corput and Sobol LDS. Other representative, not 
exhaustive, examples include LDS applied to liquid crystal display dot patterns [38], 
power system stabilizers [39], and, quite interestingly, financial analysis [40] [41]. 

This appendix describes an alternative approach to generating uniformly dis-
tributed sample points using π Fractions computed from hexadecimal digit ex-
traction from the mathematical constant π. Pi Fractions [42] are uniformly dis-
tributed and provide a basis for creating reproducible, deterministic sample point 
distributions that can be used in any GSO algorithm regardless of its fundamental 
nature, stochastic, deterministic or hybrid. The importance of determinism in 
electromagnetics problems is discussed in [43]. 

Another reason for considering π Fractions is what some practitioners, includ-
ing the author, consider a willy-nilly proliferation of stochastic metaheuristics of 
questionable merit [44]. Examples range from “Anarchic societies” to “Zombies” 
[45]. Are these algorithms any good? How can they be efficiently compared head-
to-head or to other well-established algorithms? Making them deterministic 
would be a good first step, and π Fractions can do that. For interested readers, π 
fractions#0 - 1,000,001 are downloadable at: 
https://app.box.com/s/qdd8rzrhgaozne0ag1nes9jkm0bj6ark 

BBP Algorithm: The Bailey-Borwein-Plouffe (BBP) algorithm quite remarkably 
extracts hexadecimal digits from the numerical constant π beginning at any digit 
without having to compute any of the preceding digits. BBP is based on the identity 

0

1 4 2 1 1
8 1 8 4 8 5 8 616k

k k k k k
π

∞

=

 = − − − + + + + 
∑  

whose derivation and use in BBP are described in detail in [42]. As an example, the 
hex digits of π starting at digit 1,000,000 are 26C65E52CB459350050E4BB1 and the 
corresponding π Fraction is 0.151464362347971272412488292131. For all practical 
purposes the first 215,829 π Fractions are uniformly distributed on [0, 1) with a 
mean value of 0.499283729688375. The Cumulative Distribution Function (CDF) 
for these data is plotted in Figure A1 (1000 bins) in which { }Pr i Xπ ≤  is the 
probability that π Fraction iπ  is less than or equal to 0 1X≤ ≤ . It is reasonable 
to speculate that all sequential iπ  are uniformly distributed as well. Testing on 
various subsets of the 215,829 data set reveals a uniform distribution regardless of 
how many contiguous fractions are included in any fairly large sample or where 
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the sequence is begun. It also seems reasonable to believe that any sufficiently large 
set of arbitrarily selected iπ  also will be uniformly distributed in [0, 1). These 
characteristics have not been investigated for the other constants discussed in [42], 
so it is not known whether or not they exhibit similar behavior. 

 

 

Figure A1. π Fraction CDF. 
 

Dimensional Correlations: Nonuniformity in LDS sequences often is evident 
in bidimensional plots in high dimensionality spaces. Figure 2 and Figure 3 in 
[46] are good examples. They show, respectively, almost perfect linear correlations 
in monotonically increasing van der Corput sequences and correlations between 
dimensions 7 and 8 in a Halton sequence [46] [47]. Other striking visual examples 
appear in [40] and [41]. Testing of van der Corput and Halton sequences reveals 
many undesirable correlations. A typical 30-dimensional Halton example for co-
ordinates 27 and 28 appears Figure A2. 

Sample points based on π Fractions also can exhibit strong linear correlations, 
but apparently only under very limited circumstances. For example, Figure A3 
plots (x27, x28) for 1000 points in 30 dimensions using the π Fractions in their order 
of occurrence (index increment = 1 starting with the first π Fraction ). The linear 
correlation is obvious, but it disappears completely when instead dimensions 27 
and 29 are compared as seen in Figure A4. Many test runs suggest that the π Frac-
tions exhibit correlation only in successive dimensions and only when accessed in 
their order of occurrence, regardless of where the sequence starts. But when a dif-
ferent index greater than 1 is used, for example, a value of 2, there is no obvious 
correlation as shown in the (x27, x28) plot in Figure A5. These data suggest it is 
reasonable to believe that indeed the π Fractions provide uniformly distributed 
uncorrelated sample points as long as successive fractions are not used to compute 
the sample point coordinates. 
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Figure A2. Coordinates (x27, x28) 30D Halton sequence (1000 points). 
 

 

Figure A3. Coordinates (x27, x28) 30D π Fractions, index increment = 1. 
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Figure A4. Coordinates (x27, x29) 30D π Fractions, index increment = 1. 
 

 

Figure A5. Coordinates (x27, x28) 30D π Fractions, index increment = 2. 
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An Example - πGASR Algorithm: The utility of π Fractions was investigated 
by generating uniformly distributed sample points and pseudorandom numbers 
in the genetic algorithm πGASR which is based on Li et al.’s novel GA [48]. A 
standard GA is improved in by 1) allowing competition between child chromo-
somes in a new crossover operator resulting in better interpolation and extrapo-
lation of decision space sample points and 2) introducing an iteration-dependent 
mutation operator. Li et al.’s algorithm is referred to here as “Genetic Algorithm 
with Sibling Rivalry” (GASR) because of the new crossover operator (see [48] for 
details and note that the “SR” descriptor is introduced here). Its implementation 
using π Fractions is algorithm πGASR. π Fractions are used to create the initial 
chromosome distribution and in testing for crossover, mutation, and elitism. De-
tails of the scheme selecting the iπ  are determined by the algorithm designer 
and in this case appear in the source code listing (https://github, search term 
“PiFractions”). The manner in which the πGASR’s fractions are selected avoids 
the bidimensional correlation issue discussed above. Note that πGASR, like CFO, 
maximizes the objective function instead of minimizing it. 

Benchmark Results 
πGASR was tested against the six-function benchmark suite shown in Table A1. 

Results are reported in Table A2 and Table A3. In Table A1 DS is the decision 
space, x∗  the location of the objective function’s known maximum, and ( )f x∗  
its value. This suite was used in [49] to test the new algorithm vibrational-PSO, 
“v-PSO”. 

 
Table A1. v-PSO Benchmark Functions. 

Fnc# Function ( )f x  DS x∗  ( )f x∗  

f1 Ackley 

( )

2
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120exp 0.2

1exp cos 2 20
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d

N
ii

d

N
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x e
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=

=
π
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∑
 [ ]30,30 dN−  [ ]0 dN  
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f2 
Cosine  

Mixture ( )2
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i ii ix x
= =
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d i iiN x x

=
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0 

 
πGASR was implemented with the following parameters: crossover probability 

= 0.8; mutation probability = 0.02; crossover weight factor w = 0.5 [40]; mutation 
shape factor 2β =  {see [48] for details}. The numbers of generations and 
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chromosomes were 101 and 2500 in Table A2 and 100 and 2000 in Table A3, 
respectively. In both cases the best chromosome from the previous generation was 
randomly inserted into the next one (“elitism”). Runs in Table A2 were termi-
nated early if the change in fitness between the current generation and the 20th 
previous generation was ≤10−6. In order to provide a head-to-head statistical com-
parison with v-PSO, the πGASR runs in Table A3 ran to completion using all 
20,000,000 function evaluations. 

Table A2 compares v-PSO and single-run πGASR results for the 10, 20 and 30-
dimensional benchmarks. Nd is the DS dimensionality and Neval the total number 
of πGASR function evaluations. The v-PSO data are average values for 100 runs 
using 200,000 function evaluations per run (20,000,000 evaluations of each test 
function). Because v-PSO performs minimization the signs of its results have been 
changed for comparison to πGASR. In all cases in Table A2, a single πGASR run 
was made because every πGASR run with specific π Fraction distributions yields 
the same result every time since the fractions are pseudorandom and therefore 
known with absolute precision. 

 
Table A2. Single Run πGASR Data for v-PSO Benchmark Suite. 

fnc# Nd 
Best Fitness πGASR 

Neval v-PSO* πGASR (single run) 

f1 

10 –1.84e–15 ± 2.9e–16 –5.762878e–4 656,308 

20 –2.84e–15 ± 1.5e–16 –1.161337e–2 328,243 

30 –4.93e–15 ± 3.4e–16 –6.988124e–3 457,978 

f2 

10 1 ± 0 0.9999997 457,978 

20 2 ± 0 1.9999993 457,978 

30 3 ± 0 2.9999981 394,558 

f3 

10 1 ± 0 0.9999999 361,090 

20 1 ± 3e–18 0.9999999 294,763 

30 1 ± 1e–17 0.9999999 328,243 

f4 

10 –0.020 ± 0.006 –0.004429 492,372 

20 –0.0026 ± 0.002 –0.015874 361,090 

30 –8.8568e–4 ± 0.001 –0.002139 457,978 

f5 

10 0 ± 0 –1.057361e–4 425,640 

20 0 ± 0 –1.203252e–3 394,558 

30 –5.6843e–16 ± 1e–15 –9.932735e–5 492,372 

f6 

10 –620.8131 ± 50.4 –7.753379e–4 457,978 

20 –1.3384e+3 ± 68.5 –7.666976e–4 394,558 

30 –2.1395e+3 ± 103.3 –9.400238e–3 294,763 

* average best fitness over 20,000,000 evaluations; data reproduced from Table IV in [49], 
with sign changed because πGASR maximizes f(x) while v-PSO minimizes. 
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Table A3. πGASR Statistical Data for v-PSO Benchmark Suite. 

fnc# Nd 
Average Best Fitness (20 × 106 evals) πGASR Overall 

Best Fitness** v-PSO* πGASR Avg / Std Dev 

f1 

10 –1.84e–15 ± 2.9e–16 –3.25606e–3/2.90e–3 –7.22411e–5 

20 –2.84e–15 ± 1.5e–16 –3.71691e–3/4.04e–3 –1.58685e–4 

30 –4.93e–15 ± 3.4e–16 –3.54867e–3/3.03e–3 –1.22941e–4 

f2 

10 1 ± 0 0.9999999/2.33e–7 0.9999999 

20 2 ± 0 1.9999997/3.83e–7 1.9999999 

30 3 ± 0 2.9999995/8.41e–7 2.9999999 

f3 

10 1 ± 0 0.9999999/9.40e–9 0.9999999 

20 1 ± 3e–18 0.9999999/1.93e–8 0.9999999 

30 1 ± 1e–17 0.9999999/3.55e–8 0.9999999 

f4 

10 –0.020 ± 0.006 –5.02147e–4/7.44e–4 –6.39425e–10 

20 –0.0026 ± 0.002 –7.29040e–4/1.25e–3 –3.29534e–09 

30 –8.8568e–4 ± 0.001 –8.45741e–4/1.354e–3 –6.00263e–07 

f5 

10 0 ± 0 –2.53755e–4/4.08e–4 –2.73693e–7 

20 0 ± 0 –6.25339e–4/1.20e–3 –1.40063e–6 

30 –5.6843e–16 ± 1e–15 –6.13252e–4/9.69e–4 –1.38614e–7 

f6 

10 –620.8131 ± 50.4 –1.84158e–4/8.37e–5 –1.27276e–4 

20 –1.3384e+3 ± 68.5 –4.36412e–4/3.40e–4 –2.55634e–4 

30 –2.1395e+3 ± 103.3 –6.58102e–4/4.18e–4 –3.82090e–4 

* average v-PSO best fitness over 20,000,000 evaluations; data reproduced from Table IV 
in [49], with sign changed because πGASR maximizes f(x) while v-PSO minimizes. ** best 
πGASR fitness over 20,000,000 objective function evaluations. 

 
In terms of function evaluations πGASR’s worst case Figure of 656,308 is nearly 

97% less than v-PSO’s 20,000,000. In terms of solution quality, πGASR performed 
very well on f2, f3 and f4; well on f1 and f5; and exceptionally well on f6. For f6 with 
Nd = 30 πGASR required 294,763 evaluations, 98.5% fewer than v-PSO, and it re-
turned a best fitness of −9.400238 × 10−3 compared to v-PSO’s average value of 
−2139.5 ± 103.3. These results strongly suggest that pseudorandom π fractions 
can be very useful in implementing what amount to deterministic “stochastic” al-
gorithms thereby avoiding the need to make multiple runs to generate statistical 
data. 

Nevertheless, in order to directly compare v-PSO and πGASR, Table A3 shows 
statistical data using the same number of function evaluations. πGASR’s average 
best fitness and its standard deviation are tabulated along with the best fitness 
returned over all runs. πGASR performed worse on f1; essentially the same on f2 
and f3; better on f4; worse on f5; and much better on f6. However, even in cases 
where v-PSO outperformed πGASR the differences were not dramatic, and for 
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function f6 πGASR outperformed v-PSO by a very wide margin. Comparing the 
πGASR data in Table A2 and Table A3 shows that the longer runs with far more 
function evaluations do yield uniformly better results, as expected. 

Summary: π Fractions have been shown to be an effective approach to creating 
uniformly distributed decision space sample points for global search and optimi-
zation. Fractions associated with constants other than π also may be similarly use-
ful, but they have not been investigated. Algorithm πGASR was used an example, 
and its performance tested against the v-PSO six benchmark suite with generally 
very good results and in one case much better results. π fraction pseudorandom 
sequences should be useful for improving the performance of any “stochastic” al-
gorithm in several ways: 1) the resulting sequences are entirely deterministic so 
that all runs with the same setup produce exactly the same results thus rendering 
a stochastic algorithm effectively deterministic without compromising its ability 
to explore the decision space; 2) making successive runs with different sequences 
likely will result in improved performance with far fewer function evaluations; 
and 3) decision space adaptation is easily accomplished because the sequences are 
deterministic (for example, shrinking the decision space around a group of max-
ima). The π Fraction data file used in πGASR and the source code listings are 
available online https://github, search term “PiFractions”.  

Appendix A2. Central Force Optimization 
A2.1. The CFO Metaphor 

(This material adapted from [43]). Central Force Optimization (CFO) analogizes 
gravitational kinematics, that is, the motions of real bodies in the real Universe 
under the influence of real gravity. The governing physical law is Newton’s Uni-
versal Law of Gravitation. Newton’s Law formulates the magnitude of the gravi-
tational force of attraction between the two masses 1m  and 2m  as (see [1] for 
specific references) 

 1 2
2

m mF
r

γ=    (a1) 

where r  is the distance between them, and γ  is the “gravitational constant”. 
The force of gravity always is attractive, never repulsive, and mass in the real Uni-
verse always is positive, never negative. The force of gravity is a central force be-
cause it acts only along the line connecting the mass centers, hence the name 
“Central Force Optimization”. Mass 1m  experiences a vector acceleration due to 
mass 2m  given by 

 2
1 2

ˆm ra
r

γ= −
   (a2) 

where r̂  is a unit vector that points toward 1m  along the line joining the masses’ 
centers. 

A2.2. Problem Statement 

The CFO metaheuristic addresses the following problem: In a decision space (DS) 
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defined by min max , 1, ,i i i dx x x i N≤ ≤ =   where ix  are the decision variables, lo-
cate the global maxima of an objective (“fitness”) function ( )1 2, , ,

dNf x x x  pos-
sibly subject to a set of constraints Ω  among the decision variables. The value 
of ( )1 2, , ,

dNf x x x  is called the “fitness”. CFO explores DS by flying metaphor-
ical “probes” whose trajectories are governed by equations of motion drawn from 
the gravitational kinematics analogy. 

A2.3. Constant Acceleration 

The location of a mass under constant acceleration is given by the position vector 

 ( ) 2
0 0

1
2

R t t R V t a t+ ∆ = + ∆ + ∆
  

    (a3) 

where ( )R t t+ ∆


 is the position at time t t+ ∆ . 0R


 and 0V


, respectively, are 
the position and velocity vectors at time t , and the acceleration a  is constant 
during the interval t∆ . In standard three dimensional Cartesian coordinates the 
position vector is ˆˆ ˆR xi yj zk= + +



, where î , ĵ , k̂  are the unit vectors along 
the x , y , z  axes, respectively. The CFO metaphor analogizes Equations (a1)-
(a3) by generalizing them to a decision space of dN  dimensions. 

A2.4. Probe Trajectory 

CFO’s probes in a typical three-dimensional DS are shown schematically in Fig-
ure A6. The location of each probe at each time step is specified by its position 
vector p

jR


, in which p  and j  are the probe number and time step index, re-
spectively. In an dN -dimensional DS the position vector is ,

1
ˆ

dN
p p j
j k k

k
R x e

=

= ∑


, 
where the ,p j

kx  are probe p ’s coordinates at time step j , and following stand-
ard notation ˆke  is the unit vector along the kx  axis. 

 

 

Figure A6. Typical 3-D CFO Decision Space. 
 

Consider a typical probe, p . It moves from position 1
p
jR −



 at time step 1j −  
to position p

jR


 at time step j  under the influence of the metaphorical 
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“gravitational” forces that act on it. Those forces are created by the fitness at each 
of the other probes’ locations at time step 1j − . The “time” interval between steps 

1j −  and j  is t∆ . 
At time step 1j −  at probe p ’s location the fitness is  

( ), 1 , 1 , 1
1 1 2, , ,

d

p p j p j p j
j NM f x x x− − −
− =  . Each of the other probes also has associated 

with it a fitness of 1, 1, , 1, 1, ,k
j pM k p p N− = − +  , pN  being the total number 

of probes. In this illustration, the value of the fitness is represented by the size of 
the blackened circle at the tip of the position vector. In keeping with the gravity 
metaphor, the blackened circles may be thought of as “planets”, say, in our Solar 
System. Larger circles correspond to greater fitness values, that is, bigger planets 
with correspondingly greater gravitational attraction. In Figure A6 the fitnesses 
ordered from greatest to least occur at 1

s
jR −



, p
jR


, 1
n
jR −



, and 1
p
jR −



, respectively, 
as shown by the relative size of the circles. 

Probe p ’s trajectory in moving from location 1
p
jR −



 to p
jR


 is determined by 
its initial position and by the total acceleration produced by the “masses” that are 
created by the fitnesses (or some function defined on them) at each of the other 
probes’ locations. In the CFO implementation used in this paper the “accelera-
tion”, analogous to Equation (a2), experienced by probe p  due to the single 
probe n  is given by 

 
( ) ( ) ( )1 1 1 1 1 1

1 1

n p n p n p
j j j j j j

n p
j j

G U M M M M R R

R R

α

β
− − − − − −

− −

⋅ − ⋅ − ⋅ −

−

 

 

   (a4) 

where G is CFO’s “gravitational constant” corresponding to γ  in Equation (a1). 
Note that in the real Universe 0G > , always. In CFO space, however, G can be 
positive (attractive force of gravity) or negative (repulsive force of gravity). Re-
turning to the forces acting on probe p , in a similar fashion to probe n ’s effect, 
the acceleration of probe p  due to a different probe s  is given by 

 
( ) ( ) ( )1 1 1 1 1 1

1 1

s p s p s p
j j j j j j

s p
j j

G U M M M M R R

R R

α

β
− − − − − −

− −

⋅ − ⋅ − ⋅ −

−

 

 

  (a5) 

Note that the minus sign in Equation (a2) has been included in the order in 
which the differences are taken in these acceleration expressions. “Mass” in Equa-
tion (a2) corresponds to the terms in the numerator involving the fitnesses. Im-
portantly, it does not correspond to the fitness itself. In these equations ( )U ⋅   

is the unit step function ( )
1, 0
0, otherwise

z
U z

≥
= 


. And following standard notation 

the vertical bars denote vector magnitude, 

1
2

2

1

dN

i
i

X x
=

 
=  
 
∑



, where ix  are the sca-

lar components of X


. 
There are no parameters in Equation (a2) corresponding to the “CFO expo-

nents” 0α >  and 0β > , nor to the unit step ( )U ⋅ . In real physical space α  
and β  would take on values of 1 and 3, respectively. Note, too, that the 
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numerators in Equations (a4) and (a5) do not contain a unit vector like Equation 
(a2). The exponents are included to give the algorithm designer a measure of flex-
ibility by assigning, if desired, a different variation of gravitational acceleration 
with mass and with distance. 

A2.5. Mass in CFO Space 

Two other important differences between real gravity and CFO’s version are: 1) 
the definition of “mass”, which above is the difference of fitnesses, for example, 

1 1
s p
j jM M− −− , not the fitness value itself; and 2) inclusion of the unit step  

( )
1, 0
0, otherwise

z
U z

≥
= 


. The difference of fitnesses is used to avoid excessive grav-

itational “pull” by other close by probes that presumably will have fitnesses with  
similar values. The unit step is included to avoid the possibility of “negative” mass. 
In the physical Universe, mass is positive, always, but in CFO-space the mass 
could be positive or negative depending on which fitness is greater. The unit step 
forces CFO to allow only positive masses, that is, attractive masses. If negative 
fitness differences were allowed, then some accelerations would be repulsive in-
stead of attractive, thus forcing probes away from large fitnesses instead of toward 
them. The algorithm designer is free to consider other definitions of mass as well. 
One possibility, for example, might be a ratio of fitnesses similar to the “reduced 
mass” concept in gravitational kinematics. 

A2.6. Total Acceleration and Position Vector for a Single Probe 

Taking into account the accelerations produced by each of the other probes on 
probe p , the total acceleration experienced by p  as it “flies” from position 

1
p
jR −



 to p
jR


 is given by the sum of the gravitational effects over all other probes, 
that is, 

 ( ) ( ) 1 1
1 1 1 1 1

1
1 1

p k pN
j jp k p k p

j j j j j k pk
j jk p

R R
a G U M M M M

R R

α

β
− −

− − − − −
=

− −≠

−
= − ⋅ − ×

−
∑

 



 

   (a6) 

Probe p ’s new position vector at time step j  is therefore given by 

 2
1 1 1

1 , 1
2

p p p p
j j j jR R V a t j− − −= + + ∆ ≥
  

    (a7) 

where (see discussion)  

1 0p
jV − =


 

(a7) is the analog of (a3) where 1
p

jV −



 is the probe’s “velocity” at the end of time 
step 1j − . In Equation (a7) the coefficient 1/2, the velocity term, and the time 
increment t∆  have been retained primarily as a formalism to highlight the anal-
ogy to gravitational kinematics, but they are not required, and in fact 1

p
jV −



 should 
be set to zero. For the CFO implementation used here, as a matter of convenience 

t∆  is arbitrarily set to 1. Of course, if desired, any constant value of t∆  as well 
as the factor 1/2 can be absorbed into the gravitational constant G . The velocity 
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term 1
p

jV −



 in (a7) has been retained purely as a formality and should be set to 
zero as it is here and shown above. Some tentative numerical experiments showed 
that including the 1

p
jV −



 term may actually impede probe convergence. The rea-
son for this seemingly contradictory behavior is that while CFO’s probe trajecto-
ries are piecewise linear, in general they are curvilinear. In curvilinear motion the 
acceleration and velocity vectors are not necessarily parallel. For example, in the 
limiting case of circular motion, the velocity vector is tangent to the circle while 
the acceleration vector is radially inward along the circle’s radius, that is, in the 
case of circular motion the acceleration and velocity vectors are actually orthogo-
nal. In the original CFO paper [1] 1

p
jV −



 serendipitously had been set to zero as a 
matter of convenience so that the acceleration-velocity directionality issue was 
avoided entirely. 

A2.7. Errant Probes 

An important concern is how to handle an “errant” probe, that is, a probe that has 
flown outside DS. It is possible that the total acceleration experienced by a probe 
will fly it into regions of unfeasible solutions beyond the DS boundary. There are 
many ways to deal with this contingency, and a simple one was implemented in 
the basic version of CFO used here, namely, the use of a “repositioning factor”, 
0 1repF≤ ≤ . This factor is used to reposition an errant probe according to the for-
mulas 

 ( ), min , min , 1 minIf p j p j p j
i i i i rep i ix x x x F x x−< ∴ = + ⋅ −    (a8) 

 ( ), max , max max , 1If p j p j p j
i i i i rep i ix x x x F x x −> ∴ = − ⋅ −   (a9) 

repF  is assigned an initial value and incremented at each step by a fixed 
amount repF∆ , and if it exceeds unity is reset to the initial value. This simple ap-
proach guarantees that all probes remain inside DS. Note that while this procedure 
is inherently pseudo random in nature, for the purpose of improving CFO’s ex-
ploration of DS numerical experiments have shown that it is not as effective as 
pseudo randomly injecting a small amount of negative gravity. 

A2.8. avgD  Convergence Metric 

Perhaps the best measure of CFO’s convergence is the “Average Distance” metric 

computed as ( ) ( )2
, ,

1 1

1
1

p dN N
p j p j

avg i i
p idiag p

D x x
L N

∗

= =

= −
⋅ −

∑ ∑ , where p∗  is the num-

ber of the probe with the best fitness, and the superscripts p and j denote, respec-

tively, the probe and step numbers as above. ( )2max min

1

dN

diag i i
i

L x x
=

= −∑  is the  

length of the decision space principal diagonal. If every one of CFO’s probes has 
coalesced onto a single point, then 0avgD = . How closely this metric approaches 
zero is a good indicator of how CFO’s probe distribution has evolved around a 
maxima. avgD  also is useful in identifying potential local trapping because 
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oscillation in avgD  appears to signal trapping at a local maxima [3]. 

A2.9. Initial Probe Distribution 

Every CFO run begins with a user-specified Initial Probe Distribution (IPD) de-
fined by two parameters: 1) pN , the total number of probes used; and 2) where 
the probes are placed inside DS. Many CFO implementations have employed a 
pseudorandom variable (“prv”) IPD comprising an orthogonal array of p dN N  
probes per axis pseudorandomly deployed on “probe lines” that are parallel to the 
coordinate axes and intersecting at a point along DS’s principal diagonal. Pseu-
dorandomness is defined as an arbitrary numerical sequence that is precisely 
known by specification or by calculation. CFO’s fundamentally deterministic na-
ture is not altered by injecting pseudorandomness because at every step CFO’s 
calculations are repeatable with absolute precision (see [3] for a discussion of why 
pseudorandomness is important in CFO). 

Figure A7 provides a two-dimensional (2D) example of this particular type of 
IPD, in this case nine probes shown on each probe line, two overlapping (but of 
course any number can be used). The probe lines are parallel to the 1x  and 2x  
axes intersecting at a point on DS’s principal diagonal marked by position vector 

( )min max minD X X Xγ= + −
   

, where min
min

1
ˆ

dN

i i
i

X x e
=

= ∑


 and max
max

1
ˆ

dN

i i
i

X x e
=

= ∑


 are 
the diagonal’s endpoint vectors. The parameter 0 1γ≤ ≤  [not to be confused 
with the gravitational constant in Equation (a2)] determines where the probe lines 
intersect along the diagonal. Figure A8 shows a typical 2D IPD for different values 
of γ , and Figure A9 shows a 3D example using sixteen probes per probe line for 
a typical “real world” engineering problem, the “Compression Spring”. Of course, 
this procedure is generalized to the dN -dimensional decision space to create dN  
probe lines parallel to the dN  coordinate axes. 

 

 

Figure A7. Typical Variable 2D Initial Probe Distribution. 
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While Figure A7 shows an equal numbers of probes on each probe line, a dif-
ferent number of probes per axis can be used instead. For example, if equal probe 
spacing were desired in a decision space with unequal boundaries, or if overlap-
ping probes were to be excluded in a symmetrical space, then unequal numbers 
could be used. Unequal numbers also might be appropriate if there is any a priori 
knowledge of DS’s landscape, however it may have been obtained. For example, 
denser sampling in one region (more probes) may be appropriate if there appear 
to be more maxima there. While the variable p dN N  IPD of Figure A7 was used 
for the results reported here, any number of other altogether different variable 
IPD’s could be used instead. The key idea is that the IPD must be pseudorandom 
in the sense of uncorrelated with the decision space landscape in order to provide 
better sampling of the that landscape. Typical CFO pseudocode implementing the 
variable probe-line IPD approach appears in Figure A10. 
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Figure A8. Typical 2D IPD’s for Different Values of γ (0./0.4/0.9). 
 

 

Figure A9. Typical 3D 16-probes/probe line IPD, γ = (0.0/0.2/0.6/0.9, clockwise). 
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(important note-above, Ω is the Decision Space) 

Figure A10. Typical CFO Pseudocode using Probe Line IPD. 
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