
Theoretical Economics Letters, 2024, 14, 350-361 
https://www.scirp.org/journal/tel 

ISSN Online: 2162-2086 
ISSN Print: 2162-2078 

 

DOI: 10.4236/tel.2024.141019  Feb. 29, 2024 350 Theoretical Economics Letters 
 

 
 
 

The Substitution Process for Conventional 
Energy. The Logistic Map and Some Specific 
Fractional Aspects 

Asterios Touplikiotis 

Karlsruhe Institute of Technology (KIT), Institute of Applied Business Studies and Management, Karlsruhe, Germany 

 
 
 

Abstract 
In this Article, we observe the Logistic--Map Ansatz, which is a popular fore-
casting Model to estimate the Market Penetration of new technologies in 
Time evolution. Especially we focus on the Substitution Process of regenera-
tive resources for electro-energy in B.R.D. as a Case Study using real available 
Data. The Aim of this Article is to develop some specific Models that could 
represent Logistic Growth implying explicitly the Fractality as the Substitu-
tion Dynamics is characterized by high Complexity and fractal Characteris-
tics. According to this Target, we consider a specific Fokker-Planck Ansatz, 
which could represent the time-fractional Evolution of the Substitution 
Grade. Further, we implement a relaxation Model, which focuses on the time 
Evolution of the Expected Value of the Substitution Grade. Additionally, a 
time-discrete Hybrid model is proposed and a concrete Application of Ho-
motopy Methode delivers interesting Results. 
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1. Introduction 

Energy is a very important Input for the production Processes and for Services. 
Its accessibility and the corresponding Prices are Dynamics of high complexi-
ty. During our Days the Discussion about the Substitution of Renewable 
Energy Resources for conventionally produced Energy is more than actual. A 
lot of Factors have a strong Impact on the Substitution Process and its 
Progress. We mention at this stage political Decisions and Strategies, Availa-
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bility, Technology Progress, Price Differences in the Market, and Investment 
Interest are only a few of the parameters that affect the Dynamics of the Subs-
titution Process. However, some factors are restrictive and cannot be manipu-
lated only through political willingness. For example, when the government is 
interested in accelerating the Substitution Process, could subsidize the Market 
of new technologies making Investing in these economically more attractive 
within a free Market Economic Model. The subsidizing of new technologies in 
order to get an aspired substitution grade represents political willingness. 
However, the existing energy supply structure, accessibility of a minimum of 
conventional energy resources, and Capital, are restrictive factors that influ-
ence the energy transformation process. A favored Method (ansatz) to forecast 
the market penetration of new technologies, new products, or the usage of al-
ternative energy resources like in our case, is that of the Logistic differential 
Equation in the classical Form. However, this Ansatz is applicable with specific 
terms, which in the praxis change in an unexpected manner, caused by politi-
cal decisions, availability of financial resources, and so on. The Process usually 
results in dynamics with fractal characteristics. In this article, we will analyze 
the Role of Fractality in the Logistic Equation comparing the classical Model 
with a fractional version of it. Further, we provide some models that respect 
explicitly fractal characteristics in predicting dynamics in the sense of logistic 
Growth. Thus implying fractality in the modeling could be a corrective Faktor 
within the classical prediction frame of the penetration of new Technologies in 
the time evolution. 

2. Classical Logistic Equation Ansatz 
2.1. The Time-Continuous Case (Logistic Function or Verhulst  

Function) 

For a trend that corresponds to its actual Value and to distance to a certain level, 

the Ansatz ( )d
d
y ky a y
t
= −  known as the “Logistic Equation” seems to be the  

most appropriate mathematical formula. The above Ansatz means that the shape 
of the Logistic growth consists of weak progress at the beginning of the process 
followed by a transition to a progressive phase and tends to a degressive growth 
(asymptotic Behavior), as the term ( )a y−  tends to zero. The real Factor “k” 
accelerates the Growth and ( )a y−  delays it. In the mathematical sense, the 
above classical Differential Equation can be solved with the help of Variable Se-
paration by the Relation  

 ln y akt d
a y

 
= + − 

 (1) 

Setting c ak= , and e db −= , we get the final Solution 

 
1 e ct

ay
b −=

+
 (2) 
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(Baumann et al, 1975). We consider a Substitution Process, where y should 
represent the Substitution grade of a Process in the time evolution. 

2.2. Estimation of the Real Value “d” 

The real value “d” can be gained by setting 0t =  in the Relation  

ln y akt d
a y

 
= + − 

, and assuming an existing certain value ( )0 0y t =  of the 

process at the time 0t = . The Term “a” represents the asymptotic Limit of the 
process at the time t →∞ . 

2.3. Estimating the Real Value “c” 

Assuming that the Variable y should have a certain value yC at a certain time tC, 

we can with the help of the relation ( )1 e Ct C
Cy a b − ∗= + ∗  estimate “c” as b is 

already known from e db −= . 
The Logistic Function can be represented after algebraic manipulations in the 

following Form too: 

 ( )
0

0

1 e kt

Af t y
A f

f
−

= =
−

+ ∗
 (1) 

Following Notations counts in the above Relation (1): A = Current Capacity 
of the Process or the Asymptotic Limit of the image (fixed Point of the dynam-
ics). This is the maximum value that can be reached by the Logistic Function. f0 
= Value of y at the time t = 0 = y (t = 0). k = Growth Rate of the Process. In the 
time-continuous Version of the Logistic Function, the Factor k represents a 
Constant with a certain value. 

2.4. An Example 

We consider the Substitution process y (t) of renewable energy resources for 
Electro-Power. We wish (plan) to substitute 50% of renewable energy resources 
for conventional Elektro Energy for 15 Years. We have extracted with the Help 
of real Data that an aggregated Investment of 77 Mrd. € should be needed to 
realize it. This fact allows us to define a constant Growth rate of 15.4 Mrd. € pro 
0.1 Growth Rate and Time (In Years). In the dimensional Form holds then k = 
0.2. The following Graph 1 expresses the image of the Logistic Function by cer-
tain Values of y (t = 0), A, and f0. 

However, the calculation (plan) has a chance of realization if we can ensure 
the needed investment in regenerative Energy technologies in order to reach the 
desirable Substitution grade. In a further step, we must assess whether the 
needed investment can be realized and under which macroeconomic conditions. 
At this point, we will emphasize that intensive Investment in new technologies 
decreases financial resources planned for other economic policies and activities. 
As a short case study, we examined the actual production of Electric Energy in  
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Graph 1. The Logistic Map 
0

0

1 e kt

Ay A f
f

−
=

−
+ ∗

 with 0

0

19A f
f
−

= , k = 0.2. 

 
B.R.D. and its Limits and Options if it should be produced by renewable Re-
sources. For this problem, we use Data from the renowned Institution 
“Fraunhofer Institut für Solartechnik BRD” (Kost et al., 2021). The extrapo-
lated Data are related to the actual Demand for electric energy in BRD and 
their future projection. Additionally the arising Costs (€/KWH) from alterna-
tive Energies and the corresponding Investment (€ (KW) have been estimated. 
A favorable Mix of alternative Energy to produce elektro-power consists of 
Wind Power, Photovoltaic Systems, Batterie Power, Electrolysis, Biogas, For-
tress Biomass, Methanation, as well as Electricity from Gas and Combustion 
Turbines. However, we notice here that the optimal Mix of the above resources 
could be estimated with the Help of linear programming if certain Cost Data 
are available. After elaboration on the above Data, we estimated an aggregated 
Investment Volume of 77 Mrd, which would be needed to reach a substitution 
Grade of regenerative Energy Sources of 50% of conventional Energy within 15 
Years. The above-described classical Logistic Map constitutes only a theoreti-
cal Model. The above proceeding is based on an ex-ante Prediction modeling. 
By an ex-post analysis of given Data ( Time Series), we could estimate the Val-
ues of A, and k of the Logistic Function by extracting a Logistic Curve, which 
feels at best within the given Data. Proceeding on this way an important ques-
tion arises at this point: is the classical Logistic Graph in the time-continuous 
Version an idealized averaged Curve of fractal distributed Points at which the 
Fractality grade is not implied explicitly? If the above Assumption is true, then 
the Logistic Map gained by experimental Data is only an Approximation of a 
Trend (averaged Values) on a fractal Structure. But how could we proceed to 
get a better image of Dynamics with Sigmoid Characteristics considering the 
existing fractality? However, the Fractality of the Process could be caught at 
best, examining the Behavior of Investment in the Dynamics being considered 
as the Impuls Factor k generates solely the Fractality in the observed dynamics. 
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Two possible ways amongst others to handle this problem are described in the 
following intercepts A and B. 

2.5. The Logistic Map and the Fractional Aspect 

The Factor “k” (Process Accelerator) in the logistic map, is that Factor, which 
determines the speed of the process. Its changes in Value are unpredictable 
emphasizing the generated Fractality in Space and Time. The reasons that 
cause this behavior are changes in political Decisions in a short time, changes 
in the prices of conventional Energy Resources, and Availability of resources 
that are needed to realize the Transformation Process. The above reasons are 
the result of global Conflicts, Marketing Strategies of global Players (Big 
Firms and Organizations) in the energy field, and so on. The Process degene-
rates into dynamics with distinctive fractal characteristics. Fractality has a 
strong impact on the process. There are numerous models developed, which 
deliver Solutions to this problem. (See Metzler & Klafter, 2000; Mainardi et 
al., 2001, and references therein). A basic Tool for analyzing fractal Dynamics 
in the sense of Probability Density Functions is the continuous time Random 
walk Model (CTRW) of Montrol and Weiss (Montrol & Weiss, 1965). The 
discret Aspect of the Logistic Equation points out the relation between Logis-
tic Growth and CTRW. 

2.6. The Discrete-Time Version of the Logistic Growth 

In this case, the Logistic Growth can be represented by the following formula: 

 [ ] [ ] [ ]( )1 1y n ky n y n+ = −  (1) 

n notes the n-th step (time interval) of the Process and Capacity is equal to 1. 
However, the Impuls Factor (Accelerator) is no longer a Constant Factor. The 
Value of k changes in Space and Time in an unpredictable manner for every 
step. The Changes of k are typically in the range between 0 and 1. Assuming that 
k could reach values higher than 1 it is von Interest to observe the behavior of 
the Logistic Growth in the extended range. The Curve exhibits under specific 
conditions chaotic behavior. Indeed observing and analyzing the CTRW Model 
of Montrol and Weiss can we get Solutions in the form of Probability Density 
Functions. The following Graph clarifies these relations: 

For the Probability ( ),W x t  of the Walker to be in Position x at the time t 
are responsible the Probability Density Functions of Δt and Δx. If both PDFs 
have limited expected value and limited Variance the Diffusion is of Gauss Cha-
racter. If the Δt are Gauss-distributed and the Δk are characterized by a Power law 
Distribution we handle with Levy Flights. In the opposite case of Power Law dis-
tributed Δt and Gauss distributed Δk we handle with the fractional Brownian Mo-
tion (BFM). The last case is the most relevant for the Logistic Dynamics in the 
Praxis. (See for Details…) 

Hybridization to solve the discrete-time Ansatz for Logistic Growth. The  
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Graph 2. The Shema of the CTRW Model. 

 
discrete-time Logistic Ansatz looks like [ ] [ ] [ ]( )1 1y n xy n y n+ = − . In order to 
gain the Logistic Image, we extract the time-fractionality of the Times Series of 
Investment. Then by every Step of the discrete-time simulation, we obtain an “x” 
value stemming from the Distribution  

( ) [ ] 21, d
2

W x t Exp ikx E k t kβ
β  = ∗ − ∗ − π ∫ , with Eβ  = Mittag-Leffler Function 

of order β , and β  = time-fractality of the Investment Time Series Data. The 
gained “x” value can be used as Input in the Ansatz [ ] [ ] [ ]( )1 1y n xy n y n+ = − . 

2.7. Fokker-Planck Ansatz that can be Solved with the Help of a 
Time-Fractional Discrete Model 

From the physical Point of view, the fractional “Fokker-Planck” Ansatz could be 
a suitable Model to interpret the Logistic Map assuming fractal Characteristics in 
the Process. (See Abdel, 2006) 

The Fokker-Planck Ansatz looks like 

 ( ) ( ) ( ) ( )( ),
, ,t

u x t
D u x t F x u x t

xx

α
β

αγ∗

∂ ∂
= −

∂∂
 (1) 

The above Ansatz consists of a space-fractional Term in the form 
( ),u x t
x

α

α

∂

∂
 

and of the Drift Term ( ) ( )( ),F x u x t
x
∂
∂

. The time-fractional Derivative opera-

tor ( ),tD u x tβ
∗  is of the “Caputo” Form. We use in this case the following As-

sumption for the Drift Term. The Logistic Curve Ansatz 

1 e ct

ay
b −=

+
 can also be observed as a Drift “b” of the Potential 2bx   

representing the Cost Difference between conventional and alternative Energy 
Resources, and also the technical Maturity of the new technology in the time 
Evolution. The progress of renewal energies and in general of new technologies 
exhibit such Cost characteristics resulting in a slow initial stage Phase followed 

https://doi.org/10.4236/tel.2024.141019


A. Touplikiotis 
 

 

DOI: 10.4236/tel.2024.141019 356 Theoretical Economics Letters 

 

by progressive growth and tending to an asymptotic behavior over the course of 
time. Using a discrete Simulation Model developed by R.Gorenflo und Abdel 
Rehim, we can get a solution by observing the Diffusion-Convection equation 

 ( ) ( ) ( )
,

, ,
1 et ct

u x t axD u x t u x t
x b

α
β

αγ∗ −

∂
= −

∂ +
 (2) 

Assuming the Diffusions-Laplacian 
( ),u x t
x

α

α

∂

∂
 in the Form 

( )2

2

,u x t
x

∂

∂
 

(Gauss Behavior) we get the Relation ( ) ( ) ( )
2

2

,
, ,

1 et ct

u x t axD u x t u x t
x b

β γ∗ −

∂
= −

∂ +
 

can be observed as time-fractional Ansatz with the fractional Derivative Opera-
tor of Caputo Typ. The formula (2) can be manipulated as follows: Defining 

( ) ( ) ( )
,

, ,
1 e FPct

u x t ax u x t L u x t
x b

α

αγ −

∂
− =

∂ +
, and substituting on the left sides of (2) 

Caputo Derivative by the Riemann-Liouvill Derivative Operator tDβ  we obtain 
the Identity 

 ( ) ( )( ) ( ), ,0 ,t FPD u x t u x L u x tβ − =  (3) 

Integrating both sides of (3) with the Riemann-Liouville Integral Operator 
J β  we gain the formula 

 ( ) ( ) ( )( ), ,0 ,FPu x t u x J L u x tβ− =  (4) 

Differentiating both sides of (4) with respect to time we obtain 

 ( ) ( )( )d d, ,
d d FPu x t J L u x t
t t

β=  (5) 

The Relation (5) means the following Statement: The Logistic Growth 

( ) ( ) ( )( )d , , 1 ,
d

u x t ku x t u x t
t

= ∗ −  can be approximated by appropriate Trans-

formation of ( ),u x t  with the Help of the Fokker-Planck Ansatz differentiating 
the Riemann-Liouville fractional Operator assuming that the Drift Term has 
Sigmoid Character (See Abdel, 2006; Gorenflo & Abdel-Rehim, 2005). 

2.8. The Bird Perspective 

To understand and imply the following Model, we start from the idealized clas-

sical Logistic Map Ansatz 
1 e ct

a
b −+

 with certain Values of the Factors “a”, “b”,  

and “c”. The classical Ansatz can provide a Solution in the Form of averaged 
Values, without respecting Fractality Characteristics. Our aim consists now in to 
compare the Results of the classical Model with the Results of an Ansatz, which 
implies explicitly the Fractality order. Due to this scope, we observe the fraction-
al Differential Equation that is known in the Literature as the fractional Oscilla-
tor. It reads as 

 ( ) ( ), ,tD u x t u x tβ λ∗ = −  (1) 

and has the Solution 

https://doi.org/10.4236/tel.2024.141019


A. Touplikiotis 
 

 

DOI: 10.4236/tel.2024.141019 357 Theoretical Economics Letters 

 

( ) ( ),u x t E tββ λ= −  with ( ) ( )0 1

n

n

zE z
nβ β

∞

=
=

Γ +∑ , with 0 1β< < , z∈  (2) 

(See Gorenflo & Mainardi 1991; Kilbas et al., 2006). The Function ( )E zβ  is 
known in the Literature as the “Mittag-Leffler” Function with time-fractality of 
order “ β ”. After algebraic Manipulations of the Relation  

( ) ( ) ( ) ( )( ),
, ,t

u x t
D u x t F x u x t

xx

α
β

αγ∗

∂ ∂
= −

∂∂
 we get the initial Value Problem 

( ) ( )
1 et ct

aD x t x t
b

β
∗ −= − ∗

+
, which after taking the LaplacTransform to both 

sides leads in our case to the Solution 

 ( )
1 e ct

ax t E t
b

β
β −
 = − ∗ + 

 for 0 1β< < . (3) 

(See Abdel, 2006). The Operator “ . ” denotes here the Expected Value of a 
stochastic Variable. Plotting the above Relation for Example for a = 0.95, b = 87 
and c = 0.3 we obtain the following Graph 

In order to match the classical Logistic Map with the Mittag-Leffler Ansatz we 
must consider both in the stochastic Sense as the Mittag-Lefler Solution is of 
stochastic structure. Thus we use the cumulative density Functions. The follow-
ing Graph represents the expected Value in the Form 

( ) 1
1 e ct

ax t E t
b

β
β −
 = − − ∗ +   

In order to compare in a straight manner the Results between the classical Lo-
gistic Map and the appropriate fractional Ansatz we use by the classical Map the 
Values a = 1, b = 87, c = 0.3, whereat we reduce the fractionality Order in the frac-
tional Ansatz from lower (high fractality) to higher Values (lower fractality). 

2.9. Homotopy Pertubation Method 

The Homotopy perturbation Method (Algorithm) for nonlinear partial differential  
 

 
Graph 3. The Relaxation of the classical Logistic Map in Time with a = 0.95, b = 87, c = 0.3. 
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Graph 4. Expected Value for the Mittag-Leffler Ansatz in the time evolution with 0.2β = . 

 

 
Graph 5. Expected Value for the Mittag-Leffler Ansatz in the time evolution with 0.4β = . 

 

 
Graph 6. Expected Value for the Mittag-Leffler Ansatz in the time evolution with 0.6β = . 
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equations of fractional order is an efficient method to solve differential equa-
tions of fractional order represented with the Caputo derivative Operator. The 
approximate solutions are represented in the form of convergent series. This 
Ansatz corresponds generally to time-fractional dynamics. (See Momani & Odi-
bat, 2007). The Homotopy, which we provide in this Article is of the form 

( )1xx t
u uP u ku u D u
t t

β
∗

∂ ∂ = + + − − ∂ ∂ 
, 0.4β = . We focus on the nonlinear  

time-fractional Fisher’s Equation that corresponds to the nonlinear kernel 
( )1ku u− , which generates the Logistic Map in the classical Sense. After nu-

merous mathematical Manipulations in the fractional sense, we get the final so-
lution in two Term-approximation: 

 

 
Graph 7. Expected Value for the Mittag-Leffler Ansatz in the time evolution with 0.6β = . 

 

 
Graph 8. The fractional Logistic Map approximated by the Homotopy Method with 
time-fractality of order 0.4. 
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( ) ( ) ( )1 2

0.4 0.6 0.4 0.6

0.8 1.4 1.4 1.6

1.8 2 2 2.2

2.4

0.0123 0.0123 0.003916 0.0123 0.0123

0.0116 0.00707 0.00428 0.0026357 0.0023

0.000025214 0.000587 0.00004538 0.00002063

0.000012 0.0000111

u t u t u t

t t t t t
t t t t t

t t t t
t

= +

= − + + − +

+ − − − +

− + + −

+ − 2.6 31 0.0000015335t t−  
The following Graph is a Plot of the above Equation 
Remark: The Homotopy Algorithm for the Logistic Map in the time-fractional 

Sense provides the same Results like in B. We use here a fractionality Order of 
0.4 and for the Term k the same Value as in A. 

3. Results 

When we plan to predict the penetration of new technologyies (ex-ante Point 
of view) as we are interested in calculating subsidizing Capital using the Lo-
gistic growth Ansatz, often we start this focusing on the Invest, which should 
be needed to realize a certain desirable result in a certain time. This Ansatz 
does not imply explicitly the Impact of probably generated Fractality on the 
Process. A corrective way to get better Solutions consists of applying Models 
that imply Fractality Dimension within the analytical Frame explicitly. Due to 
our Research, the Fractality can slow down the expected Results using the 
classical Logistic Ansatz. Applying fractional Models we can notice that the 
Results of the classical Calculation seem to be escorted by a time-and Space 
Lag. 
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