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Abstract 
In many simulation-based Bayesian approaches to quantile regression, Mar-
kov Chain Monte Carlo techniques are employed to generate draws from a 
posterior distribution based on an asymmetric Laplace “working” likelihood. 
Under flat improper priors, the mode of this posterior distribution is coinci-
dent with the desired quantile function. However, simulation-based ap-
proaches for estimation and inference commonly report a posterior mean as a 
point estimate and interpret that mean synonymously with the quantile. In 
this note, we analytically derive the exact posterior distribution of a quantile 
regression parameter in a simple univariate setting free of covariates. We note 
the non-uniqueness of the posterior mode in some cases and conduct a series 
of Monte Carlo experiments to compare the sampling performances of post-
erior means and modes. Interestingly, and perhaps surprisingly, the mean 
performs similarly to, if not favorably to, the mode under several standard 
metrics, even in very small samples. 
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1. Introduction 

Quantile regression, as first described in Koenker and Bassett (Koenker & Bas-
sett, 1978), is a powerful statistical tool that allows researchers to examine the in-
fluence of covariates across different points of the conditional outcome distribu-
tion. The quantile regression estimator is produced by minimizing a sum of po-
tentially asymmetric absolute deviations of the form: 

 ( )
1

ˆ arg min ,
p

n

p p i i p
i

yβ ρ
=

≡ −∑ xβ β  (1) 
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where pρ  is the so-called “check function,” defined as 

( ) ( )0 .p i i iz z p I zρ  ≡ − <   
While quantile regression has a long and rich history in the frequentist litera-

ture, Bayesian approaches to quantile regression are more recent and, arguably, 
fewer in comparison. Yu and Moyeed (Yu & Moyeed, 2001), however, provide a 
likelihood-based interpretation of quantile regression that gives rise to a Baye-
sian solution. They note that if one assumes the errors of a regression model fol-
low an asymmetric Laplace distribution, then a posterior kernel is produced that 
is coincident with the check function defining the quantile regression estimator. 

Specifically, consider a regression problem of the form:1 

i i p iy σε= +x β  
where ( )i i pε ε=  follows an asymmetric Laplace distribution 

( ) ( ) ( )( )1 exp 0 ,p i if p p p Iε ε ε = − − − <   

yielding the likelihood function: 

 ( ) ( ) ( )1

1
1 exp .

nnn n
p p i i p

i
L p p yσ σ ρ− −

=

 = − − − 
 

∑ xβ β  (2) 

Given the likelihood in (2), Yu and Moyeed (Yu & Moyeed, 2001) establish 
propriety of the posterior under an improper uniform prior for pβ  and provide 
several applications and experiments. Kozumi and Kobayashi (Kozumi & Ko-
bayashi, 2011) describe an alternate approach to the Metropolis-Hastings based 
scheme of Yu and Moyeed (Yu & Moyeed, 2001) that is computationally ap-
pealing.2 They exploit an additive mixture representation of the asymmetric 
Laplace distribution that admits a standard Gibbs sampling-based solution for 
Bayesian quantile regression. Specifically, Kozumi and Kobayashi (Kozumi & 
Kobayashi, 2011) note that the model can be equivalently expressed as 

 , 1, , ,i i p i i iy i nην δ σν ε= + + =� �βx  (3) 

with 

( ) ( ) ( ) ( )
21 2 2| , , , and .

1 1n
p

p p p p
η δ−
≡ ≡

− −
X�  0 Iε ν 

 

Furthermore, the iν  are iid exponential variates: 

( ) ( )( )1 1

1
| exp .

n

i
i

p σ σ σ ν− −

=

= −∏ν
 

This particular mixture formulation is quite useful since (a) conditioned on ν , 
the model is a Gaussian linear model, and thus a Gibbs implementation is relatively 
easy to conduct and (b) when marginalizing (3) over ν , the asymmetric Laplace 
distribution is produced as the sampling model. Thus, one can employ a da-

 

 

1We consider the more general asymmetric Laplace distribution with scale parameter σ here, al-
though σ could be fixed at one (or another value) if desired (see, e.g., Yang et al. (Yang et al., 2016)). 
2Khare and Hobert (Khare & Hobert, 2012) also establish geometric ergodicity of this Gibbs algorithm. 
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ta-augmented Gibbs sampling algorithm to recover the quantile function pβx . 
Applications and extensions of this methodology can be found in, e.g., (Alhamzawi, 
2016; Rahman, 2016; Alhamzawi & Ali, 2018; Mostafaei et al., 2019; Xu & Chen, 
2019; Bresson et al., 2021; Kedia et al., 2023; Zhao & Xu, 2023), among many others. 

An issue that merits further investigation—an investigation we conduct brief-
ly in section 3—is the following: Simulation-based recipes for Bayesian posterior 
inference, such as the Gibbs sampler of Kozumi and Kobayashi (Kozumi & Ko-
bayashi, 2011), generate a series of draws which converge to the desired target 
distribution, ( )|pp yβ  or ( ), |pp σ yβ . These draws can then be used to cal-
culate various features of that posterior or to plot its entire distribution. The 
sample average of those post-convergence draws—an estimate of the posterior 
mean—is commonly, if not exclusively, used as a point estimate of pβ . Howev-
er, the motivation for the asymmetric Laplace “working” likelihood, or its ex-
panded representation in (3), is that the posterior mode (under a flat prior) 
coincides with the minimizer of the check function in (1). To the extent that the 
posterior distribution for the model parameters is asymmetric, the mode and 
mean can depart significantly. 

In the following sections of this paper, we offer several observations and contri-
butions. We first derive the exact posterior distribution of the location parameter 
of an asymmetric Laplace distribution in an environment free of covariates. We do 
so while allowing a scale parameter to enter the asymmetric Laplace likelihood and 
while employing an inverse gamma prior for that scale parameter. This setting is 
then used to perform a series of generated data experiments, those designed to 
characterize the sampling distributions of the posterior mean and posterior mode 
under various sample sizes. Although the posterior mean is commonly reported as 
a point estimate in applied work of this type, under flat priors the posterior mode 
is formally coincident with the desired quantile. The mode, however, is often pro-
hibitively difficult to calculate in high-dimensional settings, while an estimate of 
the mean is almost immediately available given a set of draws from the posterior 
distribution. Our experiments are intended to shed light on the performance of the 
widely-used posterior mean and how its use may suffer (if at all) relative to the 
mode, as both features of the posterior distribution can be easily calculated in our 
simplified univariate setting. 

2. An Intercept-Only Model 

Suppose our object of interest is the pth quantile, ( )0,1p∈ , and denote the asso-
ciated parameter as pθ . Employing the flat improper prior for pθ : ( )pp cθ ∝  
and the following prior for the Laplace scale parameter: ( ),IG a bσ σσ  , where 
IG denotes an inverse gamma distribution,3 we obtain the following joint post-
erior under the asymmetric Laplace likelihood: 

 

 

3We parameterize the inverse gamma distribution such that  

( ) ( ) ( ) [ ]( )11, expax IG a b p x x xb −− +⇒ ∝ − . See, for example, Chan et al. (Chan et al., 2019), page 

442, for further discussion. 
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 ( ) ( ) ( ) ( ) ( )1

1
, | exp 1l .

n

p p i p i p
i

p p np y y yσ θ σ σ θ θ θ−

=

  ∝ − − − − <    
∑y  (4) 

In (4), n denotes the number of observations, { } 1

n
i i

y
=

 is our data, and y  
denotes the sample mean. Integrating σ  out of the equation above, we obtain 

 ( ) ( ) ( ) ( )
( )

1

1
| 1l < .

n an

p p i p i p
i

p b np y y y
σ

σθ θ θ θ
− +

−

=

 ∝ + − − −  
∑y  (5) 

With a bit of additional work, we can determine the normalizing constant of 
(5) and thus provide an exact analytical expression of the marginal posterior dis-
tribution pθ . To this end, let ( )jy  denote the jth order statistic of the sample data 
y , and for simplicity assume there are no ties so that ( ) ( ) ( )1 2 ny y y< < <� . In ad-
dition, define 

( ) ( ) ( ) ( )1 2j jy y y≡ + + +�
 

( )j j npω ≡ −
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0 0 11

n a
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and, for 1,2, , 1j n= −� , 
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Finally, letting 

( )
( )

( )
( ) ( )

1
* *

0
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if 0

nja

j j
jjb
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we have 

 ( ) ( ) ( ) ( )
( )

* 1

1
| 1l .y

n an

p p i p i p
i

p c b np y y y
σ

σ
θ θ θ θ

− +
−

=

 = + − − − <  
∑  (6) 

As noted by Chan et al. (Chan et al., 2019), pages 315-317, the mode of the 
posterior equals ( )npy  

, with “ ⋅ ” denoting the traditional ceiling operator. 
Interestingly, when np is an integer, the posterior mode is not unique, and the 
posterior distribution has a flat ridge around the pth quantile of the sample data.4 
To see this we note, again for integer-valued np: 

 

 

4This point is certainly not new but may be underappreciated. See, for example, Yang et al. (Yang et 
al., 2016) for a related discussion. 
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Therefore, from (6), 
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Likewise, 
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so that 
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Identical reasoning can be used to establish that the posterior distribution 
( )|pp θ y  is flat and reaches a maximum over the interval ( ) ( )1,p np npy yθ +

 ∈    
when np is an integer. 

Figure 1 offers some very brief graphical support of this result, plotting 
( )|pp θ y  when 2aσ = , 1bσ = , 0.1p = , and for three different iid samples  

 

 

Figure 1. Plots of ( )0.1 |p θ y  with ( )0,1
iid

iy  , 9,10,11n = . 
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from a ( )0,1  distribution with 10n =  (upper panel), 9n =  (lower left) 
and 11n =  (lower right). For the 10n =  case, 1np = , and thus the posterior 
reaches a constant peak over ( ) ( )1 2,y y 

  . 

3. Generated Data Experiments 

In this section, we perform a series of generated data experiments. We do so 
noting that when a posterior simulator is applied to generate draws from (6) or 
its generalization when including covariates, the mean is reported as a point es-
timate while the mode technically coincides with the desired quantile. We hope 
these experiments may shed light on whether or not use of the mean will lead us 
astray, and how far we might veer off course when doing so. 

To sidestep issues surrounding the potential non-uniqueness of the mode we 
focus on cases where np is not an integer. We also focus on performance in small 
samples and consider cases where { }11,21,151n∈ , fixing 0.1p =  throughout. 
For each sample size, we consider 5 different designs: (a) ( )0,1iy  , (b) 

( )0,1iy U , (c) ( )0.5iy Exp , (d) ( )0,1,5iy t  and (e)  
( ) ( )20.7 1,1 0.3 1.5,0.75iy − +  , corresponding to standard normal, uni-

form, exponential (with mean 1/2), standardized Student-t (with 5 degrees of 
freedom) and two-component normal mixture cases, respectively. Within each 
sample size/design cell, we generate 500,000 data sets, each time calculating the 
posterior mode and using (6) to calculate the posterior mean.5 To assess how 
well the means and modes perform, we calculate each estimator’s average per-
centage error, defined as 

( ) ( )
( )

1
0.1

1
1

ˆ 0.11
0.1

mM

i

F
M F

θ −

−
=

−
∑

 
and also calculate the sampling probabilities that the posterior mean and mode 
lie within a given threshold of the quantile: 

( ) ( ) ( )( )1 1
0.1

1

1 ˆ1l 0.1 , 0.1 ,
M

m

i
F n F n

M
θ σ σ− −

=

 ∈ − + ∑
 

where ( )
.1
ˆ mθ  is either the posterior mean or posterior mode from the mth experi-

ment, ( )Var iyσ ≡  whose value changes in each of our 5 designs, 500000M =  
and ( )1 0.1F −  is the true 0.1 quantile for the given design. 

Several interesting patterns emerge from Table 1. First and not surprisingly, 
estimates become more accurate (in the sense that average percentage errors 
tend to zero) as the sample size increases. For example, the average percentage 
error of the posterior mode in the Gaussian sampling experiment falls from 0.17 
to 0.09 to 0.01 for 11,21n =  and 151 (respectively). Second, posterior mean es-
timates tend to understate the quantile, as suggested by the signs of the average 
percentage errors, while posterior modes consistently overstate the quantile. Fi-
nally, and perhaps surprisingly, posterior means tend to have smaller average  

 

 

5In these experiments, we set 2aσ =  and 1bσ = . Similar results emerged, however, when fixing 

1σ =  and instead evaluating the posterior in (4) at this restriction. 
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Table 1. Performances of posterior mean and posterior mode across different sampling experiments. 

Posterior Mean 

 Avg. Percent Error Pr ( )1
0.1
ˆ 0.1F nθ σ− ∈ ±   

Design 11n =  21n =  151n =  11n =  21n =  151n =  

( )0,1N
 −0.0288 −0.0106 −0.0009 0.4995 0.4867 0.4586 

( )0,1U
 −0.0921 0.1260 0.0267 0.6919 0.7611 0.6967 

( )0.5Exp
 −0.6011 0.0588 0.0349 0.9903 0.9882 0.9948 

( )0,1,5t
 −0.0970 −0.0460 −0.0058 0.4674 0.4573 0.4349 

( ) ( )20.7 1,1 0.3 1.5,0.75− + 
 −0.0137 −0.0040 −0.0006 0.6278 0.6141 0.5848 

Posterior Mode 

 Avg. Percent Error Pr ( )1
0.1
ˆ 0.1F nθ σ− ∈ ±   

Design 11n =  21n =  151n =  11n =  21n =  151n =  

( )0,1N
 0.1714 0.0940 0.0138 0.4313 0.4360 0.4396 

( )0,1U
 0.6635 0.3626 0.0524 0.6303 0.6472 0.6623 

( )0.5Exp
 0.8081 0.4234 0.0585 0.9251 0.9564 0.9900 

( )0,1,5t
 0.1626 0.0882 0.0128 0.4173 0.4179 0.4183 

( ) ( )20.7 1,1 0.3 1.5,0.75− +   0.1269 0.0696 0.0098 0.5496 0.5582 0.5623 

 
percentage errors than modes, despite their lack of formal connection to the 
quantile. This preference also exists under our second metric which calculates 
the (sampling) percentages that the posterior mean and posterior mode will fall 
within nσ  of the true quantile. For this second metric, improvement is al-
ways seen for the posterior mode as the sample size grows, while the perfor-
mance of the posterior mean sometimes degrades as the sample size increases. 

Figure 2 provides some additional information about these experiments for 
the uniform and exponential cases as selected examples, each for 11n = . The 
figure reveals: (a) the (sampling) average of the posterior distribution of 0.1pθ =  
places considerable mass over negative values, even though the quantiles must 
clearly be positive in both the uniform and exponential examples. This unders-
cores the use of the asymmetric Laplace distribution as only an approximate or 
working likelihood, to be used for the narrow purpose of recovering the quan-
tile,6 and (b) the posterior mean often yields a negative point estimate of the 
quantile which, for these sampling models, we know cannot be the case. This 
never occurs when using the posterior mode, of course, which equals ( )2y  in 
these examples. 

 

 

6See, e.g., Yang et al. (Yang et al., 2016) for additional discussion. 
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Figure 2. Results from uniform and exponential sampling experiments, 11n = . 
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The overall preference for the mean relative to the mode, according to our two 
metrics considered, stems from the fact that the posterior mode’s sampling dis-
tribution places more mass over relatively large positive deviations from the true 
quantile. This preference, however, remains sensitive to the metric employed. 
The mode of the sampling distribution of the posterior mode, for example, is 
much closer to the true quantile than the comparable mode of the posterior 
mean: Those modes for the {posterior mean, posterior mode (and actual quan-
tile)} are {−0.106, 0.046, (0.053)} and {−0.08, 0.12, (0.1)} for the exponential and 
uniform cases, respectively. Furthermore, when samples are very small, the 
posterior mean sometimes provides a point estimate that we are certain is 
wrong, as it lies outside of the support of the random variable. In terms of our 
two commonly-used measures of average performance, the posterior mean is 
certainly comparable to, if not preferred over, the posterior mode, despite the 
latter’s formal connection with the desired quantile. 

4. Conclusion 

This note investigated a few issues surrounding Bayesian quantile regression. 
First, under commonly-used priors, we analytically derived the exact posterior 
distribution of the location parameter in an asymmetric Laplace likelihood, a li-
kelihood that is often used for Bayesian quantile regression. We documented the 
non-uniqueness of the mode of that distribution in certain cases. Second, we 
performed a series of generated data experiments to investigate how well the 
posterior mean performs in recovering the quantile, even when the quantile it-
self is coincident with the mode rather than the mean. Although the posterior 
mean can sometimes produce estimates that are known to be wrong, in terms of 
certain measures of average performance, the posterior mean compares similarly 
to—and perhaps favorably to—the posterior mode. Finally, additional work can 
be conducted to investigate these issues in cases beyond the univariate example 
considered here, where the quantile functions are also covariate-dependent. 
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