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Abstract 
This paper provides a little correction to a proposition about calendar spread 
arbitrage in eSSVI volatility surfaces and gives exact conditions under which 
two eSSVI slices have tangency points without crossing over each other. The 
original proposition was stated in the paper where Hendriks and Martini 
(2019) introduced the eSSVI surface model. However the original statement 
(and the one given in a preprint version which is slightly different) is wrong 
and from the original proofs (which are slightly different in the preprint and 
final article) it is not obvious to infer the correct statement. The proof given 
in this paper is based on the main ideas of the original proof, but it fills in 
several details which eventually lead to a sharper result. 
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1. Introduction 
Volatility surface models are vital tools for derivative pricing and risk hedging in 
financial markets. Among these models, the eSSVI proposed by Hendriks and 
Martini (2019) has attracted quite a bit of attention in the research community, 
and not only given that a financial data and software company like Factset pro-
vides an implementation of the algorithm described in Corbetta, Cohort, Laachir 
& Martini (2019) which calibrates eSSVI surfaces to market data. (see Akhund-
zadeh, Huber, Hyatt, & Schneider, 2020) 

The eSSVI surface is an offspring of SVI model for the implied variance smile 
at a fixed maturity. According to Gatheral & Jacquier (2014a), the latter was de-
vised at Merrill Lynch in 1999 and was subsequently publicly disseminated at the 
Global Derivatives & Risk Management conference in Madrid (Gatheral, 2004). 
In order to motivate the introduction of the eSSVI model and to explain the 
contribution of the present paper, it will be convenient to review the main prop-
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erties of the SVI first. According to the latter, for a given fixed maturity date the 
implied variance skew ( )w k  can be represented through the function 

( ) ( ) ( ){ }2 2w k a b k m k mρ σ= + − + − +
 

where lnk K F=  is the natural logarithm of the ratio between the strike and 
the forward price of the underlying, and where a∈ , 0b ≥ , 1ρ < , m∈  
and 0σ >  are parameters governing the shape and position of the smile. The 
following appealing features of the SVI parametrization are well known: 

1) the SVI smiles are asymptotically linear in k as k →∞  and therefore con-
sistent with Roger Lee's moment formula given in Lee (2004). 

2) and the large maturity limit of the implied variance smile of a Heston mod-
el with correlation parameter ρ is SVI with the same value of ρ (Gatheral & Jac-
quier, 2014b). 

However, it is also well known that the SVI parametrization, in its full generality, 
is not arbitrage free. For example, it is easy to see that ( ) 2inf 1k w k a bσ ρ= + −  
and hence it should always be required that 21 0a bσ ρ+ − ≥ . However, the 
latter condition is not enough to rule out butterfly arbitrage as can be seen from 
a well known counterexample of Axel Vogt (see Gatheral & Jacquier (2014a)). 
Moreover, fitting the SVI parametrization to more than a single maturity date 
may produce slices that cross over each other which is equivalent to the exis-
tence of calendar spread arbitrage opportunities. To overcome these issues, Ga-
theral & Jacquier (2014a) introduced the SSVI parametrization which is a global 
parametrization for the whole implied total variance surface where the fixed 
maturity slices are restricted to a subfamily of the SVI parametrization (the first 
“S” in front of SSVI stands for “surface”). In the SSVI parametrization, the im-
plied total variance surface is given by 

( ) ( ) ( )( ) ( ){ }2 21 1
2

t
t t tw k k k

θ
ρϕ θ ϕ θ ρ ρ= + + + + −          (1) 

where tθ  is the ATM implied total variance at maturity t, 1ρ <  and ( )tϕ θ  
is a smooth function from *

+  to *
+  such that the limit ( )limt t tθ ϕ θ→∞  ex-

ists in  . According to Theorems 4.1 and 4.2 in Gatheral & Jacquier (2014a), 
the SSVI surface (1) is free of calendar spread arbitrage if and only if 

C1) 0t tθ∂ ≥  for all 0t ≥  

C2) and ( )( ) ( ) ( )2
2

10 1 1θ θϕ θ ρ ϕ θ
ρ

≤ ∂ ≤ + −  for all 0θ >  (the upper 

bound is infinite when 0ρ = ) 

and it is free of butterfly arbitrage if for all 0θ >  the following two conditions 
are both satisfied: 

B1) ( )( )1 4θϕ θ ρ+ < , 
B2') ( ) ( )2 1 4θϕ θ ρ+ ≤ . 
Mingone (2022), using results given in Martini & Mingone (2022), streng-

thens this result by showing that absence of butterfly arbitrage is equivalent to 
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B1 and 
B2) ( ) ( )2 ,MMfθϕ θ θ ρ≤ , where 

( )
( )

( )
( ) ( )2

2 2

2 2
2

4 1 ;
, inf

1 ; ;
MM l l

h l
f

g l g lρ

θ ρ ρ
θ ρ

θ ρ ρ ρ>

−
=

− −
 

with 

( ) ( )

( ) ( )

( ) ( )
( )

( ) ( )
( )
( )

( )

2

2

2

2
2

2 2

1tan arccos
3

,
, ,

4

,
, 1 ,

2 ,1

,
, , ,

2 ,

, 1 1.

l

l

l
l

l

N l
g l

N l
h l l

N l

N l
g l N l

N l

N l l l

ρ ρ

ρ
ρ

ρρρ
ρρ

ρ
ρ ρ

ρ

ρ ρ ρ

 = − 
 

∂
=

  ∂
 = − −
 − 

∂  = ∂ −

= − + + +  

Now we are finally ready to introduce the eSSVI. In order to make the SSVI 
surface more flexible, Hendriks and Martini (2019) made the ρ-parameter ma-
turity dependent as well and called the resulting implied total variance surface 
model eSSVI surface (the “e” in front of SSVI stands for “extended”). Proposi-
tion 3.1 in Hendriks & Martini (2019) provides necessary and sufficient condi-
tions for the absence of calendar spread arbitrage between two time slices. In 
order to state these conditions, we indicate the parameters of two slices with iθ , 

( )i iϕ ϕ θ=  and iρ , where the subscript i takes on the value 1 or 2 according to 
whether the closer ( 1i = ) or farther ( 2i = ) maturity date is referred to. Propo-
sition 3.1 in Hendriks & Martini (2019) says that two eSSVI slices do not cross 
over each other only if 

N') 2

1

1θ
θ

≥  and 
2 2

2 2 2 2
2 1

1 1 1 1

1θ ϕ θ ϕ
ρ ρ

θ ϕ θ ϕ
   

− ≤ −   
   

 

and that condition N along with condition S below is sufficient to rule out the 
existence of crossing points: 

S) 2

1

1ϕ
ϕ

≤  or 
2 2

2 2 2 2 2
2 1 2

1 1 1 1 1

1 1θ ϕ θ θ ϕ
ρ ρ

θ ϕ θ θ ϕ
    

− ≤ − −    
    

 

However, the statement about sufficiency is wrong and this is where the con-
tribution of the present paper comes in. In fact, as can be seen from Proposition 
13 in Section 2 below, 

• when 2

1

1θ
θ

=  there are no crossing points if and only if either (i)  

1 2 0ρ ρ= =  and 2 1 1ϕ ϕ ≥  or (ii) 2 1 1 2ϕ ϕ ρ ρ=  and 2 2
1 2ρ ρ≥ . 

• and when 2

1

1θ
θ

≠  there are no crossing points if and only if condition S 
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holds jointly with condition 

N) 2

1

1θ
θ

>  and 2 2 2 2 2 2
2 1

1 1 1 1 1 1

1 1θ ϕ θ ϕ θ ϕ
ρ ρ

θ ϕ θ ϕ θ ϕ
− ≤ − ≤ − . 

Almost all of the proof of Proposition 13 in Section 2 is built on the main 
ideas from the proof of Proposition 3.1 in Hendriks & Martini (2019). As far as I 
know the only novelty are the result about tangency points in Lemma 10 and the 
two final Lemmas 11 and 12. 

2. The Correct and Sharper Statement of the  
Hendriks-Martini Proposition and Its Proof 

Consider two eSSVI slices which we shall denote by 

( ) { }2 21 2 1 , 1,2.
2

i
i i i i i iw k k k k iθ ρ ϕ ϕ ϕ ρ= + + + + =

 

As in the previous section, assume that the subscript 1i =  refers to the closer 
maturity date. Then there is absence of calendar spread arbitrage if and only if 

( ) ( )1 2w k w k≤  for all k ∈ . 
Note that 

( )

( ) ( )
( )

2 2

2 2

2 2 3 2

1
2 2 1

1

2 2 1

i i
i i i i

i i i

i i i
i

i i i

kw k
k k

w k
k k

ϕ ρθ ϕ ρ
ϕ ϕ ρ

θ ρ ϕ

ϕ ϕ ρ

 + ′ = +
 + + 

−
′′ =

+ +
 

so that ( ) 0iw k′′ >  for all k ∈ . Since ( ) 0iw k′ =  if and only if  

* 2
: i

i
i

k k
ρ
ϕ

= = − , we conclude that 

( ) ( ) ( )* 2inf 1 .i i i i ik
w k w k θ ρ= = −

 

By combining this result with the fact that ( )0i iw θ= , we see that absence of 
calendar spread arbitrage implies 

2
2 1

2
1 2

1: max 1, .
1

θ ρ
θ ρ

 −
Θ = ≥  

− 
                    (2) 

Another necessary condition may be obtained by considering the asymptotes 
of the two slices. Since 

( ) ( )
( )
1 if ,

2
1 if ,

i i i
i

i i i

k k
w k

k k
θ ϕ ρ
θ ϕ ρ

+ →∞
 − → −∞



 

We conclude that absence of calendar spread arbitrage also implies 

2 2 1 1

1 1 2 2

1 1: max ,
1 1

θ ϕ ρ ρ
θ ϕ ρ ρ

 + −
ΘΦ = ≥  

+ − 
                (3) 

The latter condition is satisfied if and only if 
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( ) ( )2 2
2 11 and 1 .ρ ρΘΦ ≥ ΘΦ − ≤ ΘΦ −               (4) 

Of course, in the argument leading to the necessary condition (2) we are ta-
citly assuming that 1ϕ , 2ϕ  and 1θ  are all strictly positive and in this case it 
follows from (2) that 2 1θ θ≥ , i.e. that 1Θ ≥ . Note that if 1 0ϕ =  and/or 

1 0θ = , then ( )1 1w k θ=  for all k ∈ , and in this case we have absence of ca-
lendar spread arbitrage if and only if 2 1θ θ≥  or ( )2

2 2 11θ ρ θ− ≥  according to 
whether 2ϕ  is also zero or not. On the other hand, if 2 0ϕ = , then we have 

( )2 2w k θ=  for all k ∈ , and in this case it follows from the asymptotic beha-
vior of ( )1w k  that we have absence of calendar spread arbitrage if and only if 

1 0ϕ =  and 1 2θ θ≤ . In what follows we rule out these trivial cases by assuming 
that 2 1: ϕ ϕΦ =  and 2 1: θ θΘ =  are well defined (i.e. that their denominators 
are strictly positive) and that 0Φ >  and 1Θ ≥ . 

Lemma 1. If 1θ , 1ϕ  and 2ϕ  are all strictly positive, then there is absence of 
calendar spread arbitrage only if conditions (2) and (3) are both satisfied. 

Now it raises the question whether the conditions (2) and (3) are sufficient as 
well. To answer this question we look for conditions under which the graphs of 

( )1w k  and ( )2w k  have at least one point in common. We will proceed as in 
Hendriks & Martini (2019), but we will expand on some details. So let 1:x kϕ= , 

( ) ( ) ( ) 2
2 1 1 1 1: 1 , : 2 1,x x z z x x xα α ρ ρ ρ= = Θ− + ΘΦ − = = + +  

( ) 2 2
2 2 2: 2 1z z x x xρ= = Φ + Φ +  

and note that the two eSSVI slices do have points in common if and only if the 
equation 

( ) ( ) ( )2 1x z x z xα +Θ =  
has real solutions. Squaring twice yields the quartic polynomial 

( ) ( )22 2 2 2 2 2 2
2 1 2: 4P x z z zα α= Θ − − −Θ

 
where we have omitted the independent variable x on the RHS. Note that every 
root of ( )P x  must satisfy one (and only one) of the following conditions: 

( )2 2 2 2
2 1 2 2 1

2 2 2 2
2 1 2 2 1

2 2 2 2
2 1 2 2 1

a) 2 and ,

b) 2 and ,
c) 2 and .

z z z z z

z z z z z
z z z z z

α α α

α α α
α α α

Θ = − − −Θ −Θ = ±

Θ = − −Θ +Θ = −
Θ = − −Θ +Θ =

         (5) 

Of course, a root of ( )P x  is a point where the two slices intersect if and only 
if it satisfies condition c). To explore the existence of such roots we first observe 
that ( ) ( )2P x x Q x= , where 

( ) ( ) ( ) ( ) ( )

( )
( ) ( )

( )

2 2 2 2 2
2 1 2 1

2 2 2 2 2
1 2

2 2 2 2 2 2 3
2 2 2 1 1

2 2 2 2
2 1

: 1 1

4 ( 2) 2 1

2 1 1 2

4( 1) 1 .

Q x x

x

ρ ρ ρ ρ

ρ ρ

ρ ρ ρ ρ ρ

ρ ρ

   = ΘΦ − − ΘΦ − ΘΦ + − ΘΦ −   
+ Θ −Θ Φ + Θ− Θ Φ + ΘΦ −

+ Φ Θ Φ −Θ Φ + Θ− + − Θ Φ + 

+ Θ− Θ ΘΦ −ΘΦ − +

   (6) 
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Note that 0x =  (which is a root of ( )P x ) is an intersection point if and 
only if 1 2θ θ= , i.e. if and only if 1Θ =  (in fact, ( ) ( )1 1 2 20 0w wθ θ= = =  if 
and only if 1Θ = ). Assuming that this is the case, we will now find conditions 
under which the two slices do cross over each other. To this aim we consider 
their derivatives. With 1 2θ θ θ= =  (i.e. with 1Θ = ) we obtain 

( ) ( ) ( )2 210 and 0 1 .
2i i i i i iw wθϕ ρ θϕ ρ′ ′′= = −

 
To rule out the possibility that the two slices cross over in 0x = , we must 

therefore impose 

( ) ( ) ( ) ( )1 2 1 20 0 and 0 0 .w w w w′ ′ ′′ ′′= ≤                (7) 

If either one of these conditions fails, the two slices cross over in 0x = . Since 
we are assuming that the iθ ’s and iϕ ’s are all strictly positive, the conditions 
(7) can be jointly satisfied only if 
• either 1 2 0ρ ρ= =  and 2 1ϕ ϕ≥ , in which case it is easy to verify that  

( ) ( )2 1w k w k≥  for all k ∈ ; 
• or 1 2ρ ρΦ =  and 2 2

1 2ρ ρ≥ , in which case the constant term and the coef-
ficient of x in the polynomial ( )Q x  do both vanish, and hence the two slic-
es have no intersection points other than 0x = . 

These considerations prove the following lemma: 
Lemma 2. Assume that Φ and Θ are well defined and that 0Φ > . If 1Θ = , 

there is no calendar spread arbitrage if and only if either (i) 1 2 0ρ ρ= =  and 
1Φ ≥  or (ii) 1 2ρ ρΦ =  and 2 2

1 2ρ ρ≥ . 
Note that conditions (2) and (3) do not imply condition (i) or (ii) of the pre-

vious lemma (take for example 1.2Φ = , 1 0.9ρ =  and 2 0.81ρ = ) and the 
former are therefore not strong enough to rule out calendar spread arbitrage 
even if we restrict to the case where 1Θ = . 

Consider now what happens when 1Θ > . In this case ( ) ( )1 1 2 20 0w wθ θ= < =  
and 0x =  is therefore not an intersection point. To investigate the existence of 
intersection points we analyze the polynomial ( )Q x . We begin with the fol-
lowing lemma: 

Lemma 3. Assume that 0Φ >  and 1Θ > . Then ( )Q x  is of second degree 
if and only if 

( ) ( )2 2
2 1 1 .ρ ρΘΦ − ≠ ΘΦ −                     (8) 

and in this case its discriminant is given by 

( ) ( ) ( )( )2 22 2 2 2 2 2 2
1 2 2 1: 16 1 1 1D ρ ρ ρ ρ = Θ −Θ Φ +Θ Φ − ΘΦ − − Θ− ΘΦ −     (9) 

Proof. The coefficient of 2x  in ( )Q x  vanishes if and only if either 

( ) ( ) ( ) ( )2 2 2 2
2 1 2 11 or 1 .ρ ρ ρ ρΘΦ − = ΘΦ − ΘΦ − = ΘΦ +  

The second condition implies 0ΘΦ < , and hence we conclude that ( )Q x  is 
of second degree if and only if condition (8) holds. In this case the discriminant 
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of ( )Q x  can be written as in expression (9). 
From the previous lemma we know that ( )Q x  must have real roots if condi-

tion (8) holds jointly with 

( )( ) ( )22 2 2 2 2 2 2
1 2 2 11 0 or 1 1ρ ρ ρ ρ−Θ Φ +Θ Φ − = Θ− ΘΦ − ≤ ΘΦ −   (10) 

Since we are only concerned with the case where the necessary conditions (2) 
and (4) hold, we must consider the set of ( )1 2,ρ ρ -pairs where the equality in 
(10) holds and the set ( )1 2,ρ ρ -pairs where 

( ) ( ) ( ) ( )2 22
2 11 1 1 .ρ ρΘ− ΘΦ − ≤ ΘΦ − ≤ ΘΦ −

 

We denote these two sets by ,HΘ Φ  and ,RΘ Φ , respectively: 

( ) ( ){ }
( ) ( ) ( ) ( ) ( ) ( ){ }

2 2 2 2 2 2 2
, 1 2 1 2

2 2 22
, 1 2 2 1

: , 1,1 : 1 0 ,

: , 1,1 : 1 1 1 .

H

R

ρ ρ ρ ρ

ρ ρ ρ ρ

Θ Φ

Θ Φ

= ∈ − −Θ Φ +Θ Φ − =

= ∈ − Θ− ΘΦ − ≤ ΘΦ − ≤ ΘΦ −
 

It will be useful to visualize these two sets. Since we have already dealt with the 
case 1Θ = , and since we are assuming the necessary condition (4), we need to 
consider only the case where 1Θ >  and 1ΘΦ ≥ . Figure 1 shows all possible 
shapes of ,HΘ Φ  and ,RΘ Φ . The set ,HΘ Φ  is the graph of a hyperbola. It is al-
ways symmetric with respect to both axes of the ( )1 2,ρ ρ -plane and its prolon-
gation always goes through the four vertices of the square [ ]2 21,1− ⊂  . More-
over, 
• if 1ΘΦ > , ,HΘ Φ  does not intersect the 1ρ  axis and intersects the 2ρ  

axis in 
2 2

2 2 2

1ρ Θ Φ −
= ±

Θ Φ
; 

• if 1ΘΦ = , ,HΘ Φ  reduces to the straight lines 1 2ρ ρ= ± . 
Also for the set ,RΘ Φ  there are essentially only two possible shapes: 

• If 2 1 0ΘΦ − ≤  (since we are assuming 1Θ > , this implies 1Φ < ), the set 

,RΘ Φ  is given by the stripe 

( ) ( ){ }2
1 2 2 1 2: , 1,1 : 1 1 .S ρ ρ ρ ρ ρ= ∈ − ΘΦ −ΘΦ + ≤ ≤ ΘΦ +ΘΦ −

 

The stripe reduces to the line 1 2ρ ρ=  if 1ΘΦ = . 
• If 

2 1 0ΘΦ − >  (since we are assuming 1Θ > , this implies 1ΘΦ > ), the set 

,RΘ Φ  is the union of the two parallel and disjoint stripes 

( ) ( ) ( ) ( ){ }2 2
1 1 2 2 1 2: , 1,1 : 1 1 1S ρ ρ ρ ρ ρ= ∈ − ΘΦ + Θ− ΘΦ − ≤ ≤ ΘΦ +ΘΦ −

 

and 

( ) ( ) ( ) ( ){ }2 2
2 1 2 2 1 2: , 1,1 : 1 1 1 .S ρ ρ ρ ρ ρ= ∈ − ΘΦ −ΘΦ + ≤ ≤ ΘΦ − Θ− ΘΦ −

 
The two stripes reduce to the lines ( )1 2 1ρ ρ= Θ ± Θ−  if 1Φ = . 
From the description of the sets ,HΘ Φ  and ,RΘ Φ  we see immediately that 

( ) ( ){ }2
, , 1 2 1 2, 1,1 :H R ρ ρ ρ ρΘ Φ Θ Φ∩ = ∈ − =  when 1ΘΦ = . Next we prove that  
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Figure 1. The red areas show all possible shapes of the ,RΘ Φ  when 1Θ >  and 1ΘΦ ≥ . The black line 

is the graph of the hyperbola ,HΘ Φ . The two dashed lines are the asymptotes 1 2ρ ρ= ±ΘΦ  of ,HΘ Φ . 
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except for this special case the intersection is empty. 
Lemma 4. If 1ΘΦ ≠ , then it follows that ,S HΘ Φ∩ = ∅ . 
Proof. If ( )1 2 ,, Hρ ρ Θ Φ∈  we must have 

( )
2

2 2 1
2 1 2

2

11 1 .
1

ρρ ρ
ρ

−
ΘΦ − = − ⇒ ΘΦ =

−  
From the latter equality we obtain 

( ) ( ) ( ) ( )
2

2 2 21
2 1 1 2 12

2

11 2 1 2 1 .
1

ρρ ρ ρ ρ ρ
ρ

−
ΘΦ − − ΘΦ − = − − −

−  
The quantity on the RHS is positive because 

( ) ( ) ( )
2 22 221

1 2 1 1 22
2

1 1 1 0
1

ρ ρ ρ ρ ρ ρ
ρ

−
− > − ⇔ − >

−  

and because we are assuming that 
2
1
2
2

1 1
1

ρ
ρ

−
ΘΦ = ≠

−
. Hence we conclude that 

( )1 2, Sρ ρ ∉ , because otherwise we should have 

( ) ( )2 2
2 1 1 0,ρ ρΘΦ − − ΘΦ − ≤  

 

From now on we consider roots of ( )Q x  as functions of 1ρ  and 2ρ . Any 
root of ( )Q x  will be denoted by ( )1 2,x ρ ρ . Of course the subset of the ( )1 2,ρ ρ
-plane where such a root exists depends on Θ  and Φ . We denote this set with 

,QΘ Φ . Since we are only interested in iρ  values within the interval ( )1,1− , we 
consider ,QΘ Φ  as a subset of the open square ( )21,1− . Note that ( )1 2,x ρ ρ  must 
be a continuous function of ( )1 2 ,, Qρ ρ Θ Φ∈  and that ( )1 2 ,, Qρ ρ Θ Φ∈  only if 
condition (10) holds. 

As we have already seen, a root ( )1 2,x ρ ρ  must be of one of the three types in 
(5) and only roots of type c) are intersection points. In order to determine which 
type applies, we will need the following functions: 

( ) ( )( ) ( ) ( )1 2 1 21 2 2 1, ,, : 1x xρ ρ ρ ρρ ρ α ρ ρ= Θ− + ΘΦ −

 

and 

( ) ( )( ) ( )( ) ( )( ) ( )
( ) ( ) ( ) ( )( )

( ) ( )

1 21 2 1 2 1 2

1 2 1 2 1 2 1 2

1 2

2 2 2 2
1 2 1 2 ( , ), , ,

2 2 2 2
1 2, , , ,

2

2 1 ,

, :

2 1 2 1

1 .

Z x z x z x x

x x x x

x

ρ ρρ ρ ρ ρ ρ ρ

ρ ρ ρ ρ ρ ρ ρ ρ

ρ ρ

ρ ρ α

ρ ρ

ρ ρ

= −Θ −

= + + −Θ Φ + Φ +

 − Θ− + ΘΦ − 



 

Note that these functions must all be continuous functions of ( )1 2 ,, Qρ ρ Θ Φ∈ . 

Lemma 5. Assume that 0Φ >  and 1Θ > . Then ( )( ) ( )( )1 2 1 2, , 0x Z xρ ρ ρ ρα =  

only if ( )1 2 ,, Hρ ρ Θ Φ∈ . 

Proof. The proof is essentially the same as the proof of Lemma A.2 in Hen-
driks & Martini (2019). Since ( )1 2,x ρ ρ  must satisfy one of the two equalities 
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( )( ) ( )( ) ( )( )1 2 1 2 1 22, , ,2 x z x Z xρ ρ ρ ρ ρ ρα Θ = ±
 

(otherwise ( )1 2,x ρ ρ  is not a root of ( )P x  and hence neither a root of ( )Q x ) 
and since ( )2 0z x >  for all x∈ , we conclude that ( )( ) ( )( )1 2 1 2, , 0x Z xρ ρ ρ ρα =  
if and only if ( )( )1 2,x ρ ρα  and ( )( )1 2,Z x ρ ρ  do both vanish. In this case we must 
have 

( )( ) ( )( ) ( )

( ) ( )( ) ( ) ( )

1 2 1 2 1 2

1 2 1 2 1 2 1 2

2 1, , ,

2 2 2 2 2 2
2 2 1 1, , , ,

0 1 1

1 2 1 2

x x x

x x x x

ρ ρ ρ ρ ρ ρ

ρ ρ ρ ρ ρ ρ ρ ρ

α ρ ρ

ρ ρ ρ ρ

= ⇒ Θ + Φ = +

⇒ Θ + Φ +Φ = + +
   (11) 

and we must also have 

( )( ) ( )( )
( ) ( )( ) ( ) ( )

1 2 1 2

1 2 1 2 1 2 1 2

2 2 2
2 1, ,

2 2 2 2
2 1, , , ,2 1 2 1,

z x z x

x x x x

ρ ρ ρ ρ

ρ ρ ρ ρ ρ ρ ρ ρρ ρ

Θ =

⇒ Θ Φ + Φ + = + +
     (12) 

Subtracting Equation (11) from Equation (12) yields 

( ) ( )1 2

2 2 2 2 2 2 2
2 1, 1 0x ρ ρ ρ ρΘ Φ −Θ Φ − + =

 
Since ( )1 2,x ρ ρ  must be different from zero (otherwise we would have  

( )( )1 2, 1 0x ρ ρα = Θ− >  contrary to our assumption), this implies that  
2 2 2 2 2 2

2 11 0ρ ρΘ Φ −Θ Φ − + =  which is equivalent to ( )1 2 ,, Hρ ρ Θ Φ∈ . 

Corollary 1. Assume that 0Φ > , 1Θ >  and that A is a connected subset of 

,QΘ Φ  which does not intersect the set 

( ) ( ) ( ) ( ){ }2 2 2 2 2
, 1 2 2 1: , 1,1 : 1 1 .H ρ ρ ρ ρΘ Φ = ∈ − Θ Φ − = −

 
Then it follows that function ( ) ( )( ) ( )( )1 2 1 21 2 , ,, x Z xρ ρ ρ ρρ ρ α  does not change 

sign on A. 
The previous corollary will be useful to distinguish whether a given root 

( )1 2,x ρ ρ  is of type a) rather than of type b) or c). Once we know that it is not of 
type a), we will apply the next lemma in order to find out whether it is of type b) 
or c). 

Lemma 6. Let A be a connected subset of ,QΘ Φ  such that  

( )( ) ( )( )1 2 1 2, , 0x Z xρ ρ ρ ρα >  for all ( )1 2, Aρ ρ ∈ . Then it follows that the function 
( ) ( )( ) ( )( )1 2 1 21 2 2, ,, x z xρ ρ ρ ρρ ρ α +Θ  does not change sign on A. 

Proof. Under the assumptions of the lemma ( )1 2,x ρ ρ  must be a root of either 
type b) or c) in (5). Hence we must have either 

( )( ) ( )( ) ( )( )1 2 1 2 1 22 1, , ,x z x z xρ ρ ρ ρ ρ ρα +Θ =
 

or 

( )( ) ( )( ) ( )( )1 2 1 2 1 22 1, , , .x z x z xρ ρ ρ ρ ρ ρα +Θ = −
 

The conclusion of the lemma follows now from the fact that  

( )( ) ( )( )1 2 1 22, ,x z xρ ρ ρ ρα +Θ  is continuous and that ( )1 0z x >  for all x∈ . 
Now we are finally ready to investigate about the existence of intersection 
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points. We start from the special cases where 1Φ =  or 1ΘΦ = . 
Lemma 7. Assume that 1Θ >  and that either 1Φ =  or 1ΘΦ = . Then  

( )1 2 ,, Rρ ρ Θ Φ∈  implies ( ) ( )1 2w k w k<  for all k ∈ . 
Proof. If 1Θ > , we must have ( ) ( )1 20 0w w<  and thus there exist intersec-

tion points only if the polynomial ( )Q x  has real roots different from 0x = . 
Now, consider first the case 1Φ = . Since we are assuming that ( )1 2 ,, Rρ ρ Θ Φ∈ , 
it follows that ( )1 2 1ρ ρ= Θ ± Θ−  (see the description of the set ,RΘ Φ  for the 
special case where 1Φ = ). However, it can be verified that in this case we must 
have 

( ) ( ) ( )2 22
24 1 1 0Q x ρ= − Θ Θ− ± <  

which has no roots at all. 
Next, consider the case 1ΘΦ = . In this case we must have 1 2ρ ρ=  (see the 

description of the set ,RΘ Φ  for the special case where 1ΘΦ = ). Substituting 

1 2ρ ρ ρ= =  and 1Φ = Θ  in the coefficients of ( )Q x  shows that 

( ) ( ) ( )2 24 1 1 0Q x ρ= Θ− − >
 

which has no roots at all. 
Next, we deal with the case where Φ is strictly smaller than 1 and different 

from 1 Θ  (i.e. 1ΘΦ ≠ ). The inequality 1ΘΦ ≥ , which is necessary by condi-
tion (4), allows then only for values of Φ in the range 1 1Θ < Φ < . Note that for 

1Φ ≤  the necessary condition (2) is already implied by condition (4) and there-
fore we do not need to assume condition (2) explicitly. 

Lemma 8. Assume that 1Θ > , 1ΘΦ >  and 2 1ΘΦ ≤  (this implies 1Φ < ). 
Then ( )1 2 ,, Rρ ρ Θ Φ∈  implies ( ) ( )1 2w k w k<  for all k ∈ . 

Proof. Once again, if 1Θ >  we must have ( ) ( )1 20 0w w<  and there exist 
points k ∈  where ( ) ( )1 2w k w k≥  if and only if intersection points exist, i.e. 
if and only if the polynomial ( )Q x  has at least one real root which satisfies 
condition c) in (5). From Lemma 3 we know that ( )Q x  must have roots if 

1Θ > , 1ΘΦ > , 2 1ΘΦ ≤  and if ( )1 2,ρ ρ  belongs to the interior of ,RΘ Φ . 
Since under the present conditions ,RΘ Φ  is connected and does not intersect 

,HΘ Φ  (see Lemma 4), we may apply Corollary 1 to check whether the roots in 

,RΘ Φ  are of type a). This will be the case if there exists a single  
( ) ( )1 2 ,, int Rρ ρ Θ Φ∈  such that ( )( ) ( )( )1 2 1 2, , 0x Z xρ ρ ρ ρα < . Under the present 
conditions the origin belongs to ( ),int RΘ Φ . Hence we use ( ) ( )1 2, 0,0ρ ρ =  as 
test point. Of course, ( )( )0,0 1 0xα = Θ− > . Moreover, it is easy to check that 

( )

( ) ( )2

0,0 2 2

1 1
2

1
x

Θ Θ− −ΘΦ
=

Θ Φ −  
so that 

( )( ) ( ) ( )2 2 2

0,0 2 2

2 1 1 2 1
0.

1
Z x

 Θ− Θ Θ Φ − + −ΘΦ = − <
Θ Φ −  

We conclude that ( )1 2,x ρ ρ  must be of type a) whenever ( )1 2 ,, Rρ ρ Θ Φ∈ . 
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In the previous lemma we have assumed that 2 1ΘΦ ≤  which forces 1Φ < . 
To apply the same method of proof for the case where 2 1ΘΦ >  we must how-
ever assume that 1Φ < . 

Lemma 9. Assume 1Θ > , 2 1ΘΦ >  and 1Φ <  (note that 1Θ >  and  
2 1ΘΦ >  implies 1ΘΦ > ). Then ( )1 2 ,, Rρ ρ Θ Φ∈  implies ( ) ( )1 2w k w k<  for 

all k ∈ . 
Proof. The proof is similar to the proof of the previous lemma. However, in 

the present case we must deal with the fact that the set ,RΘ Φ  is not connected 
but only the union of the two connected sets S1 and S2. In each one of these two 
sets we must therefore find a point ( )1 2,ρ ρ  such that ( )( )1 2,x ρ ρα  and  

( )( )1 2,Z x ρ ρ  are of opposite sign. To locate these points, note that the 2ρ -axis 
intersects both sets and hence we choose the ( )1 2,ρ ρ -points with 1 0ρ =  and 

( ) ( )2

2 2

1 1
: .ρ ρ ±

Θ− ΘΦ −
= = ±

ΘΦ  
This choice is convenient because it makes the discriminant of ( )Q x  vanish. 

According to the sign in 2ρ
± , it gives rise to the roots 

( )
( )( )

( )2

2

20,

2 1 1

1
x

ρ±

Θ − ΘΦ −
= ±

Θ −Φ
                 (13) 

which, regardless of the sign, yields 

( )
( )( )

( )2

2

20,

1 2

1
x

ρ
α ±

Θ − ΘΦ +Θ−  = 
  Θ −Φ

                (14) 

and 

( )
( )( )

( )2

22

20, 2

2 1 2
.

1
Z x

ρ±

Θ − ΘΦ +Θ−  = − 
  Θ Φ −

              (15) 

Note that ( )20,
0Z x

ρ±
  < 
 

 regardless of the value of Φ(provided that 1Φ ≠ ), 

but to make sure that ( )20,
0x

ρ
α ±

  > 
 

 we need to assume 1Φ < . 

Lemma 7, Lemma 8 and Lemma 9 show that the necessary condition (4) along 
with 1Θ >  and 1Φ ≤  are jointly sufficient to rule out calendar spread arbi-
trage. The next lemma deals with the condition 

( )( ) ( )22
2 11 1 ρ ρΘ− ΘΦ − ≥ ΘΦ −                 (16) 

which allows for values of Φ larger than 1. 
Lemma 10. Assume that 1Θ >  and that condition (16) holds (note that 

these conditions jointly imply the necessary condition (4)). Then it follows that 
( ) ( )1 2w k w k≤  for all k ∈ . Under the assumptions of this lemma there exist 

tangency points (i.e. values of k where ( ) ( )1 2w k w k= ) if and only if 1Φ >  
and condition (16) holds with equality sign. In that case there must exist exactly 
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one tangency point. 
Proof. If 1Θ >  and condition (16) holds, we must have 2 1ΘΦ ≥  and hence 

1ΘΦ >  (otherwise there would not exist any ( )1 2,ρ ρ -pair for which (16) 
holds). Consider first what happens when 2 1ΘΦ = . In this case we must have 

1Φ <  and for 1Φ ≤  we have already proved that ( ) ( )1 2w k w k<  for all 
k ∈ . 

Consider now what happens when 1Φ > . Since we are assuming that 1Θ >  
(and hence we must have 2 1ΘΦ > ), we must have , 1 2R S SΘ Φ = ∪  and the as-
sumed inequality (16) is satisfied if and only if the ( )1 2,ρ ρ -pair belongs to the 
area between the two stripes S1 and S2 or to one of the inner boundaries of S1 or 
S2. We indicate this set of ( )1 2,ρ ρ -pairs with S3. Note that S3 must be a proper 
subset of S since we are assuming that 1Φ > . Since 1Φ >  implies 1ΘΦ > , we 
can apply Lemma 4 and conclude that 3 , ,S H S HΘ Φ Θ Φ∩ ⊂ ∩ = ∅ . Now it fol-
lows from Lemma 3 that ( )Q x  has no real roots when ( )1 2,ρ ρ  belongs to the 
interior of S3, i.e. if the inequality (16) is strict. Since the two slices can intersect 
only if ( )Q x  has real roots, we conclude that ( ) ( )1 2w k w k<  for all k ∈  
in this case. On the other hand, if the ( )1 2,ρ ρ -pair belongs to the boundary of 
S3, then it must also belong to the inner boundary of one of the two stripes S1 or 
S2. In other words, there must be equality in (16) which means that 

( ) ( ) ( )( )2
2 2 1 1

1: 1 1ρ ρ ρ ρ±= = ± Θ− ΘΦ −
ΘΦ  

and that the discriminant of ( )Q x  must be zero (see Lemma 3). Hence ( )Q x  

must have a root and this root must be unique. As usual we write ( )1 2,x ρ ρ  to indi-

cate the root. Since we are assuming that Θ and Φ are both larger than 1, we can 

apply Lemma 5 and conclude that ( )( ) ( )( )1 2 1 2, , 0x Z xρ ρ ρ ρα ≠  when the ( )1 2,ρ ρ

-pair belongs to , 1 2R S SΘ Φ = ∪  and hence that ( )( ) ( )( )1 2 1 2, , 0x Z xρ ρ ρ ρα ≠  for 

all ( )1 2,ρ ρ -pairs which belong to the boundary of S3 where a root ( )1 2,x ρ ρ  

must exist and must be unique. Since S1 and S2 are two disjoint and connected 

sets, ( )( ) ( )( )1 2 1 2, ,x Z xρ ρ ρ ρα  does not change sign on each of these two sets. We 

will now show that the sign of ( )( ) ( )( )1 2 1 2, ,x Z xρ ρ ρ ρα  is positive on both sets. 

This can be done by proving that the sign of ( )( ) ( )( )1 2 1 2, ,x Z xρ ρ ρ ρα  is positive at 

a single point in each of the two sets (see Corollary 1). As in the proof of Lemma 
(9) we use the ( )1 2,ρ ρ -pairs with 1 0ρ =  and  

( )( )2
2 2

1: 1 1ρ ρ±= = ± Θ− ΘΦ −
ΘΦ

 as test points (note that these points also 

belong to the boundary of S3). With this choice we still get the expressions in 

(13), (14) and (15) for ( )20,
x

ρ±
, ( )20,

x
ρ

α ±

 
 
 

 and ( )20,
Z x

ρ±
 
 
 

. However, since we 

are now assuming that 1Φ > , we see that ( )20,
0x

ρ
α ±

  < 
 

 and not  
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( )20,
0x

ρ
α ±

  > 
 

 as in the proof of Lemma 9 (of course, ( )20,
Z x

ρ±
 
 
 

 remains still 

negative). We conclude that the roots we are considering now must be either of 
type b) or c) in (5). Hence we must have  

( )( ) ( )( ) ( )( )1 2 1 2 1 22 1, , ,x z x z xρ ρ ρ ρ ρ ρα +Θ = ± . In order to prove that the roots corres-

pond to intersection points, we first note that the mapping  

( ) ( )( ) ( )( )1 2 1 21 2 2, ,, x z xρ ρ ρ ρρ ρ α +Θ  does not change sign on each of the two 

sets S1 and S2 (use Lemma 6). However, as far as we know by now, the sign of 

( )( ) ( )( )1 2 1 22, ,x z xρ ρ ρ ρα +Θ  might be different according to whether ( )1 2,ρ ρ  

belongs to S1 or to S2. Thus, if there exists a single point ( )1 2, iSρ ρ ∈  such that 

the sign of ( )( ) ( )( )1 2 1 22, ,x z xρ ρ ρ ρα +Θ  is positive, we can conclude that ( )1 2,x ρ ρ  

is of type c) and hence that ( )( ) ( )( )1 2 1 21 1 2 1, ,w x w xρ ρ ρ ρϕ ϕ=  for every  

( )1 2, iSρ ρ ∈  ( 1,2i = ). Again, we use the two ( )1 2,ρ ρ -pairs with 1 0ρ =  and 

( )( )2
2 2

1: 1 1ρ ρ±= = ± Θ− ΘΦ −
ΘΦ

 as test points. For these points we get the 

same expressions of ( )20,
x

ρ±
 and ( )20,

x
ρ

α ±

 
 
 

 as in equations (13) and (14), 

while for ( )2
2 0,

z x
ρ±

 
 
 

 we get the expression 

( ) ( )2

2

2 20,

2 .
1

z x
ρ±

ΘΦ +Θ−  =  Θ Φ − 
 

Hence we conclude that 

( ) ( ) ( )2 2

2

2 20, 0,

2 0.
1

x z x
ρ ρ

α ± ±

ΘΦ +Θ−   +Θ = >    Θ Φ −   
 

This argument shows that every root ( )1 2,x ρ ρ  with ( )1 2 1 2, S Sρ ρ ∈ ∪  is an 
intersection point and that there must be a unique intersection point when 
( ) ( )1 2 1 2 3, S S Sρ ρ ∈ ∪ ∩ . It is not difficult to show that in the latter case the in-
tersection point must be a tangency point. In fact, if it was a crossing point, there 
should exist one further crossing point because under our present assumptions 
the left and right asymptotes of ( )2w k  are both steeper than those of ( )1w k  
(recall that we are assuming 1Θ >  and 1Φ > : on ( )1 2 3S S S∪ ∩  condition 
(4) must therefore hold with strict inequality sign). 

As far as I know, the results in the next two lemmas are new. 
Lemma 11. If 

( )( ) ( ) ( )2 22
2 11, 1 and 1 1 1 ,ρ ρΘ > Φ > Θ− ΘΦ − < ΘΦ − < ΘΦ −   (17) 

there must exist exactly two points where the slices ( )1w k  and ( )2w k  cross 
over each other. 

Proof. From Lemma 3 and Lemma 4 we know that under condition (17) there 
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must exist two roots ( )1 2,x ρ ρ . Moreover, from the proof of Lemma 10 we know 
that both these roots must be intersection points. The chained inequality in (17) 
says that both asymptotes of ( )2w k  are steeper than those of ( )1w k . There-
fore only two cases can occur: either (i) both intersection points are tangency 
points, or (ii) both intersection points are crossing points. It is not difficult to see 
that case (i) is impossibile. In fact, if both intersection points were tangency 
points, any increase of Θ should lead to ( ) ( )1 2w k w k<  for all k ∈ . Howev-
er, given fixed values of Φ, 1ρ  and 2ρ , a small enough increase of Θ does not 
lead to a violation of condition (17) which implies the existence of two intersec-
tion points. 

Now, it remains to see what happens when 

( ) ( )2 2
2 11, 1 and 1ρ ρΘ > Φ > ΘΦ − = ΘΦ −           (18) 

i.e. when the left or right asymptote of ( )2w k  is the same as the corres-
ponding asymptote of ( )1w k . 

Lemma 12. Assume condition (18) holds. Then there must exist exactly one 
point where the slices ( )1w k  and ( )2w k  cross over each other. 

Proof. Define ,BΘ Φ  as the subset of the ( )1 2,ρ ρ -plane where the equality in 
condition (18) holds. ,BΘ Φ  is then the boundary of S, i.e. the subset of the 
( )1 2,ρ ρ -plane where 

( )1 1 2 2 2
2: 1 and 1 min 1,1ρ ρ ρ ρ ρ+  = = ΘΦ +ΘΦ − − < < − ΘΦ   

or 

( )1 1 2 2 2
2: 1 and max 1 , 1 1.ρ ρ ρ ρ ρ−  = = ΘΦ + −ΘΦ − − < < ΘΦ   

On ,BΘ Φ  the polynomial ( )Q x  reduces to 

( ) ( )
( ) ( ) ( ) ( ) ( )

2
2

2
2

4 1

1 1 2 2 1 1

Q x

x

ρ

ρ

± = − Θ ± Φ

 × Θ− Φ ± Θ− ΘΦ +Φ − − Φ − ΘΦ −   

and the only root of ( )Q x±  is given by 

( )( )
( ) ( ) ( )

( ) ( )1 2 2

2
2

,

1 1 2
.

2 1 1
x

ρ ρ ρ

ρ
±

Θ− Φ ± Θ− ΘΦ +Φ −
=

Φ − ΘΦ −  
We will show that this root must be a crossing point. To this aim note that 

,BΘ Φ  is the union of two disjoint connected sets which we denote with ,B±
Θ Φ . 

From Lemma 4 it follows that , ,B HΘ Φ Θ Φ∩ = ∅ . Hence we may apply Corollary 

1 and conclude that ( ) ( )1 2 1 2, ,
x Z x

ρ ρ ρ ρ
α ± ±

   
   
   

 does not change sign on each one 

of the two connected components of , , ,B B B+ −
Θ Φ Θ Φ Θ Φ= ∪ . In order to show that 

( )1 2,
x

ρ ρ
α ±

 
 
 

 and ( )1 2,
Z x

ρ ρ±

 
 
 

 are of the same sign, it is therefore sufficient to 
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find a single point ( )1 2,ρ ρ  in each of the two sets ,B+
Θ Φ  and ,B−

Θ Φ  for which 

( )1 2,
x

ρ ρ
α ±

 
 
 

 and ( )1 2,
Z x

ρ ρ±

 
 
 

 are of the same sign. As test points we choose the 

points ( ) ( )( )1 2 1 2 2, ,ρ ρ ρ ρ ρ±=  where ( )1 2 0ρ ρ± = . It is easily seen that these 

points are ( )*0, ρ±  where *
1 1ρ = −
ΘΦ

. Substituting in the formula for the 

root we get 

( ) ( ) ( )*

2 2

0,
2 2 1.
2 1 1

x ρ±
Θ Φ −Θ − ΘΦ +

= ±
Θ Φ − ΘΦ −  

Regardless of the sign in 2 *ρ ρ= , this root yields 

( )( ) ( )
( )*

2

0,

1
2 1

x ρα ±

Θ−
= −

Θ Φ −  
and 

( )( ) ( ) ( )
( ) ( )*

2 2 2

0, 2

1 2 4 2
.

2 1 1
Z x ρ±

Θ− Θ Φ + ΘΦ − ΘΦ −Φ +
= −

Θ Φ − ΘΦ −  

Of course ( )( )*0, 0x ρα ± < . As for ( )( )*0,Z x ρ± , its sign depends on the sign of 

2 22 4 2Θ Φ + ΘΦ − ΘΦ −Φ +  

which is positive whenever 1Θ >  and 1Φ >  (we omit the details of the proof 
of this assertion). Hence also ( )( )*0, 0Z x ρ± <  and thus we conclude that ( )*0,x ρ±  
is a root of either type b) or c) in (5). To find out which type applies, we must 
determine the sign of ( )( ) ( )( )* *20, 0,x z xρ ρα ± ±+Θ . It is not difficult to verify that 

( )( ) ( ) ( )*

2 2

2 0,
2 4 2

2 1 1
z x ρ±

Θ Φ + ΘΦ − ΘΦ −Φ +
=

Θ Φ − ΘΦ −  
and hence we get 

( )( ) ( )( ) ( ) ( )* *

2 2 2 2

20, 0,
2 2 2 1.

2 1 1
x z xρ ρα ± ±

Θ Φ − Θ Φ +Θ − ΘΦ +
+Θ =

Θ Φ − ΘΦ −  
The numerator in this expression can be written as 

( ) ( )2 22 1 1Θ Φ − + ΘΦ −  
and therefore we must have ( )( ) ( )( )* *20, 0, 0x z xρ ρα ± ±+Θ > . By Lemma 6 we con-
clude that ( )1 2,x ρ ρ  must be an intersection point for every ( )1 2 ,, Bρ ρ Θ Φ∈ . 

To complete the proof it remains to show that for every ( )1 2 ,, Bρ ρ Θ Φ∈  the 
corresponding root ( )1 2,x ρ ρ  is a crossing point. To this aim we apply the argu-
ment in the proof of Lemma 11 once again: if ( )1 2,x ρ ρ  was a tangency point, 
then by increasing Θ a little bit we should have no intersection points at all. 
However, if we increase Θ a little bit while leaving Φ, 1ρ  and 2ρ  unchanged, 
we pass from condition (18) to condition (17) which implies the existence of two 
crossing points. 

Combining the statements in Lemma 1, Lemma 2, Lemma 7, Lemma 8, Lem-
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ma 9, Lemma 10, Lemma 11 and Lemma 12 yields a corrected and sharper ver-
sion of Proposition 3.1 in Hendriks & Martini (2019). The little corrections con-
cern 

i) the special case where 1Θ =  and 
ii) the fact that Proposition 3.1 in Hendriks & Martini (2019) seems to imply 

that with 1Θ > , ( ) ( )2 2
2 1 1ρ ρΘΦ − ≤ ΘΦ −  and 1Φ <  it would be possible to 

have absence of calendar spread arbitrage even if 1ΘΦ <  which goes against 
the necessary condition (4). However, the preprint version of the article contains 
a slightly different version of the proposition which is not subject to this prob-
lem but where the two necessary conditions are a little too strong due to strong 
inequality signs instead of weak ones (see Proposition 3.5 in Hendriks & Marti-
ni, 2017). 

The sharper (and corrected) statement of the Hendriks-Martini proposition is 
given below. To make it more concise, the necessary condition (3) will be stated 
as in (19). 

Proposition 13. Assume that 1θ  and 1ϕ  are both strictly positive and let 

2 1: θ θΘ =  and 2 1: ϕ ϕΦ = . Then, there is absence of calendar spread arbitrage 
(i.e. ( ) ( )1 2w k w k≤  for all k ∈ ) only if 1Θ ≥  and 

2 11 1ρ ρ−ΘΦ ≤ ΘΦ − ≤ ΘΦ −                   (19) 

Moreover, 
• when 1Θ =  there is absence of calendar spread arbitrage if and only if ei-

ther (i) 1 2 0ρ ρ= =  and 1Φ ≥  or (ii) 1 2ρ ρΦ =  and 2 2
1 2ρ ρ≥ ; 

• when 1Θ >  there is absence of calendar spread arbitrage if and only if con-
dition (19) holds jointly with 

( ) ( ) ( )2 2
2 11 or 1 1 ;ρ ρΦ ≤ ΘΦ − ≤ Θ− ΘΦ −

 
• when 1Θ >  and condition (19) holds jointly with 

( ) ( ) ( )2 2
2 11 or 1 1ρ ρΦ ≤ ΘΦ − < Θ− ΘΦ −

 
there are no intersection points (i.e. ( ) ( )1 2w k w k<  for all k ∈ ) 

• when 1Θ > , 1Φ >  and ( ) ( )( )2 2
2 1 1 1ρ ρΘΦ − = Θ− ΘΦ −  the two slices 

have exactly one intersection point which is a tangency point; 
• when 1Θ > , 1Φ >  and ( )( ) ( ) ( )2 22

2 11 1 1ρ ρΘ− ΘΦ − < ΘΦ − < ΘΦ −  there 
must exist exactly two points where the slices ( )1w k  and ( )2w k  cross over 
each other. 

• when 1Θ > , 1Φ >  and ( ) ( )2 2
2 1 1ρ ρΘΦ − = ΘΦ −  there must exist exactly 

one point where the slices ( )1w k  and ( )2w k  cross over each other. 

3. Conclusion 

This paper provides a detailed proof of conditions which characterize calendar 
spread arbitrage in eSSVI volatility surfaces. Moreover, it gives a full characteri-
zation for the case where two eSSVI slices have tangency points without crossing 
over each other. The motivation for this paper stems from a little error in the 
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statement of a proposition in Hendriks & Martini (2019) where Hendriks and 
Martini introduced the eSSVI model, and from the fact the correct statement 
cannot be easily deduced from their proof. From a practical point of view, the 
conditions given in this paper can be used to check for the presence of calendar 
spread arbitrage in calibrated eSSVI surfaces and/or they can be incorporated in 
a calibration algorithm in order to obtain fitted volatility surfaces which are free 
of calendar spread arbitrage. 
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