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Abstract 
In this article, we investigate the criticality of the employment and person-
al-income dynamics using Shannon’s Entropy Concept. Y. L. Klimontovich 
published an article in the nineties in which the importance of Entropy as a 
Criterion of degradation and self-organization in evolution has been empha-
sized. Thus, we would like in this article to use the term “Criticism” in place 
of criticality, especially in economic dynamics. From the physical point of 
view, economic dynamics are convolutions of probabilities in space and time 
arising commonly in fractal structures characterized by Ergodicity break. This 
fact enforces analyzing those dynamics in the fractional image and stochastic 
sense to get quantitative results, which are defensible. The considerable work 
of R. Gorenflo, F. Mainardi, V.V. Tarasova, V. Tarasov, R. Metzler, and oth-
ers is an operable basis to bother this scientific area. We focus in this article, 
especially on concrete economic dynamics, as they point out the possibilities 
and limits of analyzing economic complexity in a paradigmatic way. 
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1. Introduction 

The main purpose of this article is to introduce concepts of criticality in eco-
nomic dynamics based on the theory of statistical physics. As the modeling of 
economic behavior needs requirements and conditions that arise naturally be-
tween protagonists in real economic processes, we choose concepts that are re-
levant within the theory of many particle systems remaining in the framework of 
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“statistical physics”. Appropriate concepts that could detect Criticism in eco-
nomic dynamics among others (e.g. Percolation theory) are the Criteria of “En-
tropy” defined by Shannon (1948) in the Article “Theory of Communication” 
and the “Leibler-Kullback Distance”, which represent mathematical tools to 
extrapolate the mass of uncertainty in futural events. In this context, we use the 
S-Criterion of Klimontovich (1999) to estimate the relative degree of order from 
experimental data for unemployment in Germany, after the Second World War. 
Additionally, we apply fractional concepts bothering economic models, as eco-
nomic dynamics are obviously of fractal structure. In this context, the develop-
ment of Entropy in fractal structures is of significant importance. K.H. Hoffmann, 
J. Prehl, C. Essex, and others of the University of Chemnitz prove in their re-
search papers that there is a significant relation between Entropy amount and 
fractality order (see Hoffmann et al., 2018; Prehl et al., 2016; Hoffmann et al., 
2012). We focus especially on the LogNorm Distribution, as it dominates in the 
dynamics of personal income. Proceeding in the above-described sense, we han-
dle the following central themes: 

A) We analyze the yearly data rows of unemployment in Germany after the 
Second World War until 2018, using the S-criterion of Y. Klimontovich in order 
to detect Criticism with the help of the associated Entropy Concept. The dog-
matic position of Klimontovich (1999, 2012) states that paths in dynamics, which 
are more entropic, are the more critical. The key study of heuristic character re-
veals elements of “Synergetics” and the degree of order in the free market eco-
nomic system. First, we extrapolate the fractional exponents of the concrete un-
employment dynamics in space and time with the help of an empirical relation-
ship between themes. 

B) We analyze the entropy development by systems, which create employment 
outside of the minimum systemic one, with the help of a specific model advanced 
for this question, using the Leibler-Kullback-Distance Criterion (see Kullback & 
Leibler, 1951). 

C) We develop a specific Temperature-Term in the dynamics of unemploy-
ment that can consider social requirements in order to detect Criticism. Of ma-
jor interest in this context is the question of whether classical concepts for criti-
cality, like the Ising model, can define critical phases in specific dynamics. The 
research in this context points out the possibility of getting better results using 
the Renormalization-Group Ansatz, interpreting the last of the fractional point 
of view, by applying the theory of fractional oscillators. 

D) The existence of Steady States in dynamics is an important argument and 
tool to detect metastability, which is evidence of the fact that specific dynamics 
constellations remain unchanged in the evolution of time. Of course, the exis-
tence of Steady States ensures the no emergence of critical phase transitions. We 
handle this theme using purely physical models. They are, in the concrete case, 
the fractional Langevin, the fractional Fokker-Planck-Ansatz and the fractional 
Master Equation by appropriate conditions. Looking at factors, which have a 
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strong impact on employment dynamics, we extrapolate Steady States within the 
general model of Taxis, introducing here the concept of Econotaxis, as this be-
havior met in the biological evolution is of significant importance for stability in 
the free market economic concept. The applying differential equations are frac-
tional. We refer within the extrapolation of Steady States to the considerable work 
(thesis) of Brockmann (2003) and Rehim (2006), which handle details of the to-
pological diffusion and of the Continuous Time Random Walk implications (spe-
cifically time-fractional aspects), respectively. 

E) The dynamics of personal income are characterized by a positive property 
for research. In this, dynamics dominate two characteristic statistical distributions. 
They are the LogNorm distribution for the major part of employers (95%) and 
the Power Law one for the corresponding small part (5%). Analyzing the beha-
vior of this distribution by changing some characteristic parameters, we could 
locate values, which transform the LogNorm Distribution to the Power Law one. 
This is a critical phase transition, which enables the definition of Criticism in the 
personal income dynamics. Additively, we extrapolate the associated Entropy 
value of the LogNorm distribution changing characteristic parameters like ex-
pected value and variance. We can not extrapolate in this context an ideal and 
stable LogNorm distribution for society as it is a problem of political conception 
and dimension. 

2. Theoretical Formalism 

A.0: An overview of the solutions of the fractional diffusion equation within 
the CTRW formalism with the help of the Mittag-Leffler function.  

A.0.1: Fractional Brownian Motion (FBM). 
The dynamics, within the CTRW formalism, are well described by the appre-

ciable work of Montroll and Weiss (1965), considering both space and time as-
pects of the statistical distributions. Kenneth Falconer (2003) refers in his Book, 
especially to the fractional Brownian Motion (FBM). Mainardi et al. (2007), in 
the Article “The Fundamental Solution of the Space-Time Fractional Diffusion”, 
deliver the general Solutions to fractional Diffusion. The following categoriza-
tion corresponds to dynamics with specific characteristics:  

The distribution of the waiting time is generated by a power-law rule, while 
the distribution of the space jumps is characterized by a finite variance.  

The Green Function corresponding to these dynamics in the Fourier domain 
reads as 

 ( ) 2
2,

ˆ , sG k t E D k tββ  = −                        (1) 

whereby β  is the time fractional order. The inverse transform of (2) leads to 
the solution  

( ) [ ] 2
2,

1, d exp
2 sW x t k ikx E D k tββ  = − − π ∫              (2) 

In the Literature FBM is often called “time-fractional Diffusion (see Gorenflo 
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& Rehim, 2005; Thesis of Rehim, 2006). 
A.0.2: Levy Flights.  
Levy Flights are in the dynamic context of the reverse case of FBM. Jump 

probabilities are now generated by the power law rule, while the corresponding 
waiting time distribution possesses a variance of finite character. Mainardi et al. 
(2007) deliver in their Article “The Fundamental Solution of the Space-Time 
Fractional Diffusion Equation”, in Fractional Calculus and Applied Analysis, 
4(2), arXiv.cond.mat/0702418, the corresponding theory by detail. The solution 
in form of the Mittag-Leffler function degenerates on the Fourier domain to a 
relation of exponential character like the following:  

( )( ) ( ), ; , eˆ tD kW x t k kf t
α−= =                    (1) 

(see also details for Levy Flights and stable Distributions by Feller, 1991a, 1991b). 
A.0.3: Ambivalent processes. 
This case occurs in dynamics when both waiting-time distribution and jump 

distribution are of power law character. The corresponding formalism results in 
the following relations: 

( ) [ ] ,
1, d exp

2 sW x t k ikx E D k tα β
α β  = − − π ∫               (1) 

with ( ) ,
ˆ , sG k t E D k tα β

α β  = −   whereby ,α β  are the fractional order of the 
corresponding space and time dimension. sD  denotes here the diffusion coeffi-
cient. Especially in the case of ambivalent processes holds the following catego-
rization: 

For 0 2α< ≤  and 0 1β< ≤ ; 
If 2α β<  →  Superdiffusive processes; 
If 2α β>  →  Subdiffusive processes; 
If 2α β=  →  Gauss processes.  
Within the ambivalent dynamics probabilities with divergent moments and 

scale-free fluctuations in space and time occur (see for detail the Article “The 
Random Walk’s Guide to Anomalous Diffusion” by Metzler & Klafter, 2000). 

Remarkon Fundamental Work in Fractional Modeling. An Overview of 
economic dynamics with Memory from the Fractional Point of View delivers 
Articles by Tarasova and Tarasov (2017). Gorenflo and Mainardi (2015) intro-
duce the essentials of fractional calculus. They contributed significantly to the 
Theory of Fractional Diffusion and the associated Dynamics through numerous 
Articles. Metzler and Klafter (2000) deliver the remarkable Article “The Random 
Walk’s Guide”, which contains fundamentals and an overview of the Theory of 
Anomalous Diffusion. The book of Podlubny (1998) refers in detail to the Gen-
eral Theory of Fractional Calculus and Fractional Differential Equations. 

A.1: Extrapolating the fractality order from experimental data (time se-
ries). 

Comment on Graph 1: The development of unemployment in BRD between 
1950 and 1960 during the first 10 years is characterized by a strong continuous 
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decrease as a result of the Second World War. In the following years, a trend of 
many ups and downs occurs with an increasing unemployment average. These 
dynamics are not typical for industrial countries like USA or Japan at the same 
time. 

A.1.1: Can we use averaged (means) data to extrapolate fractional expo-
nents? 

We answer this question with the help of the following Graph 2. 
Extrapolating the fractality order with the help of Graph 2. 
In order to illustrate the procedure that we use to extrapolate the space- and 

time-fractality of the employment dynamics from experimental data, we observe 
Graph 2. The thick dashed lines 1 2 3, , , , nS S S S , constitute the trajectories of 
an ensemble of employment institutions (Enterprises and others), representing 
the employment level in space and time. We are thus interested in the trajectories  
 

 
Graph 1. Yearly unemployment in % for Germany between 1951 and 2018 (Source: Sta-
tistisches Bundesamt). 
 

 
Graph 2. Trajectories of employment ensembles dependent on space and time. 
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fix it  with 1 2, , ,i nS S S S=  , while we hold the time fix it  fixed (thin dashed 
lines). In this context, the observed process is a process discrete in space and 
time. We can certainly state that every trajectory ( ),r i fix iT S t  (dashed red line) 
belongs to the Levy-stable densities, which in limes ( iS , i → very large number) 
could tend to a Gauss-distribution. Now, regarding the α-stable laws we can assume 
that every sum of ( ),r i fix iT S t  constitutes a α-Levy-stable distribution too. Sup-
pose now that in the time 1fix i fix it t −−  the α-Levy-stable distribution remains 
unchanged. In this case, we are allowed to observe the sum of iS∑  as a supe-
rordinated process, where the α-stable Levy parameter changes its value versus 
time. The process could be now observed as continuous in space and discrete in 
time. The statistical average in the form of the characteristic mean value for 

iS∑  within a specific but constant time is more or less only an approximation 
for the real trajectories. We argue that the process should be characterized addi-
tively by a real existing time fractality, which the statistical data does not give di-
rectly. Zolotarev and Uchaikin (1999) prove in their Book “Chance and Stability 
that if random variables iX  are stable distributed, then the Sum 

( ) 1 2
1 ;n n

ii

X X XX
n

α β
=

+ + +
=∑  , 

with α = stable order of the Distributions, is a stable distribution too. 
Result: Concerning a time series of experimental data that are consolidation 

and averages of more detailed available data, we could first, by an appropri-
ate procedure, estimate the space-fractality ignoring the time-fractality. In the 
second stage, we could then extrapolate the time fractality exponent, identifying, 
which matches at best to the space one with the help of statistical treatment. The 
basis we use in this chapter to extrapolate the fractality order of the unemploy-
ment dynamics should be the CTRW formalism. According to this, a huge amount 
of time and space data are required in order to illustrate the associated tick- by 
tick-dynamics. As such data are usually not available, we must rescale space and 
time by compressed data series. While the time scales range from milliseconds to 
minutes, the space scaling seems to be empirically confined in an interval be-
tween 1% and 15% (rough assessment). The above assumptions could result in 
evidence, that unemployment dynamics should be categorized intuitively as frac-
tional Brownian motion. This is not proven yet, despite the confined character 
of the space-fluctuations. From this point of view, the observed dynamics could 
be restricted in a potential well, excluding rare situations (crises). Unfortunately, 
the available experimental data are in form of annual or half-annual averages stak-
ing strongly the real-time flow. By the assumption of self-similarity, we could 
nonetheless gain a significant view of these dynamics. Due to this aim, we use 
the Method of Kenneth Falconer (2003). The procedure is based on an autocor-
relation analysis of the time series. Falkoner calls the time series graph the image 
of a fractal function. At first, we can estimate the box dimension of the graph 
using the relation 
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 ( )
( ) ( )( )

0

log 0
graph 2 lim

2logbox h

C C h
D f

h→

−
= −              (1) 

whereby the terms ( ) ( ), 0C h C  are defined within the autocorrelation analy-
sis procedure. By the assumption that the dynamics being in focus exhibits a 
time-fractional behavior, we get for the power-spectrum ( )S ω  the relations 

( )S c αω ω−≈ , ( ) ( ) 10 aC C h bh −− =                  (2) 

By the hypothesis 1c b= =  and ( ) ( ) 4 20 boxDC C h ch −− = , we obtain the identi-
ties  

4 2 1boxD α− = −  or 4 2 1boxD α− + =                  (3) 

The exponent α obtained above has the dimension of a space fractality order 
being assumed that the process itself is a space-time fractional one, as op-
posed to boxD , which possesses a pure geometrical property. Now, our goal 
is to extrapolate the time fractional exponent of a dynamics, the space fractional 
one being already estimated. To this task, there exists among others a procedure 
using an empirical relationship between the quadratic displacement of a variable 
in dynamics and the elapsed time in a fractional sense. The relationship to this 
reads as 

 2X Ktβ α≡                             (4) 

with:  
2X  = Quadratic displacement of the variable X;  

K = normalization factor; 
β = time-fractional order (exponent); 
α = space-fractional order (exponent); 
t = elapsed physical time. 
We obtain from (4) the relation  

( ) ( ) ( )2ln ln lnX K tβ
α

= + ∗                     (5) 

In the case of α= known, we can obtain the β value and inversely. The above 
way is of pure empirical character and often verified by investigating time series. 
A more sophisticated possibility consists in supposing the existence of the sub-
ordination relationship of the form  

( ), x
Xp x t t f

t

β
α

β α

−  =  
 

 

with ( )Xf f x=  = function of the fractional image, ( ),p x t  being a Probabil-
ity Density Function (PDF) in space and time. Multiplying the above relation on 
both sides by tβ α , we obtain  

( ), x
Xp x t t f

t
β α

β α
 =  
 

                     (6) 

Brockmann (2008) handles this problem in the Article “Anomalous Diffusion 
and the Structure of Human Transportation Networks”. Relation (6) allows 
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extrapolating the order β, while we know the correspondingly “α”, using a spe-
cific statistical treatment for maximal correlation. After extensive algebraic op-
erations using “Mathematica” and, “Excell” the author extrapolated the follow-
ing values (Exponents) for the unemployment statistics between 1951-2018. 

Dbox = Box-Dimension of the Graph = 1.93; 
α = space-fractional Exponent = 1.3; 
β = time-fractional Exponent = 0.08. 
The following Graph 3, points out the maximal correlation (%) between α 

and β based on the above estimated values. 
Comment to Graph 3: The correlation coefficient in this case turns out to be at ≈1. 

By the above-obtained values for α and β, we can assume that the unemployment 
process for the time 1951-2018 turns out to be an ambivalent multifractal 
process. As the employment dynamics of the B.R.D. have specific characteristics 
between 1951 and 2018, we found it convenient to compare two representative 
groups investigating the entropy development in relation to the associated 
fractality. The first group are represents the time between 1951 and 1975. During 
this time range the dynamics characterized by a low degree of unemployment 
with a sloping trend almost without ups and downs. This is certainly for BRD a 
consequence of a new economic impulse after the Second World War. The time 
range between 1970 and 2000 is the time of energy crises and intensive competi-
tiveness between enterprises, which necessitated economic unities to reorganize 
their economic activities adapting to the new situation. This imprint is visible in 
the numerous ups and downs at the employment level. By direct comparison of 
the two time periods due to the concept of Klimontovich (1999), we extrapolated 
the second period as the period of physical chaos. That means that period II 
(1970-2000) should have a higher degree of entropy corresponding to a lower 
fractality exponent. In this context, we estimated for period II a fractality-exponent 
of 1.43 and for the first period a fractality-exponent of 1.61 respectively. These 
results validate the relation between entropy production and fractality order. 

A.1.3: Investigating the fractal order of the unemployment dynamics in 
BRD between 1951-2019. Synergetics and the degree of order in employment. 

 

 
Graph 3. Correlation between α and β for the values α = 1.3 and β = 0.08. 
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Now, how could we interpret the increasing and volatile character of the en-
tropy in BRD between 1950 and 2019, in the sense of Klimontovich’s theory? At 
first, it must be said that the investigations in the above time horizon are not of 
theoretical interest as they do not represent the typical image of entropy devel-
opment. Nevertheless, we can recognize certainly an important element within 
this investigation. The free market economic concept in BRD has achieved a de-
gree of maturity within the range 1980-2018 being a result of its self-organized 
activities (see also Sornette, 2006) to ensure its own financial survival. As the free 
market economic concept needs some amount of entropy in the form of the as-
sociated unemployment degree, we can claim, that the transition from a lower to 
a higher unemployment degree is, in this case, a passage to a more ordered state. 
However, this position represents the entrepreneur side (owners and managers 
of enterprises) or the capital side within the free market concept. The question 
that arises here naturally is the following. Can unstable entropy dynamics within 
the free market economic concept reach an equilibrium state and what does this 
state look like? We answer this question partially in the chapter about steady 
states. Another interesting issue we will include further in this discussion clari-
fying the scope of this work. This is because, in the free market model, the capi-
tal side is not the single-acting protagonist. Workers and state are trying to smooth 
extremal employment dynamics by applying appropriate practices and policy 
strategies. This antagonistic environment does not help always to decrease en-
tropy. Hence, it is important to assess what contributes to increasing or decreas-
ing entropy from an economic point of view. We would fail the main scope of this 
work, we would not account for this by some certain results around the above 
question. Our central point in this context reads: How does entropy change fi-
nancing unemployment by taxation? As the answer to this question is clear, we 
want to know if an increase in entropy, in this case, corresponds to a more ordered 
state in the sense of the S-criterion. This theme possesses two sides according to 
the point of view. While from the capital point of view, entropy growth could 
lead to a more ordered state, as opposed to the workers’ point of view. However, 
it is of essential interest to ask whether workers and capital positions are always 
conflictive. This problem would however exceed the frame of this work. Now, at 
this stage, we want to clarify and emphasize some important critical notes. We 
extrapolated in this work the result that a low degree of unemployment represents 
the way corresponding to lower entropy. This can be realized by forcing exten-
sively and governing the investment’s potential to areas with intensive human 
inputs. This result is but of preventative character and represents a general strate-
gy to reduce entropy. Thus social activities, which help to reduce entropy, need 
essential requirements. Social policies that support facilitating a superior educa-
tional and health system, for instance, contribute to an increase in employment 
and a decrease in social entropy. 

B: How does entropy change by realizing an employment degree higher than 
the minimum systemic one? 
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To investigate this question it is first necessary to define what means the ex-
pression “the minimum systemic” whereby the entropy change refers to an eco-
nomic performance or economic output. A certainly and exactly evaluated eco-
nomic output can be realized by a minimum of human resources in dependence 
on the actual technological level. A higher input of employment (higher degree 
of employment) could lead to a change in the economic performance that is in 
focus. These relations can be formulated mathematically as follows: 

Assume there is an economic constellation as 2-tuple ( ),i iX Y  with the fol-
lowing variables:  

iY  = Value of economic performance (output value); 

iX  = Employment level in the specific performance =>; 
=> ( )f Qλ  with λ = general employment level as a macroeconomic index and 

Q = quantity of employable persons. Further the existence of a tuple ( ),m mX Y  
with m iX X>  and m iY Y>  is imaginable. It is realizable the existence of further 
tuples ( ),j jX Y  for which the following relation holds:  

i m jX X X< <  and i j mY Y Y< <                   (1) 

Relation (1) means that there exists a constellation by which a higher degree 
of employment does not cause a higher degree of economic output. All these 
combinations could be mathematically localized along a curve having of Log-
Norm character. We must here denote that the dependence between employ-
ment degree and economic output is not linear and refers to a specific economic 
macro-model (socially oriented free market economy). An appropriate model to 
describe the above relations looks like  

 ( ) ( ), Z
f fY T Q Tλ α λ Ψ=                       (2) 

with fT  = input of technical resources, [ ]0,1Ψ∈ , [ ], Z Rα ∈ +  and Qλ ⋅  
like above. 

An increase in employment about δλ  results in an increase of the economic 
output Yδ  

The new median Nµ  of the LogNorm distribution refers now to the term 
Y Yδ
λ δλ
+
+

.  

(Notice 1: If for the Distributions ,Y X  with ( )2;X N µ σ→  the linear rela-
tion Y aX b= +  exists, then ( )2 2;Y N a b aµ σ→ +  holds true, with ( )2;N µ σ  
= Gauss-Distribution.) 

Our aim now is to extrapolate ΔY by use of the Legendre transformation 
starting from the above relation. Due to this goal, we obtain from Relation (2) 
the following formulas: 

From ( ) ( ), Z
f fY T Q Tλ α λ Ψ= , we get the formulas ( )g Y Yλ λ= − ∂ ∗ , 

 ( ) ( )1Z Z Z
f f fQ T Q T Q Tα λ α λ λ α α λΨ Ψ Ψ− Ψ Ψ− ∗Ψ∗ ∗ = − Ψ ∗       (3) 

From ( ) 1 Z
fY Q Tλ α λΨ Ψ−∂ = Ψ ∗ , we obtain the following formula 
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( )
1

1

Z
f

Y
Q T
λλ

α

Ψ−

Ψ

 ∂
=  

Ψ  
                        (4) 

From 
( )

( )

1 1

2 11

Z Z
f f

Z Z
f f

dg Q T d Q Z T dZ

Q T d Q T d

α λ λ α λ

λα λ λ α λ λ

ΨΨ Ψ− −

Ψ Ψ− Ψ Ψ−

= Ψ + ∗ ∗ +

− Ψ Ψ − ∗ − Ψ ∗
, 

we gain the wanted formula as  

( ) ( ) 21Z Z
f fdg Q Z T dZ Q T dλ λα λ λΨ Ψ Ψ−= ∗ ∗ − Ψ Ψ − ∗          (5) 

Assuming constant technical inputs, we can state that the term dg could ex-
pect positive as well as negative values in dependence on the variable Ψ. 

Using the relative entropy ( )||d p q  known as the Kullback-Leibler distance, 
we will focus on the formula 

( ) ( )
( )

( )

2
1

22
111

2 2
11 1

2
22

ln1 exp
22ln1|| exp ln d

22 ln1 exp
22

x
xx

d p q x
x x

x

µ
σσµ

σσ µ
σσ

   −   ∗ −
    π −    = ∗ − ∗     π −    ∗ −    π    

∫ (6) 

in order to extrapolate appropriate relations for dg and δλ. The following identi-
ties hold true: 

( ) ( )
( )

( )

( ) ( ) ( )

2
1

22
111

2 2
11 2

2
22

2 2 2
1 1 22

2 2
1 11 1

ln1 exp
22ln1|| exp ln d

22 ln1 exp
22

ln ln ln1 1exp ln
2 22

x
xx

d p q x
x x

x

x x x
x

µ
σσ πµ

σσ π µ
σσ π

µ µ µσ
σ σσ σπ

   −   ∗ −
     −    = ∗ − ∗      −    ∗ −        

   − − −
   = − ∗ ∗ +
   
   

∫

2
2

d
2

x
σ

   
   

      
∫

 (7) 

Substituting in (7) 2 1
1 gδµ µ
λ δλ
+

=
+

, we get 

( ) ( ) ( )
2

2 2 1
1 12

2 2 2
1 11 1 2

1lnln ln ln1 1|| exp ln d
2 2 22

gxx x
d p q x

x

δµµ µσ λ δλ
σ σσ σ σπ

   +   −     − − +       = ∗ ∗ − +      
            

∫ (7.1) 

A negative or positive value of the expression (7.1) depends only on the term  

( )
2

2 1
12

2 2
1 1 2

1lnln
ln

2 2

gxx
δµµσ λ δλ

σ σ σ

 + −   − +   − +   
    

 

            (8) 

as the exponential rest in (7.1) is always positive. 

Assuming 1
1 gδµ
λ δλ
+

Θ =
+

 and setting 2 2 2
2 1 Θσ σ= ∗ , ( )ln x y=  in (8), we get 
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the following quadratic equation of the variable y  

( )2 2 2 2

1

11 2 1 1 ln 0
2

y y σ
σ

 Θ − + − Θ + ≥ 
 

              (9) 

The condition in (9) holds true if 

( )22 2 2

1

11 1 4 1 2 ln 0
2

σ
σ

 − Θ − ∗ Θ − ∗ ≥ 
 

             (9.1) 

The above Formula allows us Values of Θ to estimate in order to get Values of 
the Entropy changes. 

Without l.o.g., the relation (9.1) leads also to the expression   

1 11 gδ µ
λ δλ

∗
+

>
+                         (10) 

With 2

1

1
σ
σ

=  the Condition (9.1) reads now 2Θ 1 0− > . 

Comment: The formula in (9.1) and (10) indicates the following relations: 
The relative entropy regarding dg and δλ could increase or decrease in de-

pendence on the values of δλ and ΔY. That means in words: 
An increase in employment, without a simultaneous increase in the economic 

performance (output) generates a positive value of entropy (entropy increases). 
An increase in employment by an increase in economic performance generates 
negative entropy (entropy decreases). The above result is of immense importance 
for economic models outside of the free market economic concept.  

C.0: The definition of an economic temperature-substitute related to the 
employment dynamics within the Langevin formalism. 

First, we start with the differential equation  

 ( ) ( )u F u L t
t

γ σ∂
= − ∗ + ∗

∂
                      (1) 

with the notations ( ) ( )F U F U
U
∂

= −
∂

 = drift force, generated by the potential  

V(u), L(t) = fluctuating stochastic force (perturbation, γ = friction coefficient, σ 
= magnitude of the perturbation (stochastic force). Interpreting the variable u in 
space and time dimension in an economic sense (e.g. as a social product), we  

could observe the formula ( ) ( )( )F u V u t
t
∂

=
∂

 as a force generating the growth  

of the social product. The stochastic perturbation L(t) can be also interpreted as 
a force having an impact on the dynamics in a stochastic sense. This could be 
among others a social crisis, a technological change in production, changes in 
consumption and investment behavior, or many other exogenous factors. An 
inverse temperature can be defined within this formalism as  

 2
1

KT
γβ
σ

= =                           (2) 

In the above relation, σ is a fluctuating parameter interpreted in Einstein’s 
fluctuation-dissipation theorem to have a Gauss character. Our aim is now to  
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interpret the term 2
1

KT
γβ
σ

= =  by terms of associated economic variables 

within a specific model. 
Although the fluctuating parameter “σ” can be concerned in a general sense 

belonging to Levy-statistics. Undertaking it, we create the following model. 
C.1: A model to define a temperature substitute in the dynamics of em-

ployment. 
Assumptions: We start by the assumption that λ% of the employable people 

provides the social product, while the rest is unemployed (but are willing to 
work). We note here that the social product is defined on the level of factor costs. 
Further, we assume that a homogeneous output of X units is produced by Kf factor 
costs per unit. That means the identity 

fF K X= ∗                           (1) 

holds true, whereby F = social product on factor costs level. A taxation of q% on 
the social product of (1) with [ ]0,1q∈  results in the makroeconomic equilibrium 
equation  

( )1F q X P+ = ∗                           (2) 

where P has to be identified as the market price per unit of the produced good. 
In this context, the q% taxation on the social product of factor costs has been 
used to finance unemployment. By these simple definitions, we can estimate the 
spending power of people who are unemployed respective to people who are 
evolving in the production process. This can happen by the following algebraic 
calculations:  

Let be ( )1N q F
L

Nλ λ
− ∗

=
∗

 the disposable personal income of employed people, 

where N is the amount of the employable people and 
( )1

N q FL
Nµ λ

∗
=

− ∗
 is the 

associated disposable personal income of unemployed people with 1µ λ= − . 

With the help of the above relations, we can estimate an indicator W µ
λ  of the 

relative “spending power” between these two classes. This can be formulated 
through the relations 

( ) ( )1 1

N

N

L qW
qL

µµ
λ

λ

λ
λ

∗
= =

− ∗ −
                    (3) 

or alternatively 
( )( )1 1 1q

W
q W

λ
µ µ

λ

λ
λ

− −
= =                (4) 

Example: By 10%q =  and 96%λ = , we obtain 2.666W µ
λ = . Relations (3) 

and (4) are not defined for 1λ =  and 0q =  respectively. The following 
Graph 4 indicates the spectrum of W µ

λ  values for λ and q restricted in the areas 
[ ]0.5,0.99λ∈ , and [ ]0.01,0.5q∈  respectively. It is important to note that W µ

λ  
increases almost with increasing λ, as opposed to the case of increasing q. How-
ever, we can estimate from Relation (3) by giving λ and q, at which W µ

λ  turns  
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Graph 4. Relative spending power for W µ
λ  versus, λ for { } { },0.01,0.5 , ,0.5,0.99q λ . 

 
out to be equal to 1 (the same spending power of the two classes). Graph 4 indi-
cates these relations. 

In a further step, we can estimate the weighted part of the two classes on the 
market volume. This can be carried out by the relations 

 
( ) ( )

1
1 1 1

q qG
q q

µ
λ

λ λ
λ λ

∗ −
= ∗ =

− ∗ − −
                   (5) 

or alternatively 

( )( )1 1 1 1
1

q qG
q q G

λ
µ µ

λ

λ λ
λ λ

− − −
∗ = =

−
=                  (6) 

Notice: The taxation of the social product on factor-cost level is responsible 
for transferring income from the employing people to that without employment. 
However, this transfer has an impact on the market prices in the case of macroe-
conomic equilibrium. We define an appropriate economic temperature substitute 
by the multiplication of two terms as  

1
1

qT
q

λ
µ

λ
λ
−

= ∗
−

                          (7) 

The first term (R.H.S.) represents the weighted part of the market volume for 
the two classes and has financial character. The second part is the absolute rela-
tion of the two classes being observed in the calculation. The temperature in this 
context has the form of social press. A low degree of taxation and low unem-
ployment decreases the temperature in this way. A high degree of taxation and 
low employment increases the temperature (1 0q− → , 0λ → ). This economic 
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temperature definition coincides with a “Mainstream image” within the free 
market economy concept, is generated by economic logic, and represents a pos-
sibility to construct a bridge between thermodynamics and economic relations 
in the specific dynamics that are in focus. Another alternative mathematical 
form to define the temperature with respect to the above-mentioned conditions 
reads as 

2 1 1 2e eqT λ λ
µ

− −=                            (8) 

,q λ  being defined like above. The following Graph 5 gives an insight into the 
T λ
µ  values for [ ]0.01,1q∈  and [ ]0.5,1λ∈ . 
Within Formula (7), we can estimate pairs of q, λ values, they could have a 

higher probability to occur within the free market model. This fact leads mea-
ningfully to the idea to define and detect the critical temperature with the help of 
the “Ising model”. Another possibility consists in including such a temperature 
concept within a model of topologically induced diffusion in terms of quantum 
mechanics. 

C.2: Applying the Ising Model to detect criticality in the employment 
dynamics. 

Comment to the numerical results: The analysis of the classical Ising-model 
by a specifically defined temperature concept, leads to a paramagnetic state (low 
disorder) for the unemployment level of more than 60%. Concerning real situa-
tions within the free market economic model, we find this value as a rear event. 
The information provided by the classical Ising-model cannot capture quite 
widely the micro-behavior of the system, which could help to explain more in-
formative relations on the macro level. The fractional point of view helps, in this  

 

 

Graph 5. The economic temperature T µ
λ  versus q, λ.  
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case, to get simply a better insight due to specific economic dynamics. In this 
context, the concepts of critical point and phase transitions have to be redefined. 
The next chapters deal with this matter with the help of the concept of the frac-
tional oscillator. The essential point for further investigations lies in the defini-
tion of a critical temperature in an economic sense. According to this, we recall  

the term 1
1

qT
q

λ
µ

λ
λ
−

= ∗
−

 developed in Chapter C.1 that represents a temper-  

ature substitute concept in an economic sense. The first term (R.H.S.) represents 
the weighted part of the market volume of the two classes of people (employed 
or unemployed) and has a financial character. The second part is the absolute 
relation of the two classes, which is observed. A low degree of taxation and low 
unemployment decreases the temperature in this way. A high degree of taxation 
and low employment increases the temperature (1 0q− → , 0λ → ). Now, we 
can imagine a constellation (values) of the first term (R.H.S.) represents the 
weighted part of the market volume of the two classes that have financial cha-
racter. The second part is the absolute relation of the two classes, which is ob-
served in the calculation, representing a kind of social press. A low degree of 
taxation and low unemployment decreases the temperature in this way. A high 
degree of taxation and low employment increases the temperature. Now, we 
could imagine a constellation of q and λ values at which both parties are satis-
fied.  

C.3: Applying the economic temperature concept to detect criticality.  
Now, we will try to obtain results considering economic aspects in the dy-

namics of employment (unemployment) from a fractional point of view. How-
ever, identifying the increasing unemployment degree by an increasing criticality 
without respecting any other criteria leads to nonmeaningful results. The rea-
sons for this we analyzed in the previous chapter. The essential point for further 
investigations lies in the definition of a critical temperature in an economic sense.  

According to this, we recall the term 1
1

qT
q

λ
µ

λ
λ
−

= ∗
−

 developed in Chapter  

C.2. Now, we could imagine a constellation of q and λ values at which both par-
ties are convenient. Such a constellation is the result of two antagonistic forces. 
Within the free market model, the enterprises need some degree of unemploy-
ment, while the last is a systemic self-organized factor and the unemployed 
people quest to keep their receipts near the level of the employed one. The in-
come for unemployed people, that is 80% of the income of employed people, 
could be for instance such a relation, while the associated *q  and *λ  can be 
easily estimated. This constellation is in accordance with the economic equili-
brium state of the model. We could thus imagine the case of λ around 0.94 and q 
around 0.1, while these values satisfy both antagonistic factors. Indeed the last 
case is arranged outside of the economic equilibrium state. Both cases could then 
represent a critical temperature at around which fluctuations occur. We denote 
at this point that the economic temperature concept can be observed as dynam-
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ics in its own right. We are interested to follow the behavior of the term  
c

c

T T
T
− , as this relation describes the system behavior near cT . Observing these  

dynamics from a fractional point of view, we can use a specific approach based 
on the fractional oscillator. Due to this aim, we start from the initial value prob-
lem ( ) ( )t D x t b x tβ

∗ = − , 0 2β< < , which can be obtained from a fractional 
Fokker-Planck-model with drift. The term t D

β
∗  represents the “Caputo” frac-

tional derivative operator of order β. The term ( )x t  can be interpreted as the 
mean (average) value of space fluctuations evolving in time and b is identical to 
the drift of the Fokker-Planck model that in our case could be the critical tempera-  

ture or the equilibrium state of the term 1
1

qT
q

λ
µ

λ
λ
−

= ∗
−

 by the associated *q   

and *λ  values. Thus the above approach represents a time-fractional diffusion 
process with drift, whose solution leads to the formula  

( ) 0x t x E btββ  = −                         (1) 

where Eβ  denotes the Mittag-Leffler function given by the formula  

[ ] ( )0 1

n

n

zE z
nβ β

∞

=
=

Γ +∑                       (2) 

In this context, we observe a fractional relaxation process leading to an equili-
brium state leaning on the classical Ising model. Although the similarities be-
tween the classical Ising model and the fractional approach are evident, it must 
be said that the fractional approach opens a new window that allows detecting 
more phase transitions, as the Mittag-Leffler function exhibits a specific mathe-
matical behavior (finite number of zeros). We can further analyze the impact of 
the fractality order on the dynamics and therefore on its criticality. The classical 
Ising model primarily intends to analyze magnetization states in the dynamics of 
purely physical phenomena. Magnetization has been interpreted as a kind of or-
der or disorder in the system. Now, how could we interpret the classical Ising 
model of a fractional point of view remaining within its mind? A possible way 
persists to apply the fractional Fokker-Planck ansatz with drift, which we men-
tioned above. A further possibility that respects the emergence of order and dis-
order in dynamics, consists in using the concept of the fractional oscillator as an 
initial value problem that is described in more detail in Chapter C.4. 

C.4: Criticality in the dynamics of employment/the renormalization group 
in a fractional image. Fractional Oscillators.  

In this chapter, we deal mostly with the entropy and entropy changes in frac-
tal structures being the essential criterion of criticality in dynamics in this article. 
Additionally, we are concerned about the problem of steady states as a criticality 
factor (metastability), which is of major interest for economic policies. Finally, 
we define and analyze the criticality in fractional oscillators often met in dy-
namics of economic relevance, starting from the theory of the renormalization 
group. Although this theory represents a part of critical phenomena from a 
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purely physical point of view, the fine focus on details, allows recognizing of si-
milarities and bridges to fractional oscillators, which in turn enables to detect of 
critical behavior for dynamics outside of the pure physical frame. 

C.4.1: The renormalization group from a fractional point of view.  
The renormalization group is an important part of the theory of critical phe-

nomena in a physical sense. In the following approach, we suppose that critical 
phenomena can be defined also for dynamics of economic relevance in the physi-
cal meaning. Although the central and essential criterion of criticality in this 
work has to be entropy, we will show that fractional modeling is able to represent 
critical phenomena and phase transitions on dynamics in accordance with the 
classical theory of the renormalization group in a fascinating and elegant way. In 
this context, it is helpful and meaningful to define temperature in the economic 
sense. The scope of the renormalization group is to derive analytical tools and 
solutions for the behavior of a system on the macro level, considering the beha-
vior on the micro level. In this context, the free energy of a spin system turns out 
to be of major importance and can be used to extrapolate micro-macro beha-
vioral relations. 

General Frame: The evolution of the free energy F in a system in which the 
temperature exhibits continuous changes and tends to approach a critical value, 
could be modeled by the fundamental equation:  

( ) ( ) ( )1F x g x F xϕ
µ

 = +                         (1) 

Sornette (2006) and Kadanoff (2000) handle with detail the above theme. The 
variable x represents the distance of the temperature T between the actual value 
and the critical value Tc. Thus, the function F(x) is a mesh of the free energy in 
dependence on the temperature distance to its critical value. The function g(x) 
represents the non-singular part of the function F(x). The constant μ is the res-
caling factor due to the differential distance ( )( )d dF x xϕ   . We can rewrite 
Relation (1) using the following formula: 

 ( ) ( ) ( ) ( )1
c c c cF T T g T T F T T T T

µ
− = − + ∂ − ∂ −          (2) 

Relation (2) means in words that the free energy of a system turns out to be a 
function of a non-singular term of itself and also of the differential changes of 
the independent variable in a linear manner. In a broader sense, this relation is 
but a linear form of a differential equation of first order. At this point, we will 
mention an important assumption. We proceed further under the assumption 
that the differential changes of the free energy due to the changes in the temper-
ature distance to critical value are of fractional nature. This assumption may be 
arbitrary and not proven, but many observations tend to confirm it. Before in-
terpreting Equation (2) in a fractional sense it is important to make the follow-
ing notices. Approaching the temperature distance value to the critical point the 
identity ( ) ( ) ( )0cF x F T T F= − =  holds true. This free energy position can be 
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observed as a strange attractor on a dynamics or a permanent changing initial 
value problem. Therefore, this position can signalize the existence of a phase 
transition in the dynamics. In a mathematical sense the position F(0) =“S” indi-
cates a critical situation of the behavior of the free energy at which the derivative 

( ) ( )c cF T T T T∂ − ∂ −  turns out to be infinite. Position “S” can be observed as 
a singular point in the dynamics. Further, we will notice that the solution of (2) 
can be represented by the use of iterative procedures. In this context, the solu-
tion can be expressed by the formula 

( ) ( )1

1 i
i
n

n if x g xϕ
µ=

 =  ∑  with ( ) ( )1
1

n nf g x f xϕ
µ+  = +   , 0,1,2,n =   

The subscripts “n” should be interpreted as ( ) ( )1n nx xϕ ϕ ϕ − =   . 
This procedure is a dynamical mapping of the free energy while changing the 

temperature distance.  

We can rewrite Equation (1) as: ( ) ( ) ( )1 F x g x F xϕ
µ

  = −   whereby  

( )
( ) c

c

F x F T T
F x

x T T
ϕ

ϕ
 ∂  ∂ −     = =  ∂ ∂ −

 

The above relation establishes a well-defined fractional “Eigen Value” problem  

of the form ( )F F q T
T

α

α λ∂
= − +

∂
 with the help of an adequate transformation  

1 αλ µ→  of fractional order α. The above fractional “Eigen Value” problem is 
first defined as a space fractional differential equation. In the following steps, we 
can observe the evolution of the above differential equation as a time-fractional 
problem, which can be solved within the Caputo formalism. However, the solu-
tions to this problem allow statements about the criticality of the dynamics stand-
ing in observation.  

C.4.2: About the solution of the fractional differential equation  

( )F F q T
T

α

α λ∂
= − +

∂
. 

The space fractional aspect of the fractional oscillator.  
The Book “Theory and Applications of Fractional Differential Equations” (see 

Kilbas et al., 2006) deliver a solution to the above equation. To solve the above 
fractional differential equation it is meaningful to apply the multi-dimensional 
FourierTransform method for nonhomogeneous differential equations by the 
Riesz-fractional derivatives. The solution reads  

 ( ) ( ) ( )dFF T G T t q t tα= −∫                      (1) 

that represents a convolution integral, where 

 ( )
( )

( )
2 2

2
2

0 1
22

d
2

1
n

n
F

nn

T
G T J Tα α ρ ρ ρ

ρ λ

−

 − 
 

∞
=

+π
∫              (2) 

with: n = space dimension and ( )J zν  = Integral involving the Bessel function 
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of the first kind (see details by Kilbas et al., 2006). 
C.5: Fractional oscillators and their affinity to the renormalization group 

ansatz. 
One of the main reasons to interpret the renormalization group in a time 

sense is the principle of subordination. Within this scenario the process  

( ) ( )( )X t X tτ=


 evolves with an operational time ( )tτ  which is a fluctuating 
function of the physical time t. This irregular temporal behavior is often met 
near phase transitions. This results in statements, that a process that approaches a 
critical time ct  can be formulated in terms of the renormalization ansatz with 
respect to time.  

Mathematically, this idea leads to the ansatz of the form  

( ) ( ) ( ) ( )1
c c c cF t t g t t F t t t t

λ
− = − + ∂ − ∂ −            (1)  

Under the assumption that the derivative ( ) ( )c cF t t t t∂ − ∂ −  behaves fractal, 
we can rewrite Formula (1) as  

( ) ( )c c
F F t t g t t

t

β

β λ λ∂
− + −=

∂
                 (2) 

At this stage, we recall the time fractional integral equation of the CTRW process 
with memory whereby the memory function has a power law time decay. 

This has been formulated as 

( ) ( ) ( ) ( )
,

, , d
p x t

p x t p x t w x z z
t

β

β −

+

∞

∞∂
= − + ∗ −

∂ ∫            (3) 

Between the renormalization group ansatz, the fractional oscillator of the form 

( ) ( ) ( ){ } ( ) ( )0D u t D u t u t u t q tβ β
∗ = − = = − +  and the fractional integral equation 

of the CTRW process with memory (3) there exists a significant relation of es-
sential character. At first, the relation in (3) can be interpreted in terms of the 
distance ( )ct t−  whereby this distance could be identified by the location X. In 
this way. the equation in (3) looks like  

( ) ( ) ( ) ( )
,

, , dc
c c c

p t t t
p t t t p t t t w t t

t

β

β τ τ
+∞

−∞

∂ −
= − − + − ∗ − −

∂ ∫     (4) 

In a further step, we recognize that the second term (R.H.S.) of the above rela-
tion is a convolution integral which corresponds to the q(t) term of the fraction-
al oscillator being the impulse response solution of the oscillator or the system’s 
answer. All the above relations could be expressed by the following words: A 
time fractional oscillator approaches a critical point of the dynamics in time 
steps of fractional character (subordination of the physical time). This behavior 
corresponds to the Renormalization Group ansatz if the location distance  
( )CX X−  could be substituted by a time distance ct t− , ct , which is now the 
critical time point of the ansatz (isofractality). The convolution term of the frac-
tional integral CTRW equation, which constitutes the memory of the dynamics, 
corresponds to the impulse response solution of the fractional oscillator. These 
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relations correspond meaningfully to the classical ansatz of the renormalization 
group. 

Result: The solution of the time-fractional oscillator equation represented by 
the Mittag-Leffler equation can be used as an examination tool to detect critical-
ity in associated dynamics. Due to this aim, we point to the article “Fractional 
Oscillations and Mittag-Leffler Functions”, by Gorenflo and Mainardi (1996), 
which extrapolates analytically the solutions of the fractional oscillator Ansatz. 

D: Steady states. 
D.0: Steady states in the dynamics of employment.  
In this chapter, we extrapolate steady states on the dynamics of employment 

using various physical and statistical modeling. We begin first with the fractional 
Fokker-Planck models assuming that an economic force (impulse) could induce 
an increase or decrease in employment.  

D.1: Steady states on the employment dynamics using a fractional Fokk-
er-Planck ansatz for Levy Flights (space-fractionality). 

D.1.1: The case of symmetric Levy perturbation. 
In this chapter, we interpret the Article” Stationary States in Single-Well Po-

tentials under Symmetric Levy Noises”, expanding it with specific algebraic ma-
nipulations, and the Article “Relaxation in Stationary States for Anomalous Dif-
fusion” (see Dybiec et al., 2010, 2011). 

We start assuming that a deterministic force has an impact on the employ-
ment level whereby a stochastic perturbation can further influence the dynamics. 
The associated Langevin-Ansatz reads as  

( ) ( )X f x t
t

ξ∂
= +

∂
 with ( )f x  = deterministic part, ( )tξ  = stochastic part (1) 

The term ( )f x  could be further interpreted as a force resulting from an existing  

potential ( )V x . In this case, holds true the equation ( ) ( )
d

d
V X

f x
X

= − . That 

means that Equation (1) can be reformulated as  

( ) ( )X V x t
t

∂
= − +

∂
ξ                           (2) 

Assuming a subharmonic potential of the form ( ) cV x x=  with ( )0,2c∈ , we 
obtain by integration of Formula (2) the following result  

( ) ( ) ( )( ) ( )
0 0

0 d d
t t

x t x V x τ τ ξ τ τ′= − +∫ ∫                 (3) 

or the equivalent  

( ) ( ) ( )( ) ( )
0

0 d
t

x t x V x L tατ τ′= − +∫                   (4) 

The integral ( ) ( )
0

d
t

L tαξ τ τ =∫  might define a Levy-stable process evolving in 
time. 

The relations in (3) and (4) constitute the following fractional Fokker-Planck 
ansatz 
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( ) ( ) ( )
, d , ,

d
P x t

V x t P x t
t x x

α
α

ασ
 ∂ ∂′= + 

∂ ∂  
              (5) 

where α is the order of the associated Levy-stable process. 

The term 
x

α

α

∂

∂
 denotes the fractional Riesz-Feller derivative operator of or-

der α. 
Transferring the above operator onto the Fourier domain, we obtain the for-

mula  

( ) ( )ˆF
f x k f k

x

α
α

α

 ∂
⇒ − 

∂  
                    (6) 

It is known that the solutions of the fractional Fokker-Planck ansatz can be 
extrapolated only in a few rare cases. Thus, it is needful to apply approaches to 
get solutions for the FFP-ansatz.  

Assuming the existence of steady states, we start with the conditions that 
should hold true 

( ) ( ) ( )
, d , , 0

d
P x t

V x t P x t
t x x

α
α

ασ
 ∂ ∂′= + = 

∂ ∂  
            (7) 

or ( ) ( )d 0
d

V x P x
x x

α
α

ασ
 ∂′ + = 

∂  
                (8) 

Assuming further that ( )P x  should be of a power law form, we set 

 ( )P x x ω−≈  for x →∞  with 0ω >                (9) 

Substituting (9) and ( ) 1cV x C x −′ =  in (8), we obtain the relation  

( ) ( )1 21c cc x P x c c x x
x x

α
ωω α

ασ− −− −∂ ∂ ∗ = − ∗ = − ∗ ∂ ∂
        (10) 

We suppose further that the acting of the Riesz-Feller derivative operator on the 
power law function leads again to a power-law function. Due to that, we can 
state  

( ) ( )1d
d

P x x
x

α
α

α
− +=                      (11) 

Setting ( )1 1c c − ≈ , we extrapolate from (10) the relation  
( )12cx x αω − +− − =  or ( )2 1c α ω− + + = .               (12) 

With the help of the above relation, it is not difficult to estimate the steady-state 
distribution 

( ) ( )1c
stP x x xω α− − + −= =                       (13) 

Relation (13) means: If empirical data are available that allows us to estimate α 
and assuming that the exponent of the harmonic potential is known, then we 
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can define a steady-state probability distribution. 
Normalizing ( )stP x  by the condition ( )d 1stP x x

−

+∞

∞
=∫ , we obtain at first that 

the relation 1ω >  must hold true. That means that 2c α> −  must hold true. 
D.1.2: The case of an asymmetric Levy perturbation. 
The Article “Stationary States in Langevin Dynamic under Asymmetric Levy 

noises” (see Dybiec et al., 2007), deliver a Fokker-Planck ansatz for Levy-Flights 
using an asymmetric perturbation Term. In the following text, we interpret this 
article expanding it with algebraic manipulations by the author. 

The extrapolation of steady states in the case of an asymmetric Levy perturba-
tion has some more difficulties than the symmetric one. The characteristic func-
tion ( )ˆ kφ  of a stable Levy distribution of order α can be formulated on the Fouri-
er domain as  

( ) ( )ˆ exp 1 sign tan
2

k ik k i kαα αφ µ σ β
  π  = − −   

   
       (1) 

with: α = Stability-Exponent, ( ) ( )0,1 1,2α ∈  ;  
σ = Scale-Parameter;  
μ = Location-Parameter;  
β = Skewness-Parameter, [ ]1,1β ∈ − . 
Relation (1) allows us to define within the Fokker-Planck formalism the fol-

lowing ansatz for α # 1  

( ) ( ) ( )

( ) ( )
1

1

,
, ,

, tan ,
2

P x t
V x t P x t

t x

P x t P x t
xx x

α α
α

α α

µ

ασ β
−

−

∂ ∂  ′= − −  ∂ ∂
 ∂ π ∂ ∂ + +   ∂∂   ∂  

     (2) 

We can presume without problems 0µ =  and 1σ = . 
Similar to the case 14.1.1 (symmetric perturbation), we suppose again the ex-

istence of a subharmonic potential ( ) cV x x=  with ( )0,2c∈  und the exis-
tence of the steady state probability distribution of the form ( )stP x x ω−= , 0ω > . 
The condition for steady states leads to the equation 

 ( ) ( ) ( ) ( )
1

10 , , , tan ,
2

V x t P x t P x t P x t
x xx x

α α
α

α α

ασ
−

−

 ∂ ∂ π ∂ ∂  ′= − − + +    ∂ ∂∂   ∂  
 (3)  

Assuming that ( ) ( )1
stP x x

x

α
α

α
− +∂

≅
∂

, we obtain 
1

1 x
x

α
α

α

−
−

−

∂
=

∂
. Substituting these 

relations into (3), we obtain  

( ) ( ) ( )1 11 tan 0
2

ccx x x x
x

ω α ααβ α− + − +−∂ π − − + − = ∂  
          (4) 

or ( ) ( )121 1 tan 0
2

cc c x x αω ααβ− +− −  π  ∗ − − =    
+           (5) 

Substituting ( )1c c Y∗ − =  and 1 tan
2

Zααβ π − = 
 

 in (5), we obtain 
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 ( )12 0c ZY x x αω − +− − +∗ ∗ =                     (6) 

Assuming 0Z < , we can formulate Relation (6) as  

( ) ( )( )12log logcY x Z x αω − +− −∗ = − ∗                  (7) 

or ( ) ( ) ( ) ( ) ( ) ( )log 2 log log 1 logY c x Z Xω α+ − − = − − +         (8) 

Assuming that ( )1 1c c∗ − ≈  and tan 1
2
ααβ π − = 

 
, we obtain from (5) the 

relation 

 ( )2 1c ω α− − = − +                       (9) 

(end of the interpretation of the Article “Stationary States in Langevin Dynamic 
under Asymmetric Levy Noises” by Dybiec et al., 2007).  

Extension: The identities tan 1
2
ααβ π − = 

 
 and ( )1 2 1ω α− − = − +  consti-  

tute an equation system for the variables ω and β if α is known. The solution al-
lows to estimate ω for some specific β. This problem could be formulated in a 
more general form. By ( )1 #1c c∗ − , we have to solve the equation system  

( )1 tan 1
2

c c ααβ π ∗ − = − 
 

 and ( )2 1c ω α− − = − +         (10) 

The equation ( )1 tan 1
2

c c ααβ π ∗ − = − 
 

 is a quadratic equation of the varia-

ble c with the solution  

1 4 1 tan
21

2 2
c

ααβ π  − −     = − ±                (11a) 

Real solutions exist if  

1 4 1 tan 0
2
ααβ π  − − ≥  

  
                   (11b) 

Substituting (11a) into ( )2 1c ω α− − = − + , we extrapolate the relation  

1 4 1 tan
21.5

2

ααβ
ω α

 π  − −     = − ±               (12) 

This above relation results in 

 ( )
1 4 1 tan

21.5
2stP x x

ααβ
α

  π   − −   
   − − ± 

 
  

=                   (13) 

whereby β must fulfill the inequation 1 4 1 tan 0
2
ααβ π  − − ≥  

  
. 

D.2: Steady states on the employment dynamics using the Fokker-Planck 
ansatz in the case of a space-time fractional subdiffusive model. 

Risken (1991) handles in the Article “The Fokker-Planck Equation” with de-
tails the Theory of the Fokker-Planck Ansatz. Considering both the space and 
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time fractionality the above Ansatz is formulated as 

( ) ( ) ( )1, ,t

V x
P x t D k P x t

t x n x

µ
α

α µ
α

−
 ′∂ ∂ ∂ = − +
 ∂ ∂ ∂
 

 

with  
α = time fractal exponent;  
μ = space fractal exponent; 

( )tD x tα−  = Riemann-Liouville fractional integral of order α. 
We start from the definition for the Riemann-Liouville fractional derivative 

( ) ( )( ) ( ), ,0 ,t FPD u x t u x L u x tα − =                 (1) 

with  

( ) ( )
,FP

V x
L u x t k

x n x

µ

α µ
α

∂ ∂
= − +

∂ ∂
 

Integrating (1) by the Rieman-Liouville fractional integral tD α− , we obtain  

( ) ( )( ) ( ), ,0 ,t t t FPD D u x t u x D L u x tα α α− −
∗ − =              (2) 

or ( ) ( ) ( ), ,0 ,t FPu x t u x D L u x tα−− =                 (3) 

Applying the conventional (integer) derivative on (3), we obtain  

( ) ( )( ) ( )1, ,0 ,t FPu x t u x D L u x t
t

α−∂
− =

∂
               (4) 

with 1
t tD D

t
α α− −∂
=
∂

 and tD Jα α− =  = Riemann-Liouville integral operator. 

In order to extrapolate steady states, the following condition must hold true 

( ) ( )1 , 0t

V x
D k P x t

x n x

µ
α

α µ
α

−  ∂ ∂
− + = ∂ ∂ 

               (5) 

The above relation means  

 ( ) ( ),t

V x
D k P x t K

x n x

µ
α

α µ
α

−  ∂ ∂
− + = ∂ ∂ 

 (Constant # 0)        (6) 

as  

( ) ( )1 , 0t

V x
D k P x t

x n x

µ
α

α µ
α

−  ∂ ∂
− + = ∂ ∂ 

                (7) 

The above form (7) can be observed as a space fractional diffusion equation 
with a drift evolving in time. We can formulate Relation (7) with the help of the 
Caputo fractional derivative as  

( ) ( )( ) ( ), ,0 , 0t FPD u x t u x L u x tα
∗ − = =                 (8) 

According to the above form the solutions for stationarity can be extracted 
with the help of the Mittag-Leffler function. It is known that the solution of the  

space-time fractional diffusion equation 
( ) ( ), ,u x t u x t
t x

α µ

α µ

∂ ∂
=

∂ ∂
 is given on the  
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Fourier domain by the formula ( ) ,
ˆ ,U k t E k tµ α

µ α  =   . Including the drift term, 
we can represent the solution in an explicit form.  

The case of ( ) ( ) constant # 0,t

V x
D k P x t K

x n x

µ
α

α µ
α

−  ∂ ∂
− + = ∂ ∂

=


, is more com-

plicated. 
We will deal with the simple case of symmetric perturbation assuming the ex-

istence of a harmonic potential of the form CX , varying C in the range 
( )0,2C∈ . 

We start assuming the existence of a steady states probability distribution of 
the form ( )stP t t ω−=  like in the above case (14.1.1) obtaining again the relation 

( ) ( )1c
stP t t tω α− − + −= =                       (9) 

Thus, substituting (8) in the kernel ( ) ( ),
V x

k P x t
x n x

µ

α µ
α

 ∂ ∂
− + ∂ ∂ 

, the following 

relation must hold true 

( ) ( ) ( ) ( ) ( )1 1 1, 1 C c cV x
k P x t C C X x x

x n x

µ
α α

α µ
α

− − + − − + − ∂ ∂
− + → ∗ − ∗ ∗ + ∂ ∂ 

 (10)  

The above relation results in  

( ) ( ) ( ){ }1 1 11 C c c
tD C C t t t Kα αα − − + − − + −− ∗ − ∗ + =            (11)  

The Riemann-Liouville fractional integral tJ Dα α−=  applied on a function ( )f t  
is defined as  

( )( ) ( ) ( )( ) 1

0

1 d
x

J f t f t t αα ξ ξ
α

−= ∗ −
Γ ∫ . 

Hence, respecting further (11), we extrapolate 

( ) ( ) ( ) ( )
( ) ( )1 11

0 0

1 11 d dct t
C C t t t t Kα ααα ξ ξ ξ ξ

α α
− −− + −−∗ ∗ − ∗ − + − =

Γ Γ∫ ∫  (12) 

getting a condition between α and C which allows to define the steady state 
probability distribution for the fractional subdiffusive Fokker-Planck ansatz. We 
gain from the integrals of (12) the solution 

 ( )
11 11

ctS C C
α α

− +
= ∗ − ∗ +                    (13) 

Thus the relation in (12) holds true only for 1C =  leading to 1S α= .  
Substituting 1C =  into ( ) ( )1c

stP t t tω α− − + −= = , we extrapolate for the statio-
nary distribution the formula ( )stP t t α−=  with 0t >  (see Thesis of Dybiec et 
al., 2011). 

D.3: Steady states (stationarity) on the fractional master equation (see 
thesis of Brockmann, 2003). 

Pure stochastic performance for various dynamics can be derived within the 
theory of CTRW. In this context, using a memory function associated to the 
survival and waiting time distribution, we can formulate the integral equation of 
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the CTRW in form of a general master equation reading as 

( ) ( ) ( ) ( ) ( )
0

, d , , d
t

t p x p x t w x y p y t yν τ τ τ
τ

∞

−∞

∂
− = − + −

∂∫ ∫        (1) 

If ( ) ( )t tν δ=  with ( )tν  = memory function, then the associated waiting 
time distribution ( )y t  has exponential character (Markov-process). 

If ( ) ( )t tν δ λ=  with λ = constant, we obtain ( ) e ty t λλ −=  representing the 
general compound Poisson process. If we assume ( )tν  # constant (on the Lap-
lace domain), we deal with general non-markovian processes. A special case of 
non-markovian processes is that at which the waiting time distribution takes the  

specific form ( ) ( )1
tt

β

ν
β

−

=
Γ −

 having in Laplace domain the shape ( ) 1
1s

s βν −= . 

In this case, Equation (1) turns out to be 

( ) ( ) ( ) ( )
,

, , d
u x t

p x t w x y p y t y
t

β

β −∞

∞∂
= − + −

∂ ∫             (2) 

Starting from Relation (1), steady states could be achieved by the condition 

( ) ( ) ( ), , dp x t w x y p y t y
∞

∞

−
= −∫                    (3) 

In case of D
t

β
β

β ∗
∂

=
∂

, Dβ
∗  being the Caputo fractional derivative operator, we 

obtain the relation for steady states as following 

 ( ) ( ) ( )0 0, 0 , ,D p x t D p x t D f x tβ β β
∗ = = −                (4) 

with Dβ  = Riemann-Liouville derivative operator of order β and ( )0 0,f x t  = 
initial condition.  

D.3.1: A short referring to the dynamics of earnings/econotaxis and asso-
ciated steady states. 

Researching the activities of an enterprise one would recognize that the results 
of the activities of various parts of the enterprise especially on the operational 
level are fractal. This is however the result due to the main goal of every enter-
prise within the free market economic model, namely to maximize the earnings. 
This goal forces the enterprise to a flexible, fluctuating, and often unpredictable 
behavior on the operative level. Further, it should be said, that investments often 
are realized in order to reduce the costs of the production processes or of other 
economic activity fields. These strong goal-oriented action operations have a 
strong impact on the employment level. Economic acting subjected to a goal like 
“earning maximization” can be observed in biological processes, especially in the 
“chemotaxis-behavior”. The above-mentioned behavior can be met by the mo-
tion of microorganisms on the meso- and macro-level to an attractant and re-
moval from it. Biological organisms move in direction of a food source as long as 
it remains attractive. On the way to the attractant and while their sojourn at it 
(food source) they leave signals (information) about the concentration of food 
called CAS. These signals are received from other organisms moving to or off 
the source. This information-process results in a higher or lower concentration 
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of microorganisms at the food source. The most known model describing che-
motactic processes is that of Segel and Keller (see Roberts et al., 1970).  

The model consists of two coupled parabolic differential equations one of the 
CAS concentration and the other of the concentration of organisms at the source. 
This biological model is of high adequacy for the free-market economic model 
with no strong restrictive frame conditions. The concentration of biological spe-
cies can be identified by the concentration of enterprises in a specific economic 
area (for example, vehicle production, chemicals, or various services). The CAS 
concentration could be identified by the profitability of the capital that has been 
invested (capital rentability as % of the investment). In this context, we call such 
an economic process as “econotaxis-dynamics”. An econotaxis model could be 
formulated in terms of an appropriate CTRW process or as a stochastic master 
equation. Due to this aim, we will quantify such a model using mathematical re-
lations. According to this goal, we formulate the following ansatz (model) 

( ) ( ) ( )2

2

, ,
,

I x t C x tI I x t
t x xx

 ∂ ∂∂ ∂
= −Φ ∗ ∂ ∂ ∂∂  

                 (1) 

with the variables:  
( ),I x t  = Amount (finance-value) x of investment that are realized at instant 

time t; 
( ),C x t  = capital rentability concentration; 

Φ = econotaxical coefficient (an analogon to diffusion coefficient); 
Equation (1) can be interpreted in the fractional image. 
Version 1: Time-fractional interpretation 

( ) ( ) ( ) ( )
2

2

, ,
, ,t

I x t C x t
D I x t D I x t

x xx
β
∗

 ∂ ∂∂
= −Φ ∗ ∂ ∂∂  

            (2) 

with D = diffusion coefficient and tDβ
∗  = time fractional derivative operator in  

the sense of M. Caputo. The Differential 
x
∂
∂

 represents here the common (in-

teger) differential gradient. 
Version 2: Time-space fractional interpretation 
In this case, one obtains the diff. equation 

( ) ( ) ( ) ( )
, ,

, ,t

I x t C x t
D I x t D I x t

x xx

α
β

α∗

 ∂ ∂∂
= −Φ ∗ ∂ ∂∂  

            (3) 

with ,α β  the corresponding space-and time-fractional order respectively. 
The differential Equation (3) can be interpreted as a space-time diffusion an-

satz with drift. 
Steady states on the econotaxis model 
We start from the following formula for version 1 

( ) ( ) ( ) ( )
2

2

, ,
, ,t

I x t C x t
D I x t D I x t

x xx
β
∗

 ∂ ∂∂
= −Φ ∗ ∂ ∂∂  

            (4) 

For the Caputo fractional differential operator holds true the relation 
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( ) ( ) ( ) ( )0 0, , , ,t t FPD I x t I x t D I x t L I x tβ β
∗ − = =             (5) 

whereby tDβ  = Riemann-Liouville fractional derivative operator and  

tDβ
∗  = Caputo fractional derivative operator 

( ) ( ) ( ) ( )
2

2

, ,
, ,FP

I x t C x t
L I x t D I x t

x xx
 ∂ ∂∂

= −Φ ∗ ∂ ∂∂  
         (6) 

Integratig both sides of (6) by tJ Dβ β−= , we obtain  

( ) ( ) ( ) ( ) ( )
2

0 2

, ,
, ,t

I x t C x t
I x t I x D K I x t

x xx
β−   ∂ ∂∂

− = −Φ ∗  ∂ ∂∂   
    (7) 

as t tD D Iβ β− ∗ =  = identity operator. 
From (7), we obtain  

( ) ( )( ) ( ) ( ) ( )
2

1
0 2

, ,
, ,t

I x t C x t
I x t I x D K I x t

t x xx
β−   ∂ ∂∂ ∂

− = −Φ ∗  ∂ ∂ ∂∂   
  (8) 

Relation (8) could be reformulated as  

( ) ( ) ( )
2 2

2 2

, ,
,

I x t C x tI J K I x t
t t x x

β  ∂ ∂∂ ∂
= −Φ ∗ 

∂ ∂ ∂ ∂  
           (9) 

and interpreted as a Fokker-Planck Ansatz with ( ),C x t
x

∂
∂

 as an economic im-

pulse. 
(Capital-earnings) 
In the case that the function ( ),C x t  can be formulated by a smooth alge-

braic form, then one could define steady states using the condition 

( ) ( ) ( )
2 2

2 2

, ,
, 0

I x t C x t
J K I x t

t x x
β  ∂ ∂∂

−Φ ∗ = 
∂ ∂ ∂  

          (10) 

E.1: The “Kullback-Leibler” distance and its meaning for the Entro-
py-change by the LogNorm distribution (a mathematical Insertion). 

(See the Article “On Information and Suffiency” by Kullback & Leibler, 1951) 
Notice: We handle the Criticism of the personal income dynamics with the 

help of changes in the LogNorm Distribution. This is presupposed by the fact 
that more than 95% personal income balg is characterized through the LogNorm 
Distribution. 

The Kullback-Leibler distance ( )||D p q  between two distributions ,p q  is a 
measure for the inefficiency of the assumption that a distribution could degene-
rate in a q-form although its real form is of p-form. 

This can be represented by the formula  

 ( ) ( ) ( )
( )

|| lnX

p x
D p q p x

q x
 

= ∗   
 

∑                  (1) 

The conditional entropy S for two given Probability Density Functions (mu-
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tual-Information) can be formulated by the following relations: 

[ ] ( ) ( )
0

| , ln | d dS X Y P X Y P X Y x y
∞

 = − ∗  ∫             (2) 

with ( ),P X Y  = marginal (conditional) probability between ( ) ( ),P X P Y . 
In the concrete case of the transition of a LogNorm distribution with parame-

ter 0µ  in a LogNorm distribution by a new parameter newµ , the above formu-
la can be simplified as follows  

[ ] ( ) ( )( ) ( )( )0 0
| ln dnew newS X Y S X P X P X xµ µ µ

∞   = + ∗   ∫  

[ ] [ ] [ ] [ ]0| |neu neuS X S X S S Xµ µ µ→ − ≡ −               (3) 

The variable [ ]|S X Y  can be interpreted as the information [ ]| newI X µ  
and the term ( )( ) ( )( )0

ln dnew newP X P X xµ µ
∞  ∗  ∫  can be characterized as the 

factor, which contributes to increasing or decreasing of the information gain. 
The variation of specific parameters at the above relation allows to identify the 

entropy-changes in the dynamics. 
The entropy may increase if the term ( )( ) ( )( )0

ln dneu neuP X P X xµ µ
∞  ∗  ∫  

turns out to be positive. Primarily the relation holds true  

( )( ) ( )( )
( )

( )

2 2

2 2

0

ln 2

0

ln 2

ln d

1 1 exp
2

1 1ln exp d
2

new new

new new

neu neu

x

new

x

new

P X P X x

x

x
x

A

µ σ

µ σ

µ µ

σ

σ

∞

∞ −

−

 ∗  

= ∗ ∗
π

 
∗ ∗ ∗ 

π 
=

∗

∗

∫

∫
            (4) 

After algebraic operations, we obtain  

( )

( ) ( ) ( )( )

2 2ln 2

0

2 2

1 1 exp
2

ln ln 2 ln 2 d

new newx

new

new new new

A
x

x x x

µ σ

σ

σ µ σ

−∞
= ∗ ∗

π

∗ − − π

∗

+ −

∫
         (5) 

Relation (5) turns out to be positive by the condition  

( ) ( ) ( )2 2ln ln 2 ln 2 0neu neu neux xσ µ σ− − π + − > .           (6) 

with ( ) ( )( )0 1 1neu q qµ µ λ λ− + −=  and ( ) ( )( ) 01 1neu q qσ λ λ σ− + − ∗= .  
Therefore, we obtain  

( ) ( )2 2
1 2 0ln ln ln 2lnneu neu neux K x x Kσ µ µ− − − + + ∗ =−       (7) 

with ( )1 ln 2K = π , 2
2 Const nt2 aneuK σ= = . 

Relation (7) is a quadratic equation in the factor ln x  of the form 

( )2ln lnX xα β γ+ +  

with 21 Kα = , ( ) 21 2 neu Kβ µ= − +  and ( )
2

1
2

ln neu
neu K

K
µ

γ σ= − + − . 

Analyzing the solutions of the above quadratic equation, we can extrapolate 
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relations between the parameters α, β and γ that are needed to interpret the con-
dition in (6). 

E.2: The entropy production on the LogNorm distribution applying the 
Kullback-Leibler distance by the help of an specific macroeconomic Ansatz 

In this chapter, we focus on the statistical transformation, which appears, in 
the case that a part of the national product of factor costs will be used to finance 
(support) unemployment in form of a social income. Assuming that the distri-
bution of the personal income at equilibrium (before starting the social income 
action) is of LogNorm form, we will investigate the entropy difference, which 
is caused by the social income intervention approaching that by the Kull-
back-Leibler distance. To do it, we recall the definitions and results of Chapter 
D.1 where we define specific macroeconomic Indices and an economic temper-
ature. 

If we utilize a part q (%) of the social product to factor costs through taxation 
in order to finance people being unemployed the following relations hold true: 

A λ % part of the employable population [ ]0,1λ∈ , yields a social product to 
factor costs of X unities the last having a finance value F. The q (%) part of it is 
utilized to finance the (1 − λ) % population being unemployed. In this case, the 
following new equilibrium situation holds true  

( )1F q X P+ = ∗                           (1) 

while P is the final market price. Employed people receive a disposable income 
(after taxation) 

 ( )1N q F
L

Nλ λ
− ∗
∗

=                           (2) 

and unemployed people receive respectively an income amount of  

( )1
N q FL

Nµ λ
∗

=
− ∗

                          (3) 

with 1µ λ= −  and N = whole employable population. 
By these assumptions, we gain the following indexes  

1) 
( )( )1 1

N

N

L qW
qL

µµ
λ

λ

λ
λ

∗
= =

− −
 = absolute relationship between social- and reg-

ular-income (spending power)                                    (4) 

2) 1
1

qG W
q

µ µ
λ λ

λ
λ
−

= ∗ =
−

 = weighted potency of regular and social income 

on the market level (market potency)                                 (5) 
or alternatively 

3) 
( )( )1 1 1 1

1
q qG
q q G

λ
µ µ

λ

λ λ
λ λ

− − −
∗ = =

−
=                            (6) 

Notice: The taxation of the social product on the factor-costs level is responsi-
ble for transferring income from the employing people to that without employ-
ment. However, this transfer has an impact on the market prices. Now, we as-
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sume that the distribution, before the social income intervention acts, remains in 
LogNorm form. After the intervention, we have two classes of income. The em-
ployed class remains in LogNorm form while a new class arises, which has a 
uniform distribution. At this point, two scenarios for social income are imagina-
ble: 

a) The income is oriented to the earlier corresponded employment income; 
b) The social income has a relatively fixed character and is oriented only to 

the amount of the taxation of the social product, which is splatted uniformly by 
the ( )1 Nλ−  unemployed population.  

We assume further that the new distribution that indicates the income of the 
employed class after taxation, remains by the LogNorm structure, while this of 
the unemployed class is approximately uniformly distributed. It must be said, at 
this point, that the statistical parameters of the new LogNorm distribution re-
ceive new values. The realization of the unconditional basic income (being ac-
tually in discussion) does not probably lead to new investment and thus can be 
characterized as a hidden social income forcing only consumption. The ma-
thematical treatment to capture these relations could be gained by following 
thoughts: 

If ( )2,X N µ σ→  represents a normal distribution then the stochastic varia-
ble Y with Y aX b= +  results in the distribution ( )2 2,Y N a b aµ σ→ + . 

Using the relations ( ) ( )01
1new

Zq q
N

µ λ µ
λ

= − + ∗
− ∗

 and  

( )( )22 2
01new qσ λ σ= − , we gain a new LogNorm distribution of the form 

( ) ( )2 2ln 21 1, , exp
2

new newy
new new

new

f y
y

µ σσ µ
σ

−= ∗ ∗
∗π

 →  

( ) ( ) ( ) ( )( )( )2 2
0

0
0

1 1 exp ln 1 2 1
112

Zy q q q
Nq Y

λ µ σ λ
λλ σ

   
 ∗ ∗ − − + ∗ −     − ∗−π    

(7) 

with Z = social product to factor costs, λ, q macroeconomic variables defined 
above and N = whole population of the employable people. 

E.2.1: Extrapolating the associated Entropy by the Kullback-Leibler Dis-
tance. 

The Kullback-Leibler Distance is formulated by  

( ) ( ) ( )
( )

|| lnX

p x
D p q p x

q x
 

= ∗   
 

∑                   (1) 

The conditional entropy [ ]|S X Y  (mutual information) of two given prob-
abilities ( )P X  and ( )P Y  can be expressed by the following form  

[ ] ( ) ( )
0

| , ln | d dS X Y P X Y P X Y x y
∞

 = − ∗  ∫              (2) 

with ( )|P X Y  = marginal (conditional) probability between ( )P X  and ( )P Y . 
As Formula (2) corresponds to the definition in (1), we can estimate the en-
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tropy change (Kullback-Leibler distance) for a LogNorm distribution transferred 
to a new LogNorm distribution with the help of Relation (2). 

Relation (2) can be reformulated as  

[ ] ( ) ( )( ) ( )( )0 0 0
| , , ln , dnew new new newS X Y S X P X P X xµ σ µ σ µ σ

∞
  = + ∗   ∫  (3)  

as 

 [ ] [ ] [ ] [ ]0 0| , , | ,neu new new newS X S X S S Xµ σ µ σ µ σ− ≡ −             (4) 

From Relation (3), we recognize that entropy could increase if the term 
( )( ) ( )( )0

, ln , dnew new new newP X P X xµ σ µ σ
∞  ∗  ∫  increases. We obtain 

( )( ) ( )( )
( )

( )

2 2

2 2

0

ln 2

0

ln 2

, ln , d

1 1 exp
2

1 1ln exp d
2

new new

new new

new new new new

x

new

x

new

P X P X x

x

x
x

A

µ σ

µ σ

µ σ µ σ

σ

σ

∞

∞ −

−

 ∗  

= ∗ ∗
π

 
∗ ∗ ∗ 

π 
=

∗

∗

∫

∫
            (5) 

We can (5) rewrite as  

( )

( ) ( ) ( )( )

2 2ln 2

0

2 2

1 1 exp
2

ln ln 2 ln 2 d

new newx

new

new new new

A
x

x x x

µ σ

σ

σ µ σ

−∞
= ∗ ∗

π

∗ − − π

∗

+ −

∫
          (6) 

The above relation turns out to be positive if  

( ) ( ) ( )2 2ln ln 2 ln 02new new newx xσ µ σ− − π + >−             (7) 

The expression in (7) can be reformulated as 

( ) ( )2 2
1 2ln ln ln 2lnnew new newx K x x Kσ µ µ− − − + + − ∗         (8) 

Substituting the terms ( ) ( )01
1new

Zq q
N

µ λ µ
λ

= − + ∗
− ∗

 and  

( )( )22 2
01new qσ λ σ= −  in (8), we obtain a quadratic equation in ln x  with  

( )1 ln 2K = π , 2
2 2 newK σ=  = known of the form ( )2ln lna X b x c+ +  with  

21a K= , ( ) 21 2 newb Kµ= − +  and ( )
2

1
2

ln new
newc K

K
µ

σ= − + − . 

The solution of the quadratic form leads to conditions between , ,a b c  should 
hold true in order to obtain an increased value of entropy. Entropy changes of 
the LogNorm distribution can be generally extrapolated using the S-theorem and 
varying the averaged value 0µ  and the standard deviation σ. For instance, 
smaller value of σ corresponds to a higher concentration of probability mass at 
the averaged value. This could be in a social sense of essential importance. This can 
be realized using the formula ( )( ) ( )( )0

, ln , dnew new new newP X P X xµ σ µ σ
∞  ∗  ∫  and 

substituting ,new newµ σ  by 0newµ µ δµ=   and 0newσ σ δσ=  . 
Within our investigations referring to personal income, we have got the fol-

lowing results:  
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R1) A transition of the LogNorm distribution to a power-law one can be cha-
racterized as critical; 

R2) Investigating the LogNorm distribution, we can detect regions with power 
law characteristics signalizing critical behavior (see Newmann, 2005); 

R3) If we could imagine a future-personal income constellation at which a sig-
nificantly high degree of unemployment is supported by social wages, this con-
stellation can be characterized as entropic compared with situations with a rela-
tively low unemployment degree (<3%); 

R4) We have estimated the corresponding entropy development in the case of 
financing unemployment by taxation with the help of an economic temperature 
concept leading to very specific solutions; 

R5) Unemployment is often connected to inequality within the frame condi-
tions of health services, pension funds and other social institutions, generating 
additively a big amount of volatile social entropy.  
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