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Abstract 
In this paper, a pricing method based on the Fourier-Cosine series expansion 
is introduced for pricing equity-indexed annuities (EIAs) under the Heston 
model. By means of the Fourier-Cosine series expansion, the density function 
of the underlying indexed is recovered from its characteristic function, and 
then yields an efficient way for EIAs pricing. To show the accuracy of the 
Fourier-Cosine expansion method, numerical experiments, we provide the nu-
merical results of EIAs price for the classical Black-Scholes model. It is shown 
that the computation results obtained by the Foueier-Cosine series are as ac-
curate as those obtained by using the Monte Carlo simulation method. The 
Fourier-Cosine expansion method can be used to obtain the break-even partici-
pation rate under the Heston model with or without a cap in simple ratchet EIAs. 
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1. Introduction 

Equity-indexed annuities (EIAs) were introduced in 1995 by Keyport Life In-
surance Corporation. They are designed to provide not only certain annuity 
benefits, but also returns that are linked to the underlying equity index. EIAs at-
tract investors because policyholders can share in financial market growth and 
their properties can be protected by the minimum guaranteed benefits provided 
by EIAs. 

The EIA pricing problem can be traced back to 1976, which introduced mod-
ern option pricing theory and used its techniques to equity-indexed insurance 
pricing and minimum risk investment strategy (Brennan & Schwartz, 1976). 
This theory assumed the underlying equity dynamic was the classical Black-Scholes 
model, a geometric Brownian motion with a constant interest rate and volatility. 
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Under this classical Black-Scholes model, Gerber and Shiu (1994) consider de-
rivative pricing in an incomplete market by Esscher transform. Then, three 
common EIA pricing, which were point-to-point, the cliquet and the lookback, 
were introduced by Tiong (2000). Four path-dependence option pricing was intro-
duced by Lee (2003) to improve the participation rate. As the classical Black-Scholes 
model is a simplified description of a real financial market, subsequent research 
began to improve the model assumption to better match real life. For example, 
the constant interest rate assumption is irrational in the EIAs, given the long 
maturity of RIA contracts, which may cause EIA pricing bias. Thus, a stochastic 
interest rate model was proposed by Lin and Tan (2003), and it was shown by 
Monte Carlo simulation that the stochastic interest rate affects EIA premiums 
and break-even participation rates. Subsequently, a ratchet EIA pricing was de-
rived under the Vasicek interest rate model (Kijima & Wong, 2008). Ballotta (2010) 
studied the EIA pricing under the variance gamma model. A regime-switching 
model was introduced for pricing and hedging long-term equity-linked insurance 
products by Hardy (2001). And Lin et al. (2009) studied the equity-indexed an-
nuity pricing by Esscher transform under this model. In Chang (2014), a tree 
method was used to price EIAs with surrender risk under the Vasicek interest 
rate model and CIR++ model (Wei et al., 2013). A unified pricing framework for 
EIAs under a regime-switching Lévy model was presented by Kolkiewicz and Lin 
(2017). In Chiu et al. (2019), an exchange model was added to the Black-Scholes 
model to explain the contract and market parameter’s influence on pricing EIAs. 
And Hawkes jump diffusions model was studied for EIAs pricing and a numeri-
cal result was given (Sharma et al., 2021). 

The stochastic model is proposed to better match reality. In Merton (1976), a 
jump-diffusion model was proposed and subsectionly, a widely jump-diffusion 
model, named variance gamma model, was proposed by Madan et al. (1998). In 
the research on stochastic volatility, Hull and White (1987) assumed that volatil-
ity was a stochastic process and built the Hull-White model. In Stein and Stein 
(1991), stochastic volatility was added to the underlying stock price. A square 
root model was introduced and named the Heston model (Heston, 1993). 

The Foueier-Cosine expansion method is used to price ratchet EIAs in this pa-
per. The Foueier-Cosine expansion method was introduced by Carr and Madan 
(1999) and became a popular and efficient option pricing tool. Fourier-Cosine 
expansion method can be applied to any model with a known characteristic func-
tion for an underlying asset regardless of whether its density function is known. 
Previously, it was used for European options, Bermudan options (Fang & Oosterlee, 
2008) and Asian options (Zhang & Oosterlee, 2013). Recently, this method has 
been introduced for pricing insurance contracts in Goudenége et al. (2018). 

The contribution of this paper is two-fold. On the theoretical side, we show 
that the Fourier-Cosine expansion method can be applied to price EIAs under 
the stochastic volatility model. On the application side, we provide the formula 
for pricing EIAs under the Heston model and analyze the sensitivity of the price 
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to the model and product parameters. The innovation of this paper is that we 
propose the stochastic volatility model in the pricing of EIAs, which allows us to 
consider the evolution of the volatility effect on the price of EIAs. 

The rest of the paper is organized as follows. We describe the ratchet EIA and 
introduce the model setup in Section 2. We apply the Fourier-Cosine expansion 
method to the pricing EIAs in Section 3. Finally, numerical tests are presented in 
Section 4 to demonstrate the accuracy of the proposed method. 

2. Model Description and Ratchet EIAs Contract 
2.1. Models Setup and Related Characteristic Functions 

Assume that the payment EIA contract with maturity at T-year is based on the 
return of the equity index. Let ( ) , 0S t t ≥  denote the equity index value at time 
t. Consider a frictionless financial market with continuous trading. Assume that 
taxes, transaction costs and restrictions on borrowing or short sales do not exist 
and that all securities are perfectly divisible. 

We assume that the equity index ( )S t  underlying the EIAs contract follows 
the Heston model, which satisfies the following system:  

 
( ) ( ) ( ) ( ) ( ) ( )
( ) ( )( ) ( ) ( )

d d d

d d d

S

v

S t r q S t t v t S t W t

v t k v v t t v t W tγ

 = − +


= − +
            (2.1) 

where 0, 0r q> ≥  are constants representing the riskyless interest rate and the 
dividend rate respectively, ( ){ }, 0v t t ≥  is variance process of the equity value, 

0, 0v γ> >  is the mean and the variance of volatility of the equity index, 0k >  
determines the speed of adjustment of the volatility towards its theoretical mean, 

( ) ( ),S vW t W t  are two different Brownian motions with correlation  
( ) ( )d d dS vW t W t tρ=  under a risk-neutral measure Q. 

Assume ( ) ( )( ): lnX t S t=  denote the log-equity index and have an initial val-
ue: ( ) ( )( )0 ln 0X S x= = . By (2.1), ( )X t  satisfies the following system:  

 
( ) ( ) ( ) ( )

( ) ( )( ) ( ) ( )

1d d d
2

d d d

S

v

X t r q v t t v t W t

v t k v v t t v t W tγ

  = − − +   
 = − +

             (2.2) 

Under Heston model (2.2), the conditional characteristic function of the log-asset 
price ( )X T  given that ( )X t x=  is given by Feyman-Kac formula:  

 

( ) ( )

( ) ( )

( ) ( )

Q

0
2

2

, : e

1 eexp
1 e

1 eexp 2ln exp ,
1

iuX T

D

D

D

u T

viu r q k i u D
G

kv Gk i u D iux
G

τ

τ

τ

ψ

τ ργ
γ

τ ργ
γ

−

−

−

 =  
  −

= − + − −   −  
   −

⋅ − − − ⋅     −   



  (2.3) 

where ( ) ( )2 2 2, , k i u DT t D k i u u iu G
k i u D

ργτ ργ γ
ργ

− −
= − = − + + =

− +
. 
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When the variance ( ){ }, 0v t t ≥  degenerates to a constant, i.e. 0κ γ= = , the 
Heston model reduces to the classical Black-Scholes model, which is given as 
follows: 

( ) ( ) ( ) ( ) ( )d d d ,SS t r q S t t S t W tσ= − +               (2.4) 

Thus, the conditional characteristic function of log-asset price ( )X T  given 
( )0X x=  can be given by:  

 ( ) ( )Q 2 2 21 1, : e exp .
2 2

iuX Tu T iu x r q T u Tψ σ σ
    = = + − − −        

   (2.5) 

In this paper, we consider the Heston model as a risky equity index model for 
pricing EIAs, we derive the pricing formula for evaluating EIA contracts under 
Heston model. To show the accuracy of proposed method, we present the price 
of EIAs under Black-Scholes model for comparison with the existing result, since 
there are only results under Black-Scholes model in former research. We also 
provide some numerical test for pricing EIAs under Heston models. 

2.2. EIAs Contracts and Their Payoffs 

Consider an EIA contract with maturity at T years. A ratchet EIA is one whose 
equity index is reset at some frequency. We consider EIAs with an annual reset, 
though the model and pricing methodology can easily be extended to an arbi-
trary reset frequency. Denote the index return over the jth year as follows:  

 ( )
( )

, for 1,2, ,
1j

S j
R j T

S j
= =

−
                 (2.6) 

and denote the index return series from year 1 to year T by the following:  

{ }0 : , 1,2, , .T
jR R j T= =   

There are two ways to compute the payment of the ratchet EIAs: the simple 
ratchet and the compound ratchet. The payoff of the EIAs is the greater of either 
the index return jR  times a participation rate α  or a minimum guaranteed 
return g. For the simple Ratchet, the payment at maturity T-year, denoted by 
( )0, TV T R , is defined as  

 ( ) ( )0
1

, 1 max , 1 ,
T

T
j

j
V T R g Rα

=

 = + − ∑              (2.7) 

For the compound Ratchet, its payment at maturity T-year is as  

 ( ) ( )0
1

, max 1 ,1 1 .
T

T
j

j
V T R g Rα

=

 = + + − ∏            (2.8) 

To reduce the cost of the EIAs, a cap design is imposing to the contract, thus 
the payoff of the simple Ratchet EIAs and the compound Ratchet EIAs with cap 
c g>  take the following forms respectively:  

 ( ) ( )0
1

, 1 min max , 1 , ,
T

T
j

j
V T R g R cα

=

  = + −  ∑          (2.9) 
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( ) ( )0
1

, min max 1 ,1 1 ,1 .
T

T
j

j
V T R g R cα

=

  = + + − +  ∏        (2.10) 

Note that the simple or compound Ratchet EIAs without cap can be taken as 
simple or compound Ratchet EIAs with cap c = +∞ . 

3. Pricing EIAs by Fourier-Cosine Method 

Under the selected risk-neutral measure Q, the time 0 price of the EIAs with 
payment ( )0, TV T R  at maturity T-year is  

 ( ) ( )Q
00; : e , .rT TV V T Rα −  =                     (3.1) 

Assume that an initial premium of 1 unit is invested in the EIAs contract. The 
task of pricing the EIAs contract is to find the break-even participation rate *α  
such that the value of the EIAs at time 0 breaks even, that is,  

 ( )*0; 1.V α =                          (3.2) 

For the simple Ratchet EIAs with and without cap whose payment as given in 
(2.7) and (2.9) respectively, we have  

 
( ) ( )

( )

Q

1

Q

1

0; e 1 max , 1

e 1 max , 1

T
rT

j
j

T
rT

j
j

V g R

g R

α α

α

−

=

−

=

  = + −   
   = + −    

∑

∑




            (3.3) 

and  

 
( ) ( )

( )

Q

1

Q

1

0; e 1 min max , 1 ,

e 1 min max , 1 , .

T
rT

j
j

T
rT

j
j

V g R c

g R c

α α

α

−

=

−

=

   = + −    
    = + −      

∑

∑




       (3.4) 

For the compound Ratchet EIA with and without cap whose payment as given in 
(2.8) and (2.10) respectively, we have  

 ( ) ( )Q

1
0; e max 1 ,1 1

T
rT

j
j

V g Rα α−

=

  = + + −   
∏            (3.5) 

and  

 ( ) ( )Q

1
0; e min max 1 ,1 1 ,1 .

T
rT

j
j

V g R cα α−

=

   = + + − +    
∏      (3.6) 

Notice that , 1,2, ,j j T∆ =   is not independent under Heston model. By 
(3.4), jR  is not independent, the computation of expectation in (3.5) and (3.6) 
requires the joint distribution of jR , which make it hard to use Fourier-Cosine 
expansion directly. Thus, we consider only the simple Ratchet EIAs with and 
without cap whose the time 0 price as given in (3.3) and (3.4), the case of com-
pound Ratchet EIAs will be treated in a subsequent research. 

3.1. Fourier-Cosine Expansion Method 

To compute the time 0 price of the EIAs, it is essential to compute the expecta-
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tion about jR  in (2.7) and (2.9). In fact for any function ( )h ⋅  about jR , its 
expectation can be computed as  

 ( ) ( )( ) ( )( ) ( )Q Q
0

exp exp d ,
jj jh R h h y f y y

∞

∆
   = ∆ =    ∫        (3.7) 

where ( )
j

f y∆  is the probability density function of j∆ . Since ( )
j

f y∆  is usually 
not know for Black-Scholes model and Heston model, we will replace it by its 
Fourier-Cosine expansion  

 ( )
0

cos
j k

k

y af y A k
b a

′+∞

∆
=

π
− =  − 

∑                   (3.8) 

with  

 ( ) ( )
0

2 2: cos d cos d ,
j j

b
k a

y a y aA f y k y f y k y
b a b a b a b a

∞

∆ ∆π
− −   = ≈   − 

π
− − −  ∫ ∫  (3.9) 

where a and b are the truncated bounds of the integration interval such that the 
truncated error is under control and the prime in the summation indicates that 
the first term in the summation is weighted by one-half. Comparing the ap-
proximation of kA  in (3.9) with the characteristic function of j∆ , we have  

 2 Re exp ,
jk

k akA i
b a b a b a

φ∆
    ≈ ⋅ −    − − −    

π π             (3.10) 

where ( )
j

uφ∆  is the characteristic function of j∆  and {}Re ⋅  denotes the real 
part of the argument. 

Subsituting ( )
j

f y∆  in (3.7) by its cosine expansion, we have  

 ( ) ( )( )Q
0

0
exp cos d ,j k

k

y ah R h y A k y
b a

′+∞∞

=

−   = ⋅    − 
π∑∫        (3.11) 

then applying the expression (3.10) of kA  and interchanging the summation 
and integration yields  

( )

( )( )

Q

0
0

1

0

2exp Re exp cos d

Re exp ,

j

j

j

k

N

k
k

h R

k ak y ah y i k y
b a b a b a b a

k aki V
b a b a

πψ

φ

′+∞∞

∆
=

′−

∆
=

  
  −     = ⋅ − ⋅      − − − −  

π
π

π π

   
    ≈ ⋅ −    − −    

∑∫

∑



(3.12) 

where N is the truncated number for the Fourier-Cosine expansion and kV  is 
the so-called the COS coefficient defined as  

( )( )2: exp cos d .
b

k a

y aV h y k y
b a b a

− =  − − 
π∫  

{ }; 1,2,kV k =   can be analytically derived as a close formula when the function 
( )( )exph y  is specified for simple Ratchet and with or without cap, we will de-

rive the formulas in next section. 

3.2. Coefficients Vk for Ratchet EIAs 

For the simple Ratchet EIAs with or without cap with payment as given in (2.7) 
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and (2.9), the function ( )jh R  is specified as  

( ) ( )min max , 1 , ,j jh R g R cα  = −    

thus the coefficient kV  can be derived as  

 

( )( )

( )( )

( )
ln 1ln 1

ln 1

ln 1

2 exp cos d

2 min max , exp 1 , cos d

2 cos d e 1 cos d

cos

b
k a

b

a

cg
ya

ga
a

b
c
a

y aV h y k y
b a b a

y ag y c k y
b a b a

y a y ag k y k y
b a b a b a

c k

α

α

α
   + +    
 + 
 

 + 
 

− =  − − 
−   = −    − − 

 − −   = + −    − − −   

π

π

π π

π+

∫

∫

∫ ∫

∫ d

2 ,ln 1 ln 1 ,ln 1

ln 1 ,ln 1 ln 1 , ,

k k

k k

y a y
b a

g g cg a
b a

g c cc b

φ αχ
α α α

αφ φ
α α α

− 
 −  

         = + + + +         −         
        − + + + +         

        

 (3.13) 

where Equation (3.13) is obtained because the integration bound [ ],a b  is suffi-

ciently large that ln 1ca
α
 < + 
 

 and ln 1gb
α
 > + 
 

, and ( ) ( ), ,p q a b∀ ⊂ ,  

( ), : cos d

sin sin , 0

, 0,

q
k p

y ap q k y
b a

q a p a b ak k k
b a b a k

q p k

φ − =  − 
 − −  −  − ⋅ ≠   = − − 

π

 π
 

π 

− =

π


 



∫
 

 

( )

2

, : e cos d

1 cos e cos e
1

sin e sin e .

q y
k p

q p

q p

y ap q k y
b a

q a p ak k
b a b ak

b a
k q a k p ak k

b a b a b a b a

χ π

π π
π 

 
 
π π 

− =  − 
 − −   = −    − −   +

−

− −  + −   − − − − 
π π

  


∫

    (3.14) 

Based on the computation formulae for the time 0 value for the EIAs contracts 
given above, we can find the break-even participation rate *α  by solving the 
equation of (3.2). The participation rate is used as a benchmark for the insurer to 
set the participation rate α  for the EIAs contracts. 

4. Numerical Test 
4.1. Numerical Calculation under Black-Scholes Model and Heston  

Model 

To test the accuracy and efficiency of the Fourier-Cosine expansion method, we 
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use the formula by Fourier-Cosine expansion method in Section 3 to obtain both 
the time 0 price ( )0,V α  of ratchet EIAs for some given participation rate α  
to compare with the existing results by Monte Carlo simulation under the Black- 
Scholes model given in Hardy (2004) and the break-even participation rate *α  
to compare them with the existing results under the Black-Scholes model given 
in Tiong (2000). We also provide the break-even participation rate computed by 
the Fourier-Cosine expansion method Heston model for some parameter cases.  

To compare the results between the Fourier-Cosine expansion method in this 
paper and Monte Carlo simulation in Hardy (2004), we set the parameters of 
both the model and EIAs contract the same as in Hardy (2004), which the interest 
rate 6%r = , volatility 0.25σ = , the minimum guaranteed return rate 0%g = , 
the dividend rate 2%q = , maturity time 7T =  and participation rate α  and 
cap rate c are presented in Table 1. In Table 1, we present the price of EIAs un-
der the Black-Scholes model with the Fourier-Cosine expansion method and the 
benchmark result by Monte Carlo simulation given in Hardy (2004). And we al-
so present the absolute error in Table 1. The definition of absolute error is in the 
following equation:  

Absolute error : AE FC MC ,= = −  

where FC is the price of EIAs in the Fourier-Cosine expansion method and MC 
is the price of EIAs in the Monte Carlo simulation. As it is shown in Table 1, the 
approximation of Fourier-Cosine expansion results is as accurate as those ob-
tained using the Monte Carlo simulation in Hardy (2004) up to two decimal 
places. 
 
Table 1. The price and computation error of the simple ratchet EIA of Black-Scholes 
models. FC method stands for the price by Fourier-Cosine expansion method, and MC 
stands for the price by Monte Carlo simulation provided in Hardy (2004), % of price, AE 
stands for the absolute errors of the Fourier-Cosine expansion method to the Monte Car-
lo simulation. 

Price of EIA  
Partition Rate α 

Method 
Cap Rate c 

10% 15% 20% 30% 

0.6 
FC  
MC  
AE 

83.6851  
83.6853  
0.0002 

89.1147 
89.1154 
0.0007 

92.8456 
92.8469 
0.0013 

96.9644  
96.9651  
0.0007 

0.8 
FC  
MC  
AE 

84.9961  
84.9959  
0.0002 

91.7378 
91.7387 
0.0009 

96.9181 
96.9184 
0.0003 

103.7266  
103.7272  

0.0006 

1.0 
FC  
MC  
AE 

85.8197  
85.8198  
0.0001 

93.4476 
93.4488 
0.0012 

99.6855 
99.6871 
0.0016 

108.7400  
108.7416  

0.0016 

1.2 
FC  
MC  
AE 

86.3831  
86.3830  
0.0001 

94.6419 
94.6426 
0.0007 

101.6656 
101.6675 

0.0019 

112.5247  
112.5220  

0.0027 
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Then, the computation results of the break-even participation rate for the 
Black-Scholes model are presented in Table 2. In this table, the contract para-
meters are set to be the same as in Tiong (2000) with interest rate 4%,5%,6%r = , 
volatility 0.03,0.02σ = , the minimum guaranteed return rate 3%g = , the divi-
dend rate 2%,1%q = , maturity time 1T =  and cap 10%,12%,14%c = . No-
tice that the break-even participation rate α  is higher than 1 for some cases. 
The main reason is that when the minimum guaranteed benefits are relatively 
lower than dividends provided by q, the discounted payments will be lower than 
the initial premiums, which makes the break-even participation rate higher than 
1. For more information on the situation about the break-even participation rate 
is higher than 1 see, for example, Tiong (2000) and Jaimungal (2004). 

For Heston model, the computation results are presented in Table 3. We also 
set the parameters the same as in Tiong (2000) with the interest rate  

4%,5%,6%r = , the mean of volatility 0.03,0.02v = , the variance of volatility 
0.2γ = , the correlation of two Brownian motion 0.5ρ = −  and 3k = , the 

minimum guaranteed return rate 3%g = , the dividend rate 2%,1%q = , ma-
turity time 1T =  and cap 10%,12%,14%c = . 

 
Table 2. The break-even participation rate for Black-Scholes models. 

q Cap 

g = 3% 

σ = 0.03 σ = 0.02 

r = 4% r = 5% r = 6% r = 4% r = 5% r = 6% 

2% 

10% 0.305204 0.651761 3.239664 0.429140 0.809608 2.194496 

12% 0.278614 0.484261 1.195217 0.398136 0.639872 1.065437 

14% 0.265895 0.421771 0.666464 0.383724 0.573124 0.828112 

1% 

10% 0.293616 0.605957 2.402629 0.407391 0.740946 1.772472 

12% 0.269237 0.459479 0.855894 0.380058 0.598238 0.960387 

14% 0.257560 0.403472 0.625091 0.367383 0.540802 0.766031 

 
Table 3. The break-even participation rate for Heston models. 

q Cap 

g = 3% 

v = 0.03 v = 0.02 

r = 4% r = 5% r = 6% r = 4% r = 5% r = 6% 

2% 

10% 0.490737 0.823581 1.645577 0.551115 0.887698 1.678759 

12% 0.464632 0.689075 1.025693 0.524565 0.756356 1.078675 

14% 0.453291 0.635331 0.852352 0.513247 0.703606 0.916962 

1% 

10% 0.462781 0.752731 1.418702 0.516372 0.806233 1.394885 

12% 0.440448 0.641269 0.927894 0.494186 0.699444 0.971297 

14% 0.430859 0.596108 0.786886 0.484881 0.656086 0.8419131 
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4.2. Sensitive Analysis for EIAs Contract 

In this section, we present the sensitive analysis under the Black-Scholes model 
and the Heston model. In Figures 1-6, the results of break-even participation 
rate *α  to six model parameters are presented under the Black-Scholes mod-
el.In general, analysis results are intuitive. The break-even participation rate in-
creases with the interest rate r, with dividend rate q, with maturity time T and 
decreases with volatility σ, with the minimum guaranteed return rate g, with cap 
c. In Figure 1, the break-even participation rate is 0 when r is from 0% to 3%. 
The main reason is that when the interest rate r is lower than the minimum  
 

 
Figure 1. Sensitive of break-even participation rate *α  to interest r under Black-Scholes 
model. 
 

 
Figure 2. Sensitive of break-even participation rate *α  to volatility σ under Black-Scholes 
model. 
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Figure 3. Sensitive of break-even participation rate *α  to minimum guaranteed return g 
under Black-Scholes model. 
 

 
Figure 4. Sensitive of break-even participation rate *α  to cap c under Black-Scholes 
model. 
 

 
Figure 5. Sensitive of break-even participation rate *α  to dividend rate q under Black- 
Scholes model. 
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Figure 6. Sensitive of break-even participation rate *α  to maturity time T under Black- 
Scholes model. 
 
guaranteed return rate g, the policyholder’s benefits are all from the minimum 
guaranteed return, which makes the break-even participation rate 0. And when 
r g> , as the r increases, the insurance company can obtain more benefits in the 
investment market, then increases the break-even participation rate. But as the 
volatility σ increases, the investment risk increases, and the costs of hedging will 
increase, then the break-even participation rate decreases. In Figure 3, the in-
creasing g will increase the cost of minimum guaranteed benefits, then the in-
surance company will decrease the break-even participation rate to reduce the 
systematic risk. The 0 break-even participation rate appears for the same reason 
in Figure 1. A higher cap will cause fewer benefits from the EIAs product, then 
the break-even participation rate will decrease. For dividend rate q, a higher 
dividend means a good investment return in the market, then policyholders can 
obtain more benefits and thus make a higher break-even participation rate. And 
a longer maturity time can reduce the cost of guaranteed benefits and increase 
the investment return, thus the break-even participation rate can increase in 
Figure 6. 

In Figures 7-11, we also present the sensitive analysis for five model parame-
ters on the Heston model. Notice that the break-even participation rate decreas-
es when the mean of volatility v  increases in Figure 7. The main reason is that 
the increasing volatility will increase the risk of investment and thus, the value of 
financial products will be more expensive, which causes the insurance compa-
nies to reduce the break-even participation rate. In Figure 8, this reason can also 
explain the decreasing trend of break-even participation rate to initial volatility 
v0. In Figure 9 and Figure 10, k and γ have an insignificant influence on the 
break-even participation rate. In Figure 11, the decreasing trend is that the higher 
correlation will cause a higher systematic risk, and thus cause a lower participa-
tion rate.  
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Figure 7. Sensitive of break-even participation rate *α  to mean of volatility v  under Heston 
model. 

 

 
Figure 8. Sensitive of break-even participation rate *α  to initial volatility v0 under Heston 
model. 

 

 
Figure 9. Sensitive of break-even participation rate *α  to k under Heston model. 
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Figure 10. Sensitive of break-even participation rate *α  to variance of volatility γ under 
Heston model. 

 

 
Figure 11. Sensitive of break-even participation rate *α  to correlation ρ under Heston 
model. 

5. Conclusion 

Considering the long maturity of the EIAs, the volatility of the equity index might 
evolute as time going. This paper introduces the Heston volatility model in the 
pricing of EIAs and applies the Fourier-Cosine expansion method to derive an 
approximation formula for the price of the EIAs. The numerical test examines 
the accuracy of the Fourier-Cosine expansion method and analyzes the sensitiv-
ity of the break-even rate of the EIAs to the model and product parameters. 
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