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Abstract 
This paper studies a noncooperative model of network formation. Built upon 
the two-way flow model of, it assumes that information decay as it flows 
through each agent, and the decay is increasing and concave in the number of 
his links. This assumption results in the fact that a large set of Nash networks 
are disconnected and consist of components of different sizes, a feature that 
resembles that of real-world networks. Discussions on this insight are pro-
vided. 
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1. Introduction 

This paper presents a model of network formation game that is built upon the 
two-way flow model with imperfect information transmission of (Bala & Goyal, 
2000a), It envisages a situation in which information decays due to the agents’ 
imperfect ability to communicate as opposed to the imperfect connection/link, 
which is an assumption in most of the existing literature. It thus assumes that 
information decays as it traverses through each agent, hence the term nodewise 
decay. Moreover, aiming to shed light on the realism that agent’s effort to com-
municate tends to be limited, it assumes that nodewise decay level is strictly 
concave in the amount of agent’s links. Each agent thus knows that whenever he 
establishes a link with another agent both of them transmit information less effi-
ciently, causing a decline in the value of information that flows through them. 
This paper aims to understand how this assumption may affect link-formation 
decision of agents and hence the shape of equilibrium networks. To this end, it 
identifies the shapes of equilibrium networks and analyzes why they differ from 
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those of other models in the literature. Finally, the paper discusses how the re-
sults of the analyses may explain some features of real-world networks. 

We argue that this paper’s assumption is worth studying. Consider a firm in 
which employees’ task is to communicate with each other. In this network, there 
may be a center-like agent whose role is to collect and distribute information of 
other agents. Such an agent is important because the degree to which the infor-
mation is lost depends on his ability to communicate. This is likely to decline as 
there are more contacts between him and other agents. This fact has two conse-
quences. First, each agent has to take into account that contacting the center 
damages the information flow. Second, the value of information that he receives 
in turn may not worth the efforts to contact. Consequently, he may avoid con-
tacting the center by contacting another agent or choosing to be completely dis-
connected. The fact that the center finds more difficulties in transmitting infor-
mation as he has more links may be considered as a form of network congestion, 
and the fact that other agents may avoid contacting the center may be considered 
as a form of congestion avoidance. However, how this realism affects agents’ 
linking decision has not been investigated in the literature of game-theoretic 
network formation to our knowledge. This paper’s attempt to address this issue 
is therefore the central contribution to the literature. 

With this situation in mind, this paper modifies the two-way flow model of 
BG as follows. In a network g we let the decay factor be nodewise: as information 
is transmitted through agent i, a fraction of information equal to 1 − σ (i; g) is 
lost. Moreover, σ (i; g) is decreasing and strictly concave on the amount of i’s 
links. The strict concavity is assumed for two reasons. First, it reduces mathe-
matical difficulties. The strict concavity assumption implies that information 
decays completely if an agent possesses a sufficiently large number of links. 
Second, nodewise decay can be considered as a productivity of an agent in 
transmitting information. While there is no theoretical support, the following 
examples show that the difficulties that an agent face in transmitting informa-
tion tend to increase at an increasing rate. Suppose that an agent stores all pieces 
of information in one place, then due to the limitedness of space, the chance that 
multiple pieces of information get mixed up, and hence cause more difficulties 
in communicating accurately, is arguably likely to increase at an increasing rate. 
Another example is when the pieces of information are very similar to one 
another. Then, the chance that an agent does not know which is which, as he has 
more pieces of information to transmit, is also arguably likely to increase at an 
increasing rate. 

Besides these two assumptions, this paper retains all assumptions of two-way 
flow of BG, which are briefly described here for unfamiliar readers. Each agent 
possesses a piece of information that is nonrival. He can choose to sponsor cost-
ly links to any agents without their agreements. All links together form the net-
work. If there is a link or a series of links between two agents, they are obliged to 
share their private information. Thus, the decision of agent to form a link 
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represents his decision to make his private information available to other agents 
in exchange for receiving their information, and concurrently his willingness to 
be an information transmitting device. In BG, the decay factor is assumed to be 
geometric and linkwise: each link causes a fraction of information loss equal to 1 − 
σ, where σ is constant. 

Since this paper models network congestion in a stylized way, we provide two 
justifications. First, this model makes observing the effects of congestion avoid-
ance easier. The original model of BG and this model permit each agent to access 
others without their agreements. This implies that each agent decides on his own 
as to how to avoid the congestion he finds in the network, hence easing the ob-
servation. This advantage is also facilitated by the assumption that agents’ in-
formation is nonrival. If it is assumed otherwise, it may be difficult to distin-
guish whether an agent decides not to access another as a result of the conges-
tion or the rival nature of information. Second, because links are formed in a 
noncooperative way, Nash equilibrium in pure strategies can be applied as the 
solution concept. This eases the analysis. 

Admittedly, the assumption of unilateral link formation has a disadvantage. It 
entails that agent cannot defend against an access by another agent, even when 
the access lowers his payoffs. This implication is not realistic in many cases. For 
example, in a file sharing network, one agent may decline an access by another 
agent if the access lowers his internet speed. Hence, our model does not provide 
an insight to this side of reality. We believe, however, that there are some situa-
tions in which this model can be applied. These are such as workplace environ-
ment in which agent is obliged to disseminate all information he receives even 
when his productivity is declining, or friendship and kindred networks in which 
agents voluntarily feel obliged to welcome link formation due to psychological 
and peer pressure. 

Based on the observation from the main results, two insights on the structure 
of real-world networks can be learned. First, through nodewise decay assump-
tion equilibrium network tends to be fragmented, consisting of disconnected 
components. The intuition is that agent in one component may avoid entering 
another in order to avoid the network congestion. This may explain why empir-
ical literature finds that disconnected networks are common in the real world. 
Second, moving from a smaller network to a larger one (a network with more 
agents) does not imply that the moving agent will improve his payoffs. The in-
tuition is that agents in a larger network may be more congested (having more 
links), causing information to flow better in a smaller network. This may explain 
why real-world networks often consist of fragmented communities of notably 
different sizes. For example, in a friendship network, some students may prefer 
to keep their friendship within a small group rather than joining the crowd be-
cause they enjoy a stronger friendship that provides a better flow of benefits. 
These insights can be observed in our first proposition, which finds that no Nash 
network is connected if information decays at least by half whenever it is trans-
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mitted through an agent that has two links. This disconnectedness stands in 
contrast to the result in the original model of BG that all nonempty Nash net-
works are connected. 

Beside the above disconnectedness, two results are also different from BG’s. 
First, Nash Network (in pure strategy) does not always exist. This result is shown 
by an example. Second, no stars are Nash except a centersponsored star if the 
network has more than three agents1. 

This paper contributes to the literature in game-theoretic network formation, 
which is pioneered by the work of Jackson & Wolinsky (1996)2. Their model as-
sumes that two agents must share a mutual consent in order that a link is estab-
lished. A seminal work that contrasts to this model is that of BG in which 
one-sided link formation is assumed. Since it assumes several simple assump-
tions such as agent homogeneity and linkwise decay, it has spawned a vast lite-
rature that questions how certain realisms, when incorporated as assumptions, 
influence the shape of equilibrium networks. 

A strand of this literature which this paper belongs studies various forms of 
inefficiency in information flow. Interestingly, most models in this literature fo-
cus on link, which is a connection between agents, as a source of inefficiency in 
information flow rather than agents themselves. For example, Bala & Goyal 
(2000b), Haller & Sarangi (2005) and Billand et al. (2011) extend the two-way 
flow model of BG by assuming that link formation may fail with a positive 
probability. Also, Billand et al. (2010) studies the insider-outsider model of Ga-
leotti et al. (2006), which is an extension of BG, by varying the level of linkwise 
decay. Among this group of literature, noteworthy is that of Bloch & Dutta 
(2009) and Deroian (2009), which assume that the decay level of each link varies 
based upon the extent to which the agents are willing to spend their limited re-
sources. These models share a similarity to the model of this paper in the sense 
that in this paper each agent is also assumed to have limited ability to commu-
nicate. However, a major difference does exist. Unlike the model of Bloch & 
Dutta (2009) and Deroian (2009), this model assumes that the decay is nodewise 
in the sense that the decay occurs each time information traverses through an 
agent. Thus, it perceives agent, rather than link, as a direct and primary cause of 
inefficiency in information flow. This difference entails a major interpretation of 
realism. If the decay is assumed to be linkwise, as most papers do, then the major 
cause of the decay is the connection or the relationship between agents. On the 
other hand, if the decay is nodewise, then what causes the decay is the inability 
of agent to communicate perfectly. 

Another paper that shares a certain extent of similarity to this paper is Feri 
(2011), which also assumes that the decay is nodewise. Indeed, to our know-

 

 

1A star is a network such that there is a unique center-like agent who connects to all other agents. 
But all other agents have no links with each other. A center-sponsored star is a star such that the 
center sponsors the link to every other agent. 
2Jackson (2007) and Jackson (2008) provides an overview of network formation literature and an 
overview of network studies in economics respectively. 
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ledge, apart from this paper Feri (2011) is the only paper that assumes nodewise 
decay. However, a major difference exists in terms of how the nodewise decay is 
modeled. In Feri (2011), the decay level is an outcome of the coordination game 
played between two agents who share the same link. Thus, it can be interpreted 
that the decay depends on the compatibility of technology adopted by the two 
agents. On the other hand, this paper assumes that the decay level depends on 
the quantity of links that each agent possesses. Thus, our concern is on the limi-
tedness of the efforts of agent to communicate, rather than the technology that 
he adopts. 

The paper proceeds as follows. In Section 2, the model and all assumptions are 
introduced. Subsequently Section 3 introduces the main results. It consists of 
two propositions. The first proposition fully characterizes Nash networks under 
the restriction that information decays at least by half if it traverses through an 
agent that has more than two links. Admittedly, due to the mathematical diffi-
culties full characterization of Nash network is not achieved when this restric-
tion is removed. The second proposition, instead, discusses certain properties of 
Nash networks given the removal of this restriction. We also provide some ex-
amples of Nash network and their supporting parameters. Subsequently Section 
4 uses the analysis from these results to provide some insights to certain features 
of real-world networks. Finally, Section 5 concludes. 

2. The Model 

{ }1, ,N n=   is a set of agents. i and j are typical members of this set. Each 
agent possesses a nonrival piece of information that is valuable both to himself 
and any other agent who has an entry to it. Information flow in this model is 
two-way in the following sense. If i has an entry to j information, then j also has 
an entry to i’s information. An entry to information is made possible through 
the existence of a link or a path, a series of multiple links, between two agents. 

Link establishment is costly and one-sided. i can choose to form a link with 
any other agent without his consent so long as he bears the link formation cost c. 
A strategy of i is a set ( ),1 , 1 , 1 ,, , , , ,i i i i i i i ng g g g g− +=    where { }, 0,1i jg ∈  and 

, 1i jg =  if and only if i forms a link with j. In this case, it is said that i accesses j. 
Throughout the entire paper the our analysis is restricted to pure strategies. Let 

( )1, , ng g g=   be a strategy profile. The strategy space of i is iG  and the set of 
all pure strategy profiles is { } 1

n
i i

G G
=

= × . 
To visualize how information flows among agents, a strategy profile g can be 

represented by a network. Pictorially, a network consists of a set of nodes, each 
represents an agent, and a set of arrows pointing from one node to another. 
There exists an arrow from node i to node j if and only if i accesses j in a strategy 
profile g. As a consequence of this symbolization the term network g and strate-
gy profile g are used interchangeably onwards. Figure 1 depicts an example of a 
network. 

Because a link between i and j can be sponsored by either i or j, to distinguish  
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Figure 1. A network with five agents. 5n = , 

{ }1 1,0,0,0g = , { }2 0,1,0,0g = , { }3 0,0,1,0g = , 

{ }4 0,0,0,1g = , { }5 0,0,0,0g = . 

 
the link sponsorship let ( ) { },; | 1i kD i g k N g= ∈ =  be the set of all agents 
whom i accesses and ( ) ( ); ;i g D i gµ =  be the number of links that i establish-
es. To indicate whether there is a link between i and j, let { }, ,max ,ij i j j ig g g=  
so that , 1i jg =  if and only if there is a link between i and j. Similarly, let 
( ) { },; | 1i kD i g k N g= ∈ =  and ( ) ( ); ;i g D i gµ =  so that ( );i gµ  represents 

the number of I’s links. 
Based upon these notations, information flow is formalized as follows. i’s in-

formation flows to j if there exists an ij-path. Formally, an ij-path, ( ),i jP g , is a 
sequence 

1 1 2, , ,, , ,
mi j j j j jg g g  whose each element is 1. If ( ),i jP g  exists, it is 

said that i observes j. The set of all agents observed by i is  
( ) { },1 ; | existsi jN i g j N P− = ∈ . Note that if i observes j then j also observes i.  

To maintain a comparison with the original two-way flow model with linear 
payoff in BG, the value of each piece of information that is perfectly transmitted 
and received is 1. However, in the process of transmitting and receiving this val-
ue may decay. In this paper, the decay is incurred nodewise. That is, for each 
agent k a decay factor ( );k gσ  is assigned. As information traverses through k, 
a fraction of information equal to ( )1 ;k gσ−  is lost. That is, ( );k gσ , is the 
percentage rate at which the value of information is preserved. Therefore, if the 
information of j is transmitted to i through a path ,i jP , the value of j’s information  
that i receives is ( )( ) ( )( )( ),, ;

i ji j k N P gV P g k gσ
∈

=∏ , where ( )( ),i jN P g  is the set  

of all agents in ( ),i jP g . Figure 2 illustrates how the values of information of 
other agents flow to agent 1 in a network. 

Naturally, if multiple ij-paths exist the value of j’s information received by i is 
given by the optimal path(s). Formally, let ( ) ( ) ( ) ( ){ }1 2

, , , ,, , , L
i j i j i j i jg P g P g P g= P  

be the set of all paths, each enumerated by the superscript, through which i ob-
serves j in a network g. The value of the information of j that i obtains in this 
network is ( ) ( ), 1, , ,max ;k

i j k L i jV g V P g∈=


. An optimal ij-path, ,i jP , is thus a 
path that solves ( )1, , ,max ;k

k L i jV P g∈ 

. The set of all optimal paths is ( ),i j gP . 
Similarly, the value of i’s own information is ( ), ;i iV i gσ=  if i has a link and 

, 1i iV =  if i has no link. This assumption is justified as follows. As the amount of 
i’s links increases, so is the amount of information that arrives to him. This de-
creases his ability to correctly process each piece information before he transmits 
it to other agents. This in turn affects his ability to process his own information. 
Alternatively, if he has no link, then he can consume his own information with 
no decay. That is, , 1i iV =  if i has no link. 

Having defined the value of information, we are now ready to define the 
payoff of player i from the strategy profile g in a game with n players. It is: 
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Figure 2. In the above network, ( ) ( ) ( )1,2 1; 2;V g g gσ σ= , 

( ) ( ) ( ) ( )1,3 1; 2; 3;V g g g gσ σ σ= ,  

( ) ( ) ( ) ( ) ( )1,4 1; 2; 3; 4;V g g g g gσ σ σ σ= ,  

( ) ( ) ( ) ( ) ( ) ( )1,5 1; 2; 3; 4; 5;V g g g g g gσ σ σ σ σ= . 
 

( ) ( ) ( )
( )

( ), ,
;

; i i i j i
j N i g

U i g V g V g c gµ
∈

= + − ⋅∑  

To adjourn this section a major difference between our model and BG’s is 
pointed out. This difference is in how information decays. In BG, the decay is 
assumed to be linkwise and geometric. For example, let λ be this decay. If an 
ij-path consists of m links, then the information of j decays to mλ  when it ar-
rives to i. Hence, the aggregated decay of a path depends solely on its length. In 
contrast, the decay in our model is defined nodewise, σ(), which depends on the 
amount of links of each agent who lies on the path. Consequently, two ij-paths 
with the same length may not provide the same value of information to i. We 
remark that this is a major cause of mathematical difficulties in the analysis of 
equilibrium characterization. 

2.1. Nash Networks and Strict Nash Networks 

In a network, a point of view of an agent i can be considered as the set of all links 
formed by all agents in the network except himself. Let this set be ig− . That is, 
an agent i takes a look at this set and then decides with whom he wishes to form 
links for the best of his interest. This is his strategy ig . A set that is a union of 

ig  and ig−  of course form the network g. We denote this set by i ig g−⊕  and 
use these notations to define the term Nash network and Strict Nash network 
below. 

Definition 1 (Best response). A strategy ig  is a best response of i to ig−  if 

( ) ( ); ;i i i i i i i iU i g g U i g g g G− −′ ′⊕ ≥ ⊕ ∀ ∈  

Definition 2 (Nash network). A network g is a Nash network if ig  is a best 
response to ig−  for every agent i N∈ . 

Moreover, if the inequality is strict for all i N∈ , Nash network is a Strict 
Nash Network. We abbreviate the term Strict Nash Network by SNN. 

2.2. Assumptions on Decay 

Our key assumption is that the decay factor ( );i gσ  depends solely on the 
number of i’s links. This is formalized as follows. 

Assumption 1 (Concave Decreasing Nodewise Decay). Let [ ]: 0,1ς →  be 
a function such that: 

1) xς  be the value at x. 
2) 1 1ς = . 
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3) there exists 1K >  such that 0xσ =  for all x K> . Moreover, for x K≤ , 
ς  is decreasing and strictly concave. 

Throughout this paper we assume that ( ) ( );; i gi g µσ ς=  for all i N∈ . 
Certain remarks on these assumptions are worth elaborating. First,  
( ) ( );; i gi g µσ ς=  implies that an agent’s decay factor depends solely on the 

number of links. Moreover, two agents have the same decay factor if they have 
the same amount of links. That is, agent homogeneity is assumed. Second, 

1 1ς =  entails that perfect information transmission occurs if an agent has ex-
actly one link. Finally, the existence of K in the last part warrants that the node-
wise decay factor becomes zero, rather than being negative, once the amount of 
agent’s link reaches a certain extent. 

2.3. Network-Related Definitions 

This subsection introduces some properties of networks and definitions of some 
particular patterns of network that are used in the analysis. A network is minim-
al if every ij-path is unique. If an ij-path exists for any , ;i j N i j∈ ≠ , a network 
is said to be connected. Let 1g  and 2g  be networks and 1N  and 2N  be 
their set of agents, 1g  is a subnetwork of 2g  if 1 2N N⊂  and 1 2g g⊂ . 1g  
is said to be a component of 2g  if 1g  is a maximally connected subgraph of 

2g .  
The particular patterns of network that are used in the equilibrium analysis 

are introduced as follows. A network is a line if there are exactly two agents that 
have one link and every other agent has two links. A network is a wheel if every 
agent has exactly two links. Note that if a link is removed from a wheel the re-
sulted network is a line. A network is empty if every agent has no link. In such a 
network, each agent is said to be a singleton. A network is a star if it is a mini-
mally connected network such that there is a unique agent *i  that has exactly 
one link with every other agent. A star is a center-sponsored star if *i  sponsors 
all links. A star is a periphery-sponsored star if *i  sponsors no links. 

3. Main Results 

The goal of this section is to identify Nash networks and their properties. I  

summarize main results as follows. For 2
1
2

ς ≤ , Proposition 1 guarantees the  

existence of Nash network regardless of the values of ς2 and c. It also provides an 
expansive equilibrium characterization. 

Proposition 1. 1) If 2
1
2

ς ≤ , Nash network exists for any cost c and number  

of players n. Moreover, each component of a Nash network is one of the follow-
ing three types. 

a) A three-agent periphery-sponsored star, ie., network (a) in Figure 3. 
b) A pair, i.e., network (b) in Figure 3. 
c) A singleton, i.e., network (c) in Figure 3. 
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Figure 3. Three types of components in a Nash net-

work, given that 2
1
2

ς ≤ . 

 
2) Using the network (a), (b) and (c) in Figure 3, the set of Nash networks for 

each set of parameters c and 2ς  is given below. 

a) If 1c >  and 2
1
2

ς ≤ , then the empty network is a unique Nash network. 

b) If 1c ≤  and 2
1
2

ς = , then Nash network is either the empty network or  

the network that contains at most one component that is a singleton, and every 
other component is either a three-agent peripherysponsored star or a pair. 

c) If 1c =  and 2
1
2

ς < , then the set of Nash networks consists of all networks  

that have the following architectures: 
• the empty network. 
• the network that has at most one component that is a singleton, and every 

other component is a pair. 
d) If 1c <  and 22c ς> , then Nash network has at most one component that 

is a singleton, and every other component is a pair. 
e) If 1c <  and 22c ς≤ , then Nash network is. 

• the network that has at most one component that is a singleton, and every 
other component is a pair. 

• the network such that each component is either a three-agent peri-
phery-sponsored star or a pair. 

A particular feature of Nash networks in Proposition 1 is that none of them 
are connected, given that 3n > . This is a contrast to Proposition 5.3 in BG 
which shows that every non-empty Nash Network is connected. What drives this 
contrast? In BG, if i finds that the component that he accesses provides more 
benefits than the component that j accesses, then j always finds likewise. Since 
BG assumes that link formation cost is homogeneous, it follows that j has a posi-
tive deviation by removing his link with his component and access i’s compo-
nent instead. However, under the concave decreasing nodewise decay assump-
tion this reasoning is not valid. Whenever j enters the component of i, he reduc-
es the decay factor at the agent with whom the link is formed. This entails that 
the value of information that j receive may be sufficiently low that it does not 
cover his link formation cost. Consequently there is no guarantee that his payoff 
will improve. The following example clarifies this intuition by showing what 
happens when the linkwise decay assumption in BG is replaced by our nodewise 
decay assumption. 

Example 1. Consider the Nash network for 22c ς=  and 1c <  in Figure 4. 
It is easy to check that i’s payoff does not improve if he removes his link with j  
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Figure 4. A Nash network with five agents for 22c ς=  
and 1c < . 

 
and imitate the strategy of k by forming the link with l. Indeed, his benefit from 
accessing l is 0 since 3 0ς = . 

On the other hand, suppose it is assume that the decay is geometric, linkwise, 
and the decay factor is λ  as in BG, then k’s benefit from accessing l is 2λ λ+  
and i’s benefit from accessing j is merely λ . As a result, i has a positive devia-
tion by removing his link with j and accessing l instead. 

Contrary to Proposition 1, for 2
1
2

ς >  Nash network does not exist for some  

parameters c and n. An example is given below. 

Example 2. Let 2 3
1 1 , 0

22
ς ς> > = , and 0.98c = , no network with 5 agents  

is Nash3. 

Contrary to Proposition 1, for 2
1
2

ς >  Nash network does not exist for some  

parameters c and n. An example is given below. 

Example 3. Let 2 3
1 1 , 0

22
ς ς> > = , and 0.98c = , no network with 5 agents  

is Nash4. 
A remark is that the nonexistence of equilibrium originates stems from the 

fact that nodewise decay assumption causes agents’s payoffs to change discretely. 
Indeed, due to this complication the provision of full equilibrium characterization  

for 2
1
2

ς >  is not attained. Instead, Proposition 2 below describes some proper-

ties of Nash network for 2
1
2

ς > . It states that no two agents who have exactly  

one link want to access the same agent in Nash network. The intuition, which is 
a result of congestion avoidance, is straightforward. Let i and j have exactly one 
link with k, and i accesses k. Then i is better off avoiding the link formation with 
k and accessing j instead. Such avoidance is profitable because initially j has only 
one link. The link addition by i thus increases the amount of j’s links from one to  

two. This fact and the fact that 2
1
2

ς >  guarantee that information loss that is  

incurred by j is sufficiently low. Formally, let an agent who has exactly one link 
be called end node and the agent who is his neighbor parent. 

 

 

3The proof tediously consists of proving that in each possible network there is at least one agent that 
finds a positive deviation. It is thus omitted. 
4The proof tediously consists of proving that in each possible network there is at least one agent that 
finds a positive deviation. It is thus omitted. 
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Proposition 2. Given that 2
1
2

ς >  and 3n > 5. In a minimal Nash network  

g, let j be an end node and i be his parent, 
1) if j accesses i, j is the only end node of i; 
2) if i accesses j, i accesses all his end nodes. 
A corollary of Proposition 2 which is establish below is straightforward: no 

star is a candidate for Nash network, except center-sponsored star. A notable 
remark is that this result differs from Proposition 5.3 in BG which shows that all 
kinds of stars are Nash if decay falls within a certain range. 

Corollary 1. Given that 2
1
2

ς >  and 3n > , no star is a candidate for Nash  

network, except center-sponsored star. 
Beside center-sponsored star, line is also a candidate for Nash network. Fig-

ure 5 shows some Nash networks and their supporting parameters. 

4. Discussions 

This section points out two particular features of equilibrium networks in this 
model. It questions why they arise and provide intuitions as to what causes 
agents to make such link formation decision. Finally it discusses how these in-
tuitions may explain some features of real-world networks. 

4.1. Network Congestion May Lead Equilibrium Networks to Be  
Disconnected 

The first observation comes from the fact that all Nash networks for 2
1
2

ς ≤  are  

disconnected, as in Proposition 1. The intuition, which is made clear by Example 
1, can be summarized as follows. While establishing a link to an agent is a way to 
reach a component, it also increases the congestion at the agent who receives the 
link. This congestion may cause much loss in the information transmitted via 
the agent. When such congestion, or inefficiency in information transmission, is 
sufficiently high, an agent may be better off avoiding the congestion altogether 
and staying disconnected from the component. 
 

 
Figure 5. Two lines and a star that are Nash. 

 

 

5If n ≤ 3, this proposition does not apply. Every component of Nash network is either a line or 
empty. The proof is trivial and is omitted. 
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How does this observation help us understand real-world phenomena? This 
observation may serve as a hypothesis that explains why empirical evidence finds 
that real-world networks are often disconnected. If a community is considered 
as a network in which information is exchanged among agents, it is likely that it 
is fragmented into sub-communities if agents find that avoiding connection be-
tween each sub-community is a way to reduce inefficiency in information flow. 
For instance, sociologists have long observe that a common feature of friendship 
networks is that there are agents who are social isolates, disconnecting them-
selves from the principal component (Ennett & Bauman, 2009). Also Kumar et 
al. (2010) give a surprising remark that several online social networks contain 
isolated communities and singletons. 

4.2. Connecting to a Larger Component Does Not Imply  
Larger Benefits 

Our second observation is that a smaller component may provide higher benefits 
to their members than a larger one. The is evident through the fact that many 
Nash networks in Proposition 1 consist of components whose sizes, or the 
numbers of agents, are not equal. Consider, for example, the equilibrium net-
work in Example 1. Observe that i chooses to access an isolated agent j rather 
than an agent in the larger component. If i accesses j, j’s productivity is 1ς . If i 
accesses someone in the larger component, the productivity of the accessed 
agent is at most 2ς . Hence, if 2ς  is sufficiently lower than 1ς , then his strategy 
to abandon the smaller component that contains j and enter a larger one gives i 
relatively lower benefits compared to his strategy to maintain the link with j. 

This observation may explain why there are agents who prefer to reside in a 
relatively smaller component rather than a relatively larger one that contains 
most of agents. Consider the following hypothesis. While a larger component 
contains more agents, and hence more information, each agent may possess rel-
atively more connections than his counterpart in a smaller component. If the in-
crease in connections is further assumed to increase inefficiency in information 
flow, then an agent may prefer to stay in a smaller component rather than join-
ing a larger one. Put differently, when choosing between joining a smaller com-
ponent or a larger component, an agent faces a tradeoff between the quantity of 
information and quality of information that he receives. If the quality of infor-
mation prevails, then he is better off being in a smaller component. A friendship 
network among adolescent students may serve as an example of this hypothesis. 
Some students may choose to be “social isolates,” defined as students who are 
alone or those who maintain their friendships within a smaller group and avoid 
contacting the major group (Ennett & Bauman, 2009). This model thus hypo-
thesizes that such behavior arises because by avoiding the crowd the social iso-
lates enjoy higher benefits shared among one another. 

Noteworthy is how the above insight relates to literature in Sociology. This 
model proposes that the existence of social isolates may be explained by a reason 
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that is not agent heterogeneity, which appears to be the most natural reason. The 
insight from this model, therefore, stands in contrast with a vast literature in So-
ciology that places agent heterogeneity in terms of ethnics, attitude or physical 
appearance as a primary cause of social isolates. For example, Haas et al. (2010) 
assume that poor health in adolescent such as substantial physical handicap may 
be a cause of social isolation, and Kennedy & Kennedy (2004) suggest that indi-
viduals with anxious resistance have a higher risk of becoming social isolates. In 
addition, a recent work in game-theoretic network formation by Fershtman & 
Persitz (2021) also illustrates a similar tradeoff in the context of social clubs. In 
this paper, players face tradeoffs between “high quality links through a series of 
small clubs and…low quality links produced in large clubs”. Finally, I remark 
this insight and the aforementioned insight in Section 4.1 are closely related. In-
deed, if agents find that joining a larger network does not lead to higher benefits 
as mentioned in this section, then a better alternative for them is to form anoth-
er component that is disconnected from the main component, which is what is 
discussed in Section 4.1. 

5. Conclusion 

This paper provides a stylized model of network formation with two key as-
sumptions. First, link can be formed without a mutual consent between agents. 
Second, link addition increases the congestion, or more information loss, at the 
agent who receives the link and the agent who forms the link. The model allows 
an ease of observation on how an agent may avoid forming links with other 
agents due to increasing congestion. As shown in Proposition 1, under a large set 
of parameters the two key assumptions lead to equilibrium networks that consist 
of disconnected components. In some cases, these components also have differ-
ent sizes. 

While it is difficult to make generalization from this simplified model, the 
link-formation behavior of agents in equilibrium networks may provide some 
insights to two common features of real-world networks. First, the fact that real 
world networks are often disconnected may be explained by the fact that agents 
choose to avoid forming a link that bridges two components since the link addi-
tion increases congestion, and hence increasing inefficiency in information flow. 
Second, an agent may prefer maintaining a link with an agent in a smaller com-
ponent rather than with an agent in a larger component. This is because he takes 
into account the tradeoff between receiving less quantity of information with 
higher quality of transmission in a smaller component and more quantity of in-
formation with lower quality of information in a larger component and finds 
that the former prevails. 

This model can be extended in several ways. First, to move closer to reality an 
extension may assume that an agent can choose to vary his nodewise decay for 
each link that he possesses. Second, since in this model agent homogeneity is 
assumed, an extension may be to assume a certain form of agent heterogeneity. 
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For example, some agents may have nodewise decay that incurs less information 
loss than that of other agents. Third, it may be interesting to apply an equili-
brium prediction criterion that assumes that link is formed under mutual con-
sent (eg., pairwise stability of (Jackson & Wolinsky, 1996)). 
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Appendix 
1.1. The Concepts of Marginal Cost and Marginal Potential Benefit  

and a Useful Lemma 

In this subsection, two useful definitions and a lemma for the proofs of Proposi-
tion 1 and 2 are introduced. The first two definitions, Marginal Potential Benefit 
and Marginal Cost, concern the (potential) gain and loss to an agent whenever 
he adds or removes exactly one link. Subsequently we introduce a lemma that 
states that an agent has an increasing (decreasing) payoff if the Marginal Poten-
tial Benefits are higher (lower) than the marginal cost. Naturally, in Propositions 
1 and 2, this lemma is used to show whether a deviation of an agent by add-
ing/removing a link is positive. 

Consider an agent i in network g. Let ( )g ij g ij+ −  be the network that re-
sults from the addition (elimination) of the link ,i jg  by i. In g ij+ , the set of 
all agents that i observes can be partitioned into three sets. The first set contains 
all agents that i observes in g, and the addition of ,i jg  does not generate a new 
optimal path. On the other hand, the second set contains all agents that i ob-
serves in g, the addition of ,i jg  generates a new optimal path to these agents. 
The third set contains all agents that i observes in g ij+  but not in g. These 
three sets are formalized as follows. 

( )
( ) ( ){ }

1
,

, ,

;

| ( ; ) ; ( )

i j

i j i j

N i g g

j N j N i g j N i g ij g g ij

→

 = ∈ ∈ ∧ ∈ + ∧ = + P P
 

( )
( ) ( ) ( ) ( ){ }

2
,

, ,

;

| ; ;

i j

i j i j

N i g g

j N j N i g j N i g ij g g ij

→

 = ∈ ∈ ∧ ∈ + ∧ ≠ + P P
 

( ) ( ) ( ){ }3
,; | ; ;i jN i g g j N j N i g j N i g ij→ = ∈ ∉ ∧ ∈ +  

Consider all agents in ( )1
,; i jN i g g→ . Although i can use the same optimal 

paths to observe them, in g ij+  the value of information that he receives from 
these agents are lower than what he receives in g because ( ) ( ); 1; i gi g ij µσ ς ++ = . 
This decline in i’s benefits, and the link formation cost c, are together called 
Marginal Cost of i for adding ,i jg  to g. 

Definition 3 (Marginal Cost). Let ( )1
,; i jN i g g→  be defined as above, the 

marginal cost of i for adding ,i jg  to g is  

( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( )

( )

1
,

1
,

, ;

; 1

;
;

;
i j

i j

i j il ill N i g g

i g
il ill N i g g

i g

MC i g g c V g V g ij

c V g V g µ

µ

ς

ς

∈ →

+

∈ →

→ = + − +

 
 = + −
 
 

∑

∑
 

The last inequality follows from the fact that the only difference between g 
and g ij+  is the addition of ,i jg . As a result, ( ) ( ); ; 1i g ij i gµσ ς+ = + ,  
( ) ( ); 1; j gj g ij µσ ς ++ =  and ( ) ( );; k gk g ij µσ ς+ =  for all ,k i j≠ . 
Consider all agents in ( )3

,; i jN i g g→ . Because i can observe in g ij+  but 
not in g, The value of information from these agents that i receives are consi-
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dered as i’s benefit from the link ,i jg . Moreover, consider all agents in 

( )2
,; i jN i g g→ . These are agents that i does observe in g. But by adding ,i jg  

he is able to find new optimal paths to reach them. Observe, however, that these 
new paths in g ij+  may yield benefits to i that are higher, lower, or equal to the 
optimal paths in g due to the concave decreasing nodewise decay. The gain from 
being able to observe ( )3

,; i jN i g g→  and the potential gain/loss from finding 
new paths to observe agents in ( )2

,; i jN i g g→  are together called Marginal 
Potential benefit of i for adding ,i jg  to g. 

Definition 4 (Marginal Potential benefit). the marginal potential benefit of i 
for adding ,i jg  to g is  

( ) ( ) ( ) ( ) ( ) ( )( )3 2
, ,, ; ;

;
i j i ji j il il ill N i g g l N i g g

MPB i g g V g ij V g ij V g
∈ → ∈ →

→ = + + + −∑ ∑ . 

Having defined the marginal cost and marginal potential benefit, we are ready 
to introduce the following Lemma. 

Lemma 3. Let ( ),; i jMPB i g g→  and ( ),; i jMC i g g→  be defined as above. 
We have: 

1) ( ) ( ) ( ) ( ), ,; ; ; ;i j i jU i g ij U i g MPB i g g MC i g g+ − = → − →  

2) (link addition proofness) If ( ) ( ), ,; ;i j i jMPB i g g MC i g g→ > → , then g is 
not Nash 

3) (link deletion proofness) If ( ) ( ), ,; ;i j i jMPB i g g ij MC i g g ij→ − < → − , 
then g is not Nash 

Proof. The first part is a direct consequence of how ( ),; i jMPB i g g→  and 
( ),; i jMC i g g→  are defined. The second part directly follows the first part, 

stating that 𝑖𝑖 has a positive deviation from his strategy in g by adding ,i jg  if 
his marginal potential benefit for adding ,i jg  is higher than the marginal cost. 
The third part is analogous to the second part, stating that i has a positive devia-
tion from his strategy in g by eliminating ,i jg , if his marginal potential benefit 
for adding ,i jg  to g ij−  is higher than the corresponding marginal cost.   □ 

1.2. Proofs of the Propositions 

Proof of Proposition 1. The proof consists of four steps. In the first three steps, 
we eliminate certain set of networks from being candidates for Nash networks. 
First, all networks that contains an agent that has more than two links are elimi-
nated. This follows that a non-empty component of Nash network is either a 
wheel or a line. We subsequently eliminate the wheel in the second step. In the 
third step, all lines that contain an agent that receives one link and also estab-
lishes a link are eliminated. As a result of these three steps, a component in Nash 
network is a three-agent periphery sponsored star, a pair, or a singleton. Finally, 
in the fourth step we identify the exact combinations of these three types that are 
Nash for each pair of c and 2ς . This is achieved through direct substitution. 

Step 1: A network that contains an agent that has more than two links is  

not Nash. Let this agent be i. Observe that 3 4 0ς ς= = =  because 2
1
2

ς ≤   
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and ς  is strictly concave. Therefore, ( ) ( );; 0i gi g µσ ς= = . It follows that if i 
accesses an agent in this network, he is strictly better off removing the link to 
save the cost c. Conversely, if i is accessed by an agent j, for the same reason j is 
better off removing the link. Due to these deviations this network is not Nash. 

Step 2: A network that contains a component that is a wheel is not Nash. 
Consider an agent i who establishes a link in a wheel. Without loss of generality 
enumerate the agents in wheelg  according to Figure A1. Let 1i = . Observe that 
his direct neighbors are 2 and n′ . Observe further that if he removes the link 

1,ng ′  this wheel becomes a line. Denote this wheel and line by wheelg  and lineg  
respectively. In what follows it is shown that he is strictly better off removing the 
link 1,ng ′ . 

Consider an agent 1k ≠ . There are two 1k-paths through which 1 observes k. 
One contains 1,ng ′  and the other one does not. Observe that the latter coexists 
with 1k-path in lineg  but the former does not. Denote these two paths by wheel

1,kP  
and line

1,kP  respectively. Observe further that: 
• ( )wheel

1,1 2V g ς=  and ( )line
1,1 1 1V g ς= =  

• for 1,k n′≠ , ( )wheel wheel 2
1, 2; n k

kV P g ς ′− += , ( )line wheel
1, 2; k

kV P g ς=  and,  

( )line line 1
, 2; k

i kV P g ς −=  

• for k n′= , ( )wheel wheel 2
1, 2;kV P g ς= , ( )line wheel

1, ; n
kV P g ς ′=  and,  

( )line line 2
1, 2; n

nV P g ς ′−
′ =  

As a result, ( ) ( )wheel wheel 2 line wheel
1, 2 1, 2; ;n k k

k kV P g V P gς ς′− += > =  for 2
2

nk +
> .  

This in turn entails that in this wheel wheel
1,kP  is a unique optimal path for  

2
2

nk +
> . Based upon these observations, the marginal potential benefits and  

marginal cost are expressed below: 

( ) ( ) ( )
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Figure A1. A wheel with n′  agents, enumerated from left to right. 
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Because 2
1
2

ς < , it holds true that  

( ) ( )wheel wheel
1, 1,1; 1 1; 1n nMC g g n MPB g g n′ ′′ ′→ − > → − . Consequently, through 

Lemma wheel1g  is not Nash. 
Step 3: if a component of a network is a line that is neither a three-agent 

periphery-sponsored star nor a pair6, then this network is not Nash. The 
proof is by contradiction. Suppose that the component is neither a three-agent 
periphery-sponsored star nor a pair, so that the component has at least three 
agents. It is straightforward to check that in such a component there exists an 
agent who has two links such that one of the links is formed by himself. Let this 
agent be i and the link be ,i jg . In what follows it is shown that i is strictly better 
off deleting ,i jg . 

First, observe that without ,i jg  i is disconnected from the line that contains j.
g ij−  thus consists of two components, one contains j and the other one con-
tains i. Denote these two components by jg  and ig  respectively. Suppose that 
there are n′  agents in jg , i’s marginal potential benefits for adding ,i jg  to 
g ij−  are: 

( ) ( ) ( )line line line
, 2; ; ;i jMPB i g g ij i g j gσ σ ς→ − = =  

if 1n′ = , and for 1n′ >  

( ) ( ) ( )

( ) ( )

1
line line line

, , ,
1

1
line 1 line

2 2
1
1

1
2 2 2 2

1

; ; ;

; ;

n

i j i k i n
k

n
k n

k
n

k n

k

MPB i g g ij V i g V i g

i g i gς σ ς σ

ς ς ς ς

′−

′
=

′−
′−

=

′−
′−

=


→ − = + 



= +

= +

∑

∑

∑

 

To compare the marginal potential benefits with the marginal cost, in what 
follows we identify a lower bound of ( )line

,; i jMC i g g ij→ − . Beside the cost c, 
i’s nodewise decay drops from 1ς  to 2ς  if he establishes ,i jg . Therefore, the 
lower bound ( )line

,; i jMC i g g ij→ −  is ( ) ( )1 2 21MC c cς ς ς= + − = + − . 

Because 2
1 1,
2 2

MCς ≤ >  and ( )line
,

1;
2i jMB i g g ij→ − ≤ . Therefore,  

( ) ( )line line
, ,; ;i j i jMC i g g ij MPB i g g ij→ − > → − . Applying Lemma 3 to this in-

equality, it is concluded that i is strictly better off deleting ,i jg . 
Step 4: Equilibrium Characterization for each pair of c and 2ς . As a result 

of the three steps above, every Nash network is a combination of components 
that are a three-agent periphery sponsored star, a pair, or a singleton. Therefore, 
it is straightforward to identify which combination constitutes a Nash network. 
First, all deviations that arise from every combination are categorized. Each dev-
iation is further coupled with the deviating agent’s payoff as a result of deviation 
and his payoff when he does not deviate. We then substitute the value of each 
pair of c and 2ς  to identify whether the deviation is positive. The combinations 

 

 

6Three-agent periphery-sponsored star and pair are lines 
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that have no positive deviations are concluded to be Nash networks accordingly. 
To minimize the tedium, Step 4.1 and 4.2 below eliminate some types of devi-

ations by pointing out that they are never positive. 
Step 4.1: In a network where each component is a three-agent peri-

phery-sponsored star, a pair, or a singleton, a deviation that causes the de-
viating agent to have more than one link is never a positive deviation. This 
result is a direct consequence of Step 2 and 3. Let i be an agent that does this 
deviation. This entails that i forms a link with an agent j. If j is in the same com-
ponent as i, then this component becomes a wheel. However, in Step 2 it is 
shown that i’s payoff in a line is higher than his payoff in a wheel. Consequently 
this deviation does not make i better off. 

Step 4.2: if c < 1, then a network that contains more than one singleton is 
not Nash. Let i and j be singletons. If i accesses j, his payoff is ( )1 1 c+ − . If i 
does not access j, he remains isolated and his payoff is 1. Therefore, if 1c <  i 
has a strictly positive deviation by accessing j. 

Step 4.3: Equilibrium Characterization for each pair of c and 2ς . Using Step 
4.1 and 4.2, we classify all networks that remain candidates for Nash networks 
into seven classes as follows. 

1) At least one A, at least one B, exactly one C 
2) At least one A, at least one B, no C 
3) At least one A, no B, exactly one C 
4) No A, at least one B, exactly one C 
5) All A 
6) All B 
7) All C (only for 1c ≥ ) 
Finally, identification of Nash network is achieved in the following manner. 

For each agent in each type of component, all deviations except those eliminated 
by Step 4.1 and 4.2 are listed and coupled with their deviationbased payoffs and 
no-deviation payoffs. Figures A2-A4 illustrate such. By substituting the value of 
c and 2ς  into the payoffs and subsequently comparing them, we reach the re-
sult of Proposition 1. 

□ 
Proof of Proposition 2. In a minimal network g, let *i  be an agent that has a 

link with an end node. Let ˆ1, , nj j  be the end nodes that have a link with *i . 
Suppose that *i  is accessed by 1j . We partition the set of all neighbors of 1j ,

( )1;N j g , into three subsets as follows: (i) ( ) { }1 *
1;N j g i= , (ii)  

( ) { }2
ˆ1 2; , , nN j g j j=  , and (iii) ( ) ( ){3 *

1 1; ; |N j g k N j g k i= ∈ ≠  and  
}ˆ2 , , nk j j≠  . For each of these subsets, the value of information that 1j  rece-

ives in g is identified. Subsequently, it is again identified under the assumption 
that 1j  removes *

1,j i
g  and accesses 2j  instead. We then compare the payoff 

of 1j  in g with his payoff in g ′ , where g ′  is the network resulted from the 
removal of the link *

1,j i
g  and the addition of the link 

1 2,j jg  (See Figure A5 for 
an illustrated example). Finally, it is shown that his payoff in g ′  is higher than  

https://doi.org/10.4236/tel.2023.133030


B. Charoensook 
 

 

DOI: 10.4236/tel.2023.133030 482 Theoretical Economics Letters 

 

 

 
Figure A2. Deviations by agents in a three-agent periphery-sponsored star. 
 

 
Figure A3. Deviations by agents in a pair. Without loss of generality, it is supposed that deviations are caused by agent 1b . Notice 
that deviations from 2b  are not listed as a result of Step 4.1. 

 

 
Figure A4. Deviations by an agent that is a singleton. Without loss of generality, it is assumed that all deviations are from agent 1c . 
 

 
Figure A5. The networks g and g′  in Proposition 2. Observe that in 
g′  1j  accesses 2j  instead of *i , unlike in g. Observe that in g, 
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ˆ 3n = , ( ) { }1 *
1;N j g i= , ( ) { }2

1 2 3; ,N j g j j= , ( ) { }3
1 1 2; ,N j g k k= . 

his payoff in g. This is the strategy of this proof. 
To identify the value of information that 1j  receives, the number of links 

that agents have in g and g ′  are identified as follows: since the only difference 
between g and g ′  is that in g 1j  accesses *i  but in g′  1j  accesses 2j , we 
have ( ) ( )* *; ; 1i g i gµ µ′ = − , ( )2 ; 1j gµ =  but ( )2 ; 2j gµ ′ = , and  
( ) ( ); ; 1k kj g j gµ µ ′= =  for 2k ≠ . 
Using the above information, 1j ’s payoff in g is: 

( ) ( )
( )

( )
( )

( )

( )
( ) ( )

1 1 1 1
1 2

1 1

1
3

1

1 , , ,
; ;

, 1
;

;

;

j j j l j l
l N j g l N j g

j l
l N j g

U j g V g V g V g

V g c j gµ
∈ ∈

∈

= + +

+ − ⋅

∑ ∑

∑
 

Therefore, 

( ) ( ) ( ) ( )

( )
( )

( ) ( ) ( )
1

3

1 ; ;

1

, 1; ;
;

ˆ; 1 1

;

k k

k k

j g j g

j lj g j g
l N l g

U j g n

V g c j g

µ µ

µ µ

ς ς

ς ς
−

∈

= + + −

 + − ⋅ ∑
         (1) 

Next, 1j ’s payoff in g ′  is identified below. It makes use of the fact that in-
formation of *i  flows to 1j  via 2j . Moreover, for any agent  

( ) ( )2 3
1 1; ;l N j g N j g∈   and 2l j≠ , notice that l’s information flows to *i , 

2j  and 1j  in sequential order. As a result, 1j ’s payoff in g ′  is: 

( ) ( )
( )

( ) ( )
( ) { }

( )

( )
( ) ( )

( ) ( ) ( ) ( ) ( )(

( ) { }
( ) ( ) ( ) ( )

( ) ( ) ( )
( )

( )

1 1 1 1 2 1
1 2

1 1 2

1
3

1

2
1 2

*
3

1

1 , , , ,
; ;

, 1
;

*
1 2 1 2

*
1 2

;

*
1 2 ,

;

;

;

1 ; ; ; ; ;

; ; ; ;

; ; ;

j j j l j j j l
l N j g l N j g j

j l
l N j g

l N j g j

i l
l N j g

U j g V g V g V g V g

V g c j g

j g j g i g j g j g

j g j g i g l g

j g j g i g V g

µ

σ σ σ σ σ

σ σ σ σ

σ σ σ

∈ ∈

∈

∈

∈

 
′ ′ ′ ′ ′ = + + +

 
 

′ ′+ − ⋅

′ ′ ′ ′ ′= + +

′ ′ ′ ′+

′ ′ ′ ′+

∑ ∑

∑

∑

∑





( ) ( ) ( )

( )

1*
1 2

1

; ; ;

;

j g j g i g

c j g

σ σ σ

µ

−
 ′ ′ ′ 

′− ⋅

 

Therefore, applying the fact that ( ) ( )* *; ; 1i g i gµ µ′ = − , and ( )2 ; 1j gµ =  
but ( )2 ; 2j gµ ′ = , we have: 

( ) ( ) ( ) ( )( )
( )

( )
( ) ( ) ( )*

3
1

1 2 2 2; 1 ; 1

1

2 2 1; 1 ; 1,
;

ˆ; 1 2

;

k k

k k

j g j g

j g j gi l
l N j g

U j g n

V g c j g

µ µ

µ µ

ς ς ς ς ς

ς ς ς ς µ

− −

−

− −
∈

′ = + + + −

 ′ ′+ − ⋅ ∑
    (2) 

To be able to compare Equation (1) with (2), in what follows, it is shown that: 

( )
( ) ( )

( )
( ) ( )1 1

3 3

1 1

, , 2; ; 1
; ;

k kj l j lj g j g
l N l g l N l g

V g V gµ µς ς ς
− −

−
′∈ ∈

   ′=   ∑ ∑  

First, notice that 1j l -path is unique for any ( )3 ;l N l g∈  because g and g ′  

https://doi.org/10.4236/tel.2023.133030


B. Charoensook 
 

 

DOI: 10.4236/tel.2023.133030 484 Theoretical Economics Letters 

 

are minimal. This in turn necessitates that *i  has at most one link with an 
agent that is not an end node. Let this agent be k. Thus, for any ( )3 ;l N l g ′∈  
the sequence of agents in ( )

1,j lP g  and ( )
1,j lP g ′  are *

1, , , ,l k i j  and  
*

2 1, , , , ,l k i j j  respectively. Consequently, 

( )
( )

( )
( )

( )
( )

( )

( )
( )

( ) ( ) ( )

1
, , *1 , 1

*, 1

,

, , 1;

; ; ;

;

j l l k i j

k

i j

j l
x P g x P g x P g

l k l k j g
x P g

V g x g x g x g

V g x g V g µ

σ σ σ

σ ς ς

∈ ∈ ∈

∈

  
 = =      

 
 = =
 
 

∏ ∏ ∏

∏

      (3) 

( )
( )

( )
( )

( )
( )

( )

( )
( )

( ) ( ) ( )

1
, , *1 , 1

2
*, 1

,

, , 1; 1

; ; ;

;

j l l k i j

k

i j g

j l
x P g x P g x P g

l k l k j g
x P

V g x g x g x g

V g x g V g
µς ς

σ σ σ

σ ς ς
′

′ ′ ′∈ ∈ ∈

−
∈

  
 ′ ′ ′ ′= =      

 
 ′ ′ ′= =
 
 

∏ ∏ ∏

∏

    (4) 

Since the only difference between g and g ′  is the fact that 1j  removes his 
link with *i  in g and accesses 2j  instead in g ′ , it holds true that 

( ) ( ), ,l k l kV g V g′ = . Applying this fact to Equation (3) and (4) above, we have: 

( )
( ) ( )

( )
( ) ( )1 1

3 3

1 1

, , 2; ; 1
; ;

k kj l j lj g j g
l N l g l N l g

V g V gµ µς ς ς
− −

−
′∈ ∈

   ′=   ∑ ∑  

Finally, since σ() is strictly concave, ( ) ( )2 ; ; 1k kj g j gµ µς ς ς −> . This inequality, 
coupled with the Equation (3c) above, entail that ( ) ( )1 1; ;U j g U j g′ >  when 
Equation (1b) is compared with (2b). This completes the proof.             □ 
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