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Abstract 
The objective is to assess the performance of different methods to derive an 
estimate of internal rate of return (IRR) for startups. Koyck transformation is 
first used to estimate the parameters of a distributed revenue lag model which 
are then used to derive IRR. For estimation different scenarios of artificial 
time series of expenditure and revenue are constructed to describe the early 
years of startups. These scenarios are based on different parameter values of 
the distributed lag function and are classified into nine experiments. The 
performance of the following six different estimation methods are compared 
with each other in these nine experiments: unrestricted OLS, OLS through the 
origin (RTO), restricted OLS, Least Absolute Deviation (LAD), Ridge Regres-
sion (RR), and restricted Maximum Likelihood (ML). The experimental re-
sults indicate that the most efficient estimation method is the Ordinary Least 
Squares (OLS) method where the regression is forced through the origin 
(RTO). The least efficient method is the unrestricted OLS, which emphasizes 
the importance of RTO. 
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1. Introduction 

Startups have a remarkable impact on economies that are willing to invest in 
innovations and growth. The first years of startups are typically full of financial 
difficulties and about 45% - 50% of startups fail during the first five years, in a 
valley of death (U.S. Bureau of Labor Statistics, 2022; Eurostat, 2022). The im-
portance of startups and their high failure risk have made the early years of star-
tups a popular theme in business research but also in government policy debate 
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(Davila, Foster, He, & Shimizu, 2015). It is often argued that the failures are a 
result of that startups having insufficient finance to carry out their business in 
the first years (Huynh, Petrunia, & Voia, 2012). Startups have (due to a high risk 
to fail) difficulties in raising equity capital and are forced to rely on borrowing. 
Moreover, startups suffer from insufficiency of internal finance that should, 
however, be the main source of financial capital (Zingales, 1998). In startups, 
insufficiency of internal finance is strongly related to profitability, growth, and 
the length of lag in revenue generation. If a startup grows quickly, has a low 
profitability, and has a long lag in revenue generation, it evidently runs into dif-
ficulties with internal financing in the first years. 

The importance of startups makes it essential for investors, financers, entre-
preneurs, and public actors to understand how to assess the long-term profita-
bility of startups. The task is difficult, since the first years can be difficult for a 
startup that is anyway profitable but grows too quickly or generates revenues too 
slowly. In these early years, all yearly financial ratios can refer to serious finan-
cial difficulties even if the long-term profitability of a startup is good (Laitinen, 
1992; Laitinen, 2017). It is expected that the most efficient firms should receive 
financing and have higher valuations than worse firms (Ak, Dechow, Sun, & 
Wang, 2013). However, it is not an easy task to assess the efficiency of startups 
on the basis of early financial time series which include intertwined information 
that is difficult to interpret. The critical task is to assess whether the actual rela-
tion of revenues to expenditures (that determines the amount of internal fi-
nancing), is a result of low profitability (inefficiency), fast growth, or slow gen-
eration of revenues.  

When assessing the efficiency of a startup, long-term profitability as measured 
by the internal rate of return (IRR) plays the central role. The main problem is 
that IRR is not directly observable but must be estimated from non-steady and 
short time series of startups, which makes the use of complicated models and 
methods difficult. In this kind of situation, a simple distributed lags model can 
be applied. Estimation can be carried out using the simplified Koyck transfor-
mation according to which revenue (as a dependent variable) is presented as a 
function of expenditure and lagged revenue as independent variables (Koyck, 
1954). The coefficients of the independent variables can be used to derive IRR. 
The Koyck transformation makes the estimation look straightforward but ac-
tually it is a very challenging task (Franses & van Oest, 2004; Hall, 2007). The es-
timates of the coefficients are typically very slippery. The objective of the present 
study is to use this kind of approach to assessing the performance of different es-
timation methods to derive an estimate of IRR.  

There are only few studies considering estimation of IRR for startups. Laitinen 
(2017) used this kind of model to find different clusters of Finnish startups. He 
estimated long-term profitability as a form of IRR using the restricted OLS mod-
el, where the regression was forced through the origin and an additional restric-
tion on the revenue-expenditure ratio was incorporated in the estimation. Laiti-
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nen did not test the performance of the method but reported that for 35% of the 
startups, estimation was not technically successful. He also concluded that the 
sensitivity of the estimates made estimation very difficult. Later, Laitinen & Lai-
tinen (2022) presented several methods to estimate the revenue (generation) lag 
and, simultaneously, IRR for mature Finnish firms. The authors did not test the 
validity of the estimation methods, because it was not possible to know the cor-
rect value of IRR. They concluded their analysis by calling for new approaches to 
assess estimation methods in an experimental design where the correct values of 
parameters are given. This study is a response to this call to organize an experi-
mental design to test estimation methods. It is the first study that tests the per-
formance of different estimation methods, when applying the Koyck transfor-
mation to derive IRR for startups. The present approach makes it possible to as-
sess the accuracy and dispersion of different estimation methods since the cor-
rect IRR is given. Thus, the study provides us with important novel information 
on how to select the most efficient method for deriving IRR for startups.  

The content of this study is comprised of five sections. In the introductory 
section the motivation and the objective of the study are discussed. The second 
section presents the framework for the study. First, the generation of the relevant 
time series (revenue and expenditure) for the experiments is considered. In this 
context, a similar approach as used by Laitinen (2017) and Laitinen & Laitinen 
(2022) is applied to describe the non-steady early years of a startup. In the design, 
different scenarios of time series are classified into nine experiments. Secondly, a 
framework to estimate IRR using the simplified Koyck transformation is pre-
sented. Furthermore, the derivation of the IRR estimate from the coefficients of 
the independent variables, is discussed. In the third section, the estimation me-
thods are shortly discussed. In all, six different estimation methods are in the 
nine experiments compared with each other. The fourth section presents the re-
sults of the experiments. These results show that the most efficient estimation 
method is the Ordinary Least Squares (OLS) method where the regression is 
forced through the origin (RTO). Thus, this method is recommended for deriv-
ing IRR for startups also in practice. Finally, the last section summarizes the re-
sults of the study. 

2. Framework for Experimental Analysis 
2.1. Experimental Time-Series 

In this study, we will apply a similar business process model as Laitinen & Laiti-
nen (2022) to create the experimental data for the analyses. The objective is, 
however, to concentrate on simulation of the development of a startup in the 
first years as did Laitinen (2017). Boumans & Morgan (2001) define this kind of 
simulation methodology as a hybrid method involving an experiment with an 
econometric model designed to mimic some process or behavior. This metho-
dology is well-known but rarely applied in startup failure analysis. In testing of 
the estimation methods, it is important that we know the correct (actual) values 
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of the parameters to assess the performance of alternative methods. Therefore, 
we need a model that includes the long-term profitability as an input parameter. 
Following Laitinen (2017) and Laitinen & Laitinen (2022), the business model of 
this study, firstly, assumes that the expenditures of the startup grow at a constant 
rate as follows: 

( )0 1 t
tM M g= +                         (1) 

where M0 is the initial expenditure in period 0, Mt is expenditure in period t, and 
g is the constant rate of growth. This assumption simplifies the framework con-
siderably making the analysis mathematically tractable. In spite of this constant 
growth rate assumption for expenditure, the resulted time series of revenue will 
in the early stage of a startup be non-steady as it is in practice. In the passage of 
time, in a more mature stage of the startup, the time series of revenue is expected 
to approach a steady growth. 

Secondly, the business model assumes that there is a fixed cause and effect 
(causal) relationship between expenditure and generated series of revenue. It is 
assumed that each periodic expenditure generates an infinite series of revenue 
with an identical lag structure and the internal rate of return (IRR). It is assumed 
that the generated series of revenue follow an infinite geometric distribution 
with a constant lag parameter q. These are quite ordinary assumptions in this 
kind of distributed lag model of IRR (Luckett, 1984; Feenstra & Wang, 2000; 
Brief, 2013). In practice, the tail of the revenue distribution converges quickly so 
that the simplification provides a good approximation. Thus, the non-steady 
growth of revenues from period 0 to n can be expressed as follows: 
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where K is the level parameter of the lagged revenue distribution (Laitinen, 2017; 
Laitinen & Laitinen, 2022). Since the series of revenues follows an infinite geo-
metric distribution, the average lag between expenditure and generated revenue 
is q/(1 − q). In the early years, expenditure (1) typically exceeds revenue (2) 
creating the so-called valley of death for startups. In this period, financial ratios 
are usually very low.  

Equation (2) does not explicitly include IRR to make it possible to estimate 
long-term profitability. However, the level parameter K gives the revenue con-
tribution realized in the same period as the expenditure is made, as a proportion 
of this expenditure. Because K is assumed constant, it makes it possible to in-
corporate IRR or r into the framework. This level parameter K can be solved as a 
function of q and r in the following way assuming that n will approach infinity: 
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Equation (3) shows that the level K is the higher, the higher is r and the lower 
is q (the faster revenues are generated by expenditures). In constructing the ex-
perimental data of the study, we will use (2) and (3) to control the resulted time 
series Mt and Rt with respect to g, q, and r. We will construct both these time se-
ries for the years 1 - 10 in the early stages of the startup. The challenge of the 
study is whether we can estimate the long-term profitability IRR from these 
kinds of early non-steady and typically strongly correlating time-series.  

Laitinen (2017) has estimated the parameters of a similar distributed lag mod-
el for a large set of Finnish startups and used the estimates to cluster startups. 
For the whole sample, the average estimates in his sample were 0.0392 for the 
growth of expenditures g, 0.3862 for the lag parameter q, and 0.0445 for the IRR, 
r. On the basis of these values, we selected parameter values 0.04 (g), 0.40 (q), 
and 0.05 (r) to depict or simulate the time-series in the basic case (experiment). 
In bankrupt firms, the average parameter values were 0.0055 (g), 0.3468 (q), and 
−0.0093 (r). In this study, we, however, do not consider bankrupt firms. Table 1 
and Figure 1 show the time-series for the parameter values used in the basic case. 
Typically for a startup, revenues grow very slowly in the first years (valley of 
death) reflecting the non-steady development. However, revenues gradually ap-
proach the steady state in the last years when the business process of the startup 
is getting up in full action. These time series are deterministic although it is clear 
that actual time-series for startups are stochastic. Typically, the development of 
startups is non-linear and prone to interruptions and setbacks, which are sto-
chastic and quite difficult to explain using different variables and processes 
(Garnsey, Stam, & Hefferman, 2006). Therefore, we add a random generator in-
to the model to make the time series of Mt and Rt stochastic. However, we expect 
that the intrinsic time series when the stochasticity is neglected, behave as being 
produced by a similar business process as used here to construct the data. 

 
Table 1. Time series data using the parameter values of the basic case (without RAND).  

Period R M Lag(R) 

1 89.14 104.00 61.90 

2 102.61 108.16 89.14 

3 110.68 112.49 102.61 

4 116.69 116.99 110.68 

5 121.99 121.67 116.69 

6 127.13 126.53 121.99 

7 132.31 131.59 127.13 

8 137.65 136.86 132.31 

9 143.17 142.33 137.65 

10 148.90 148.02 143.17 

Legend: R = Revenue. M = Expenditure. Lag(R) = lagged revenue. Source: Time series are 
calculated for the parameter values r = 0.05 (IRR), g = 0.04 (growth of expenditure), and 
q = 0.40 (revenue lag). 
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Figure 1. Revenue R, expenditure M, and lagged revenue lag(R) in the basic case 
(without RAND).  

 
The random generator used in the study generates random variables which 

are used proportionally and applied on each of the yearly figures in the time se-
ries. Thus, each value of Mt and Rt (t = 1 to 10) will be multiplied by d that is a 
random variable between 1-RAND and 1+RAND conforming to the uniform 
distribution. The symmetricity of d makes the means of the time-series equal the 
original non-stochastic figures reflecting the correct value of r. It is clear that the 
simulated time series should have similarities with the actual time series. Figure 
2 presents the weighted average of the time series for 4207 Finnish startups 
(source: extracted from Orbis Privat Companies Database,  
https://www.bvdinfo.com/). The time series in Figure 1 and Figure 2 show 
strong similarities in spite of the unsteady development of the group of actual 
startups. In actual startups, the growth of revenues is also non-steady in the first 
years 1 - 4 but after that valley, revenue grows more steadily together with ex-
penditures. Although there are differences between the modelled and average 
actual time series, there are also strong similarities reflecting similarity of the 
business processes. Thus, the experiments can provide us with a realistic insight 
of the performance of the estimation methods in actual startup data.  

The design of this study is based on nine different experiments to test the ef-
fects of the control variables g, q, and r. In the basic case, RAND is set equal to 
10/1000 which means that d is uniformly distributed between the range from 
0.99 to 1.01. Each of the ten figures of the time series Mt and Rt is multiplied by d 
so that the total effect on the time series is not negligible taking account of that, 
in the basic case, the periodic growth rate of Mt is only 4%. In the experiments, 
the parameter values of the model are varied one at the same time so that the 
experiments describe cases higher/lower profitability, higher/lower growth, 
higher/lower lag parameter, and higher/lower risk (based on the value of RAND). 
The parameter values used in the nine experiments are presented in Table 2.  
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Figure 2. Time series of revenue R, expenditure M, and lagged revenue lag(R) 
as weighted average from 4207 Finnish startups. 

 
Table 2. Parameter values for the nine experimental cases (ceteris paribus analysis). 

 Parameter values 

Factor r g q RAND 

1. Basic case 0.05 0.04 0.40 10/1000 

2. Higher profitability 0.10 0.04 0.40 10/1000 

3. Lower profitability 0.02 0.04 0.40 10/1000 

4. Higher growth 0.05 0.08 0.40 10/1000 

5. Lower growth 0.05 0.02 0.40 10/1000 

6. Higher lag parameter 0.05 0.04 0.60 10/1000 

7. Lower lag parameter 0.05 0.04 0.20 10/1000 

8. Higher risk 0.05 0.04 0.40 20/1000 

9. Lower risk 0.05 0.04 0.40 5/1000 

Legend: r = IRR, g = growth rate of expenditure, q = revenue lag parameter, and RAND = 
random variable. Source: Parameter values in the basic case are based on the average val-
ues got by Laitinen (2017). Parameter changes in other cases are based on the selection 
made by the authors. 

 
The variation of the values is intended to reflect the normal range of the val-

ues so that extreme cases are not considered here. The design of the testing is 
constructed to follow the ceteris paribus (other things being equal) assumption, 
with respect to both the experiments and the methods (Boumans & Morgan, 
2001). This means that the random variables are kept equal, firstly, for each ex-
periment and, secondly, for each method. Thus, for every estimation method 
and experiment the constructed data are identical to allow a ceteris paribus 
comparison. It is important to note that we do not present any statistical tests for 
the estimates but only report how they are behaving in the experiments in the 
light of descriptive statistics. Especially, we are interested how the derived esti-
mate of IRR is behaving when different experiments are considered. This esti-
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mate will be derived using the estimates of K and q. 

2.2. Estimation of Profitability 

The non-steady first years make the estimation task difficult. However, after 
these few years the independent variables are strongly correlated and bring dif-
ficulties in terms of multicollinearity for the estimation of IRR. If we assume that 
the term qn+1 in (2) converges quickly after the foundation of the startup, we can 
approximate the relationship between Mt and Rt using the Koyck (1954) trans-
formation. This transformation makes it possible to estimate the parameters K 
and q from the simple relationship between Rt, Mt, and lagged Rt (Rt-1). Koyck 
transformation is a procedure used generally in time series analysis to transform 
an infinite geometric lag model into a model with lagged dependent variable 
(Franses & van Oest, 2004). In this case, the following simplified equation 
(without any random terms) is obtained through the transformation: 

1

1 1
1 1t t t t

t t t

g g qR M K R K M
g q g

R K M q R −

+ + −
= → =

+ − +
→ = +

⋅ ⋅ ⋅ ⋅

⋅ ⋅
             (4) 

Equation (4) shows that we can estimate K and q (and thus r) simultaneously 
from the time series of Rt and Mt. This linear relationship seems to be intuitively 
appealing for estimation but the estimation may suffer from serious statistical 
problems. Firstly, the transformed model is likely to have serial correlation in 
errors. Secondly, Mt and Rt-1 are usually strongly correlated leading to obvious 
difficulties with multicollinearity. The distributed lag model generally gives sta-
tistically highly significant estimates. However, these estimates can be remarka-
bly biased (Laitinen & Laitinen, 2022). In this study, the focus is set on how the 
derived estimates of r are behaving when different statistical methods are applied 
to the Koyck transformation (4) using artificial data from the early years of star-
tups.  

Equation (3) for K shows that using the estimates of K and q, the long-term 
profitability r can be derived in the following way: 

1
1

K qr
K
− −

=
−

                         (5) 

Thus, r or IRR will not be estimated directly but derived indirectly from the 
estimates of K and q. Factually, this means that an estimation method may give 
quite accurate estimates of K and q, but still a biased derived estimate for r. This 
happens if the interplay of the estimates of K and q in terms of Equation (5) is 
not consistent. If K and q both get too low estimates, 1 − K − q can be positive 
leading to a negative estimate of r although the correct value could be positive. 

The estimate of r is in fact quite sensitive to the deviations of K and q from 
their correct (actual) values. The sensitivity can be assessed using the partial de-
rivatives of r with respect to q and K as follows: 

1
1

r
q K
∂

=
∂ −

                          (6) 
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( )21
r q
K K
∂

=
∂ −

 

The partial derivatives in (6) are both positive which means that if the devia-
tions of K and q from the correct values are positive, the deviation of the derived 
r from its correct value is more positive. If the deviations of K and q have differ-
ent signs, they at least partly cancel each other when deriving r.  

The total change in r can be assessed by its total derivative, that approximates 
this change with respect to q and K. In this case, the total derivative of r is the 
following: 

( )2

0 if
1 1d

1 1 0 if
1

q q
q K Kr q K

q qK K
K K

∂= = ∂ −= ∂ + ∂  ∂− − > >
 ∂ −

             (7) 

This total derivative of r clearly shows that, in order to cancel each other, the 
deviations of q and K from their correct values must have different signs, since K 
< 1. For the normal values of q and K, their potential effects of deviation on r are 
relatively similar. For example, if q = 0.4 and K = 0.6, then the effects of devia-
tions on r cancel each other if they are equal but have different signs. It is im-
portant that the estimates of K and q together provide a proper estimate for 
profitability r. Therefore, we are interested the estimates of K and q separately, 
but the main interest will be laid on the derived estimate of r.  

3. Estimation Methods 

In practice, the early time series of startups typically consist a short of non- 
steady stage (years 1 - 5) and, after the valley of death, a more stable period for 
survivors towards steady growth path (years 6 - 10). The years in the valley of 
death are usually financially very poor and reflections of non-steady behavior of 
revenue time series. In later stages, the behavior of the time series of revenue is 
usually steadier making, however, the time series strongly correlate over time. 
Thus, for estimation of long-term profitability, we have typically about ten re-
levant observations, as in this experimental study, which are partly from a pe-
riod of non-steady behavior and partly from a period of strongly correlating 
time-series. Therefore, the nature and length of the data create a challenging en-
vironment for estimation. We have only ten observations for estimation, and 
therefore only simple (regression) estimation methods are applied. For the esti-
mation of the parameters K, q, and r, the following statistical methods are se-
lected: 

1) Ordinary Least Squares (OLS) (benchmark); 
2) OLS (through the origin, RTO); 
3) OLS (restricted); 
4) Least Absolute Deviation (LAD) (RTO); 
5) Ridge Regression (standardized); 
6) Maximum likelihood (ML) (restricted).  
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3.1. Ordinary Least Squares (OLS) 

First, we estimate the Koyck model using the ordinary least squares (OLS). In 
OLS, the coefficients of the model are estimated by the principle of least squares 
which means minimizing the sum of the squared differences between the de-
pendent variable and the prediction given by the linear function of the indepen-
dent variables, in the following way: 

( )2
0 1 1 2 2

1
min

n

i i i
i

MSE y x x
=

= − − −∑ β β β                (8) 

where y is R (revenue), x1 is M (expenditure), x2 is lagged R (revenue), and n is 
the number of observations (here, n = 10). For assessing the performance of the 
six estimation methods, OLS will act as a benchmark. In this study, the regres-
sion coefficients are solved using the Real Statistics Excel function RegCoeff (X, 
Y, TRUE)  
(https://www.real-statistics.com/multiple-regression/multiple-regression-withou
t-intercept/ regression-wo-constant-in-excel/). 

3.2. OLS (Through the Origin, RTO) 

The simplified form of the Koyck transformation (4) used here does not include 
any constant (intercept) for estimation. Thus, secondly, we also apply a multiple 
regression version (OLS) without a constant term (intercept) which is called a 
regression through the origin (RTO), to minimize the sum of squared errors: 

( )2
1 1 2 2

1
MSE min

n

i i i
i

y x x
=

= − −∑ β β                  (9) 

which is comparable with (8) neglecting β0. Most of the traditional properties for 
ordinary multiple regression OLS also hold for the RTO regression without the 
intercept term. Eisenhauer (2003) considers the circumstances where RTO is 
appropriate or even necessary. RTO may be unavoidable if transformations of 
the OLS model are needed to correct violations of the Gauss-Markov assump-
tions. There are also often a priori reasons for believing that y = 0 when x = 0 
and therefore omitting the constant (Eisenhauer, 2003: p. 76). In this study, it is 
clear that R = 0, when M = 0 and also lagged R = 0. This assumption is also used 
in constructing the experimental data for testing. The regression coefficients are 
solved using the Real Statistics Excel function RegCoeff (X, Y, FALSE) where 
FALSE refers to the regression analysis without the intercept coefficient (RTO) 
(https://www.real-statistics.com/multiple-regression/multiple-regression-withou
t-intercept/regression-wo-constant-in-excel/). 

3.3. OLS (Restricted) 

The estimation of the parameters in the Koyck transformation is challenging due 
to the sensitivity of the estimates but also because they (K and q) must together 
produce a proper derived estimate of the profitability r. Therefore, it seems to be 
reasonable to bind the estimates together using some additional restrictions in 
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the estimation. The third method used in this study is therefore the restricted 
OLS (ROLS), where the restrictions are applied to make the slippery estimates 
more stable (Laitinen, 2017; Johnston, 1972: pp. 155-159; Fomby, Hill, & John-
son, 1984: pp. 82-85). Equation (4) shows that: 

( ) ( ) ( )
1

1 1
1
K gR R Rg K q g

M g q M M
+

= → + + = +
+ −

            (10) 

which lead to the following matrices of linear restrictions: 

1 0 0

0 1 Rg
M

 
 =
 +
 

H  and 
( )

0

1R g
M

 
 =
 +
 

h             (11) 

These restrictions can be presented in a matrix form as h = H∙B, where B is 3 
× 1 matrix of estimates. The first restriction forces the regression through the 
origin (RTO) whereas the second restriction binds the estimates together using 
estimates of g and R/M. In this method, g was estimated by OLS from the time 
series of Mt using the logarithm of Mt as the dependent variable and time index 1 
- 10 as the independent variable. The revenue-expenditure ratio R/M was simply 
calculated summing up separately the last three values of Rt and Mt (observa-
tions 8 - 10) and calculating their ratio. The last observations were used, since 
the time series are all the time becoming steadier to reflect the actual R/M. Using 
the restrictions in (11) the restricted OLS solutions were calculated using a Visu-
al Basic (VB) program. 

3.4. Least Absolute Deviation (LAD) (RTO) 

OLS has also characteristics which may weaken its performance. Because the re-
siduals in OLS are squared, MSE gives extensive weight to extreme residuals 
(quadratic loss function). If the data includes outliers, OLS estimates may be 
badly distorted. The artificial data of this study has been constructed using the 
random generator to make uncertainty in observations, which may create un-
usual errors. In practice, outliers are not rare, since the growth of startups is 
generally unstable. Therefore, the fourth method used here to estimate the coef-
ficients of the Koyck transformation is the Least Absolute Deviation model 
(LAD). LAD is based on searching for the minimum sum of absolute errors in 
regression in the following way:  

1 1 2 2
1

MAE min
n

i i i
i

y x x
=

= − −∑ β β                (12) 

where MAE is the minimum sum of absolute errors. Thus, LAD is analogous to 
the least-squares technique of OLS, except that it is based on absolute residuals 
instead of squared ones. LAD is said to give a more robust set of estimates than 
OLS, if the data includes outliers. However, LAD may not have a unique solution 
and an infinite number of different regression lines may lead to an identical 
MAE. When the errors follow the Laplace distribution, the absolute errors esti-
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mates are maximum likelihood and hence asymptotically efficient (Thanoon, 
2015). There are different algorithms to find efficient estimates for the coeffi-
cients of the model (Chen & Derezinski, 2021). In this study, we use the method 
of iteratively reweighted least squares (IRLS) to solve the LAD estimates. IRLS is 
an iterative method in which each step involves solving a weighted least squares 
problem to find the maximum likelihood estimates of a generalized linear model. 
The process is here automated using the Real Statistics LAD Regression function 
LADRegCoeff (X, Y, FALSE, 100) where FALSE refers to the regression without 
an intercept and 100 is the number for iterations (25 is the default value) 
(https://www.real-statistics.com/multiple-regression/lad-regression/lad-regressi
on-analysis-tool/)  

3.5. Ridge Regression (Standardized) 

The fifth estimation method applied in this study is the Ridge regression (RR) 
that is a method of estimating the coefficients of multiple-regression models 
when the independent variables are highly correlated as in the data of this study. 
Following the Gauss-Markov Theorem OLS gives regression coefficients which 
are unbiased with the least variance. However, when the independent variables 
are strongly correlated leading to multicollinearity, these coefficients are slippery 
even to small changes in X. In this kind of situation, the variance of RR model 
(sum of squared errors, SSE) can be lower than that of OLS estimates but the es-
timates are biased. In the Ridge regression, bias is artificially incorporated to the 
regression equation to make the variance of the estimates lower. For RR, SSE can 
be presented in this analysis as follows: 

( ) ( ) ( )
2

2 T2 T
1 1 2 2

1 1
SSE

n

i i i j
i j

y x x Y XB Y XB B B
= =

= − − + = − − +∑ ∑β β λ β λ   (13) 

where lambda (λ) is a non-negative ridge parameter reflecting the bias.  
RR estimates are biased as lambda increases but may give more precise esti-

mates than OLS. If lambda = 0, RR returns to OLS. If lambda increases towards 
infinity, all the regression coefficients shrink towards zero. The essential ques-
tion in RR is, how to select lambda to get best estimates for the coefficients. It 
has been suggested that the value of lambda should be small enough such that 
the SSE of RR is less than the SSE of OLS (Hoerl, Kennard, & Baldwin, 1975). 
Researchers have proposed different techniques of estimation for the lambda 
parameter (Lukman & Ayinde, 2016; Duzan & Shariff, 2015). In this study, we 
use RidgeRegCoeff (X, Y, lambda, TRUE) to solve the standardized coefficients 
(without an intercept) for Mt and Rt-1  
(https://www.real-statistics.com/multiple-regression/ridge-and-lasso-regression/
ridge-regression-example/). The lambda parameter is solved simply by the Real 
Statistics function RidgeLambda (X, 5, 100) that gives the lowest lambda value 
for RR in X that generates a maximum VIF value less than 5 (default VIF value). 
The function is allowed to use 100 iterations in the search (default value is 25).  

https://doi.org/10.4236/tel.2022.126096
https://www.real-statistics.com/multiple-regression/lad-regression/lad-regression-analysis-tool/
https://www.real-statistics.com/multiple-regression/lad-regression/lad-regression-analysis-tool/
https://www.real-statistics.com/multiple-regression/ridge-and-lasso-regression/ridge-regression-example/
https://www.real-statistics.com/multiple-regression/ridge-and-lasso-regression/ridge-regression-example/


E. K. Laitinen, T. Laitinen 
 

 

DOI: 10.4236/tel.2022.126096 1785 Theoretical Economics Letters 

 

3.6. Maximum Likelihood (ML) (Restricted) 

The parameters of a Koyck linear regression model can be estimated also using a 
maximum likelihood estimation (MLE) procedure. MLE is a probabilistic 
framework for finding the probability distribution and parameter estimates that 
best describe the observed data. MLE differs from OLS in that OLS does not 
make any assumption of the probabilistic nature of the variables and is, therefore, 
regarded as deterministic whereas MLE is probabilistic by nature. In MLE, the 
parameters are estimated by maximizing a likelihood function in the way that 
the observed data is most probable. The estimate that maximizes the likelihood 
function is called the ML estimate. In this study, we estimate the parameters of 
the Koyck model that in the general form can be presented as follows (Franses & 
van Oest, 2004): 

0 1 2 1 2 1t t t t tR K R − −= + + + −β β β ε β ε                 (14) 

which is called an ARMAX model. The autoregressive (AR) part concerns Rt−1, 
the moving average part (MA) concerns εt−1 and the explanatory variables part 
(X) concerns Kt. In this form, the Koyck model is complicated and iterative me-
thods are needed to solve the ML estimates. 

However, if we assume that εt is normally distributed with a zero mean and 
variance σ2, the ML estimates can be found maximizing the following condition-
al likelihood function (Klein, 1957): 

( ) 2
2

1

1log 2 log
2

n

t
t

L n
=

= − π + − ∑σ ε
σ

              (15) 

where n is the number of observations. In this simplification, to maximize the 
likelihood function L is equivalent to minimize the squared sum of errors which 
means that the ML estimates for β1 (K) and β2 (q) are equivalent to the OLS es-
timates. These assumptions mean that we have neglected the MA part of (14) 
making it possible to estimate the parameters by OLS. Franses & van Oest (2004) 
criticize this reduced form of the model, since εt−1 and Rt−1 may not be uncorre-
lated which can lead to a downward bias of β2 (q). If we add linear restrictions to 
the model, the OLS and ML estimates are not equivalent anymore, since they 
differ with respect to the restriction adjustment. The likelihood function of the 
restricted model is differentiable and the first-order conditions can be solved 
analytically to find the ML estimates. In this study, we calculated the ML esti-
mates using a Visual Basic (VB) program for the reduced Koyck model where 
the restrictions (11) were included. It is expected that the estimates are corre-
lated with the OLS estimates, since they differ only with respect to the adjust-
ment.  

4. Estimation Results 

There are many interesting points in the evaluation of the results from the expe-
riments. Firstly, we can compare the performance of the unstandardized OLS 
(OLSU) and the Ridge Regression (RR) to reveal the effect of adding the bias 

https://doi.org/10.4236/tel.2022.126096


E. K. Laitinen, T. Laitinen 
 

 

DOI: 10.4236/tel.2022.126096 1786 Theoretical Economics Letters 

 

(lambda). If lambda = 0, these methods give the same result. Secondly, we can 
assess the effect of forcing the regression through the origin (neglecting the in-
tercept) by comparing the performance of OLSU and RTO OLS (OLSRT). 
Thirdly, the effect of the revenue-expenditure restriction can be found when the 
results from OLSRT and the restricted OLS (ROLS) are compared with each 
other. Fourthly, the impact of the minimization of the sum of absolute errors in-
stead of the squared ones can be showed by comparing the performance of 
OLSRT and RTO LAD (LADRT). Sixthly, the comparison of the results from 
ROLS and the restricted MLE (RMLE) gives an insight how efficient MLE is, 
when compared with OLS. In this modelling, only the restriction adjustments 
make the differences between these estimation methods. In general, the purpose 
is of course to rank the methods with respect to their overall estimation perfor-
mance divided as 1) accuracy and 2) dispersion. 

4.1. Basic Case 

In the basic case, the average parameters from Finnish startups are used so that r 
= 0.05, g = 0.04, and q = 0.40. These values imply that the level parameter K = 
0.6190. In this case, uncertainty is not set at a very high level, since RAND = 10. 
For the 100 rounds run using the random generator, the average correlation be-
tween the independent variables Mt and Rt-1 is 0.935 leading to an average VIF = 
7.973 for both variables. Thus, there is multicollinearity in the estimation al-
though VIF is less than 10 that is sometimes regarded as the acceptable level. 
When the restriction VIF = 5 (usual standard) is set, the Real Statistics function 
returns 0.157 as the lowest average lambda value (for Ridge Regression) that ge-
nerates a maximum VIF value less than 5. This lambda value is used in RR to re-
flect bias. In general, multicollinearity is not very high which may make the ef-
fect of the bias on the estimates relatively small. The descriptive statistics of the 
estimation results from the experiment are presented in Table 3. 
 

Table 3. Descriptive statistics of the estimation results from the basic case.  

 
OLSU OLSRT ROLS LADRT RR RMLE 

Panel 1. Estimates of K (0.6190) 

Mean 0.6192 0.6218 0.6208 0.6210 0.6190 0.6203 

Standard Deviation 0.0521 0.0160 0.0165 0.0196 0.0520 0.0404 

Variation Coefficient 0.0841 0.0257 0.0265 0.0315 0.0840 0.0651 

10% percentile 0.5565 0.6014 0.6007 0.5979 0.5563 0.5756 

25% percentile 0.5880 0.6099 0.6093 0.6096 0.5878 0.5945 

Median 0.6208 0.6220 0.6193 0.6207 0.6206 0.6200 

75% percentile 0.6567 0.6331 0.6322 0.6348 0.6564 0.6486 

90% percentile 0.6779 0.6413 0.6405 0.6484 0.6775 0.6691 

Minimum value 0.4703 0.5704 0.5780 0.5665 0.4702 0.5052 

Maximum value 0.7328 0.6617 0.6675 0.6657 0.7323 0.7101 
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Continued 

Mean error 0.0002 0.0028 −0.0018 −0.0018 −0.0019 −0.0011 

Mean absolute error 0.0409 0.0130 0.0150 0.0173 0.0237 0.0312 

Number of estimates > correct value 51 56 48 48 45 47 

Number of estimates < correct value 49 44 52 52 55 53 

Panel 2. Estimates of q (0.40) 

Mean 0.3979 0.3970 0.3982 0.3982 0.3981 0.3989 

Standard Deviation 0.0298 0.0175 0.0187 0.0219 0.0298 0.0402 

Variation Coefficient 0.0749 0.0441 0.0470 0.0551 0.0747 0.1008 

10% percentile 0.3657 0.3759 0.3780 0.3707 0.3659 0.3523 

25% percentile 0.3773 0.3856 0.3871 0.3836 0.3775 0.3706 

Median 0.3960 0.3965 0.3984 0.3992 0.3961 0.3984 

75% percentile 0.4183 0.4104 0.4116 0.4124 0.4185 0.4238 

90% percentile 0.4334 0.4189 0.4199 0.4243 0.4335 0.4470 

Minimum value 0.3303 0.3525 0.3436 0.3479 0.3305 0.3096 

Maximum value 0.4828 0.4547 0.4438 0.4606 0.4828 0.5163 

Mean error −0.0021 −0.0030 −0.0018 −0.0018 −0.0019 −0.0011 

Mean absolute error 0.0237 0.0143 0.0150 0.0173 0.0237 0.0312 

Number of estimates > correct value 45 42 48 48 45 47 

Number of estimates < correct value 55 58 52 52 55 53 

Panel 3. Estimates (derived) of r (0.05) 

Mean 0.0546 0.0496 0.0499 0.0504 0.0542 0.0511 

Standard Deviation 0.0764 0.0053 0.0083 0.0080 0.0762 0.0097 

Variation Coefficient 1.3989 0.1066 0.1654 0.1589 1.4051 0.1902 

10% percentile −0.0272 0.0430 0.0400 0.0417 −0.0274 0.0400 

25% percentile −0.0043 0.0458 0.0445 0.0463 −0.0046 0.0440 

Median 0.0428 0.0498 0.0502 0.0501 0.0424 0.0509 

75% percentile 0.1009 0.0532 0.0561 0.0555 0.1003 0.0566 

90% percentile 0.1572 0.0564 0.0598 0.0596 0.1566 0.0627 

Minimum value −0.0989 0.0308 0.0213 0.0174 −0.0990 0.0253 

Maximum value 0.2613 0.0633 0.0721 0.0703 0.2599 0.0881 

Mean error 0.0046 −0.0004 −0.0001 0.0004 0.0042 0.0011 

Mean absolute error 0.0602 0.0042 0.0064 0.0060 0.0600 0.0075 

Number of estimates > correct value 47.0000 48.0000 53.0000 51.0000 46.0000 54.0000 

Number of estimates < correct value 53.0000 52.0000 47.0000 49.0000 54.0000 46.0000 

Legend: Correct values of the parameters are presented in parentheses. OLSU = OLS (unstandardized coefficients); OLSRT = OLS 
forced through the origin (RTO); ROLS = OLS (RTO) with revenue-expenditure restriction; LADRT = LAD forced through the 
origin (RTO); RR = Ridge Regression (standardized coefficients); RMLE = ML (RTO) with revenue-expenditure restriction. 
Source: Descriptive statistics calculated by the authors. 
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Panel 1 presents the descriptive statistics for the estimates of K (correct value 
is 0.6190). On average, all estimation methods give a quite accurate results so 
that the median of the estimates slightly exceeds the correct value. However, 
there are significant differences in the dispersion of the estimates. The estimates 
given by OLSU, RR, and RMLE clearly show a higher variation than estimates 
got by LADRT, ROLS, and OLSRT. The variation is largest for OLSU so that the 
minimum value is 0.470 and the maximum value is 0.733 reflecting a wide range 
of the estimate. The estimates of RR are very close to those of OLSU but anyway 
the bias has corrected the estimates to the right direction. It seems that the rough 
order of overall performance in estimation is ROLS, LADRT, OLSRT, RMLE, RR, 
and OLSU. 

Panel 2 presents the results of the estimation of q (the correct value is 0.400). 
For each estimation method, the estimates are on average close to the correct 
value but little below it. This means that when the estimates of K on average ex-
ceed the correct value, the errors partly cancel each other in (derived) estimation 
of r. The results can indicate that the neglection of the MA part of the original 
Koyck model may have led to a downward bias as commented by Franses & van 
Oest (2004). The highest dispersions of the estimates are found for RMLE, OLSU, 
and RR while OLSRT, ROLS, and LADRT has the lowest ones. For RMLE the 
minimum estimate is as low as 0.031 whereas the maximum is 0.516 leading to a 
large range of errors. The estimates for OLSU and RR are again very close to 
each other in the way that the bias (lambda) has corrected the estimates to the 
right direction. The estimation methods can be set in the following order of per-
formance: ROLS, OLSRT, LADRT, RR, OLSU, and RMLE. 

Panel 3 shows the results for the derived profitability r (0.05 is the correct 
value). The means of the estimates are close to the correct value with an excep-
tion for OLSU and RR, which give estimates that clearly exceed it. However, the 
medians of the estimates for these methods greatly underestimate r reflecting an 
asymmetric distribution of errors. The variations of the estimates for them are 
exceptionally high so that the mean absolute difference to the correct value is 
0.060 for both methods. Thus, in practice, these methods are useless in estima-
tion of profitability. OLSRT, ROLS, and LADRT show a quite equal high per-
formance whereas RMLE shows a lower one. The mean absolute errors of the es-
timates for OLSRT, ROLS, and LADRT are very small referring to a high per-
formance. The rough order of performance of the estimation methods can be set 
in the following way: OLSRT, ROLS, LADRT (very good methods), RMLE, 
OLSU, and RR.  

In summary, the results show that the bias in RR does not improve the per-
formance of OLSU. The revenue-expenditure restriction in ROLS does not in-
crease the efficiency of OLSRT that seems to be the most efficient method 
slightly beating LADRT. RMLE is more efficient in estimating r than in estimat-
ing K and q which may be due to the revenue-expenditure restriction that ties 
the estimates together. Table 4 shows that the estimates of r given by OLSU and 
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RR are fully correlated (1.000) due to the weak effect of lambda on RR estimates. 
In the same way, the estimates given by RMLE and ROLS are strongly correlated 
(0.968) maybe because these methods use similar restriction adjustments built 
on the OLS estimate. In the estimation of r, the methods can be classified into 
three groups on the basis of their efficiency: excellent or good methods (OLSRT, 
ROLS, and LADRT), satisfactory methods (RMLE), and poor methods (OLSU 
and RR). For the 100 experimental rounds, Figure 3 demonstrates the signifi-
cant differences in the estimates between the most efficient method OLSRT and 
OLSU, that is one of the most inefficient methods. The estimates of OLSRT for 
the rounds are without exception very close to the correct value of r (0.05). 
However, the estimates of OLSU have a very large dispersion around the correct 
value. The variation of the estimates given by OLSU is so large that it makes this 
method useless in practice. It also shows the crucial effect of forcing the regres-
sion through the origin on the estimates.  

 
Table 4. Pearson correlation coefficients between the profitability (r) estimates given by 
the different estimation methods in the basic case. 

 
OLSU OLSRT ROLS LADRT RR RMLE 

OLSU 1.0000 0.2451 0.6837 0.1060 1.0000 0.7944 

OLSRT 0.2451 1.0000 0.7217 0.7564 0.2455 0.6309 

ROLS 0.6837 0.7217 1.0000 0.5137 0.6839 0.9675 

LADRT 0.1060 0.7564 0.5137 1.0000 0.1064 0.4194 

RR 1.0000 0.2455 0.6839 0.1064 1.0000 0.7944 

RMLE 0.7944 0.6309 0.9675 0.4194 0.7944 1.0000 

Legend: For the abbreviations of the estimation methods see Table 3. Source: Pearson 
correlation coefficients calculated by the authors. 

 

 

Figure 3. The dispersion of the profitability (r) estimates given by OLSU and 
OLSRT in 100 rounds (the basic case). Legend: For the abbreviations of the esti-
mation methods see Table 3. 
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4.2. Experimental Cases 
4.2.1. Estimate of K 
Table 5 presents a summary of the descriptive statistics for the estimates of K 
with respect to accuracy and dispersion. Panel 1 presents the mean of the esti-
mates by method and experiment. This panel shows that the methods generally 
slightly overestimate K, if the means of the estimates are considered. OLSRT 
overestimates K in the first seven and LADRT in the first eight experiments re-
flecting the effect of the restriction (intercept = 0). In the high and low RAND 
circumstances, almost all methods underestimate K. RR underestimates K in six 
experiments, only high g and high q circumstances lead to a very small overes-
timation. For the high RAND circumstances, underestimation is significant. In 
general, for OLSU and RR, the means of the estimates are surprisingly close to 
the correct value. 

Panel 2 of the table presents the variation coefficients of the estimates by me-
thod and experiment. In all experiments, the ranks of the methods are identical. 
RR leads a slightly smaller variation than OLSU, but both methods have clearly 
the largest variations in each experiment. In the ranking of methods with respect 
to the variation coefficient, OLSTR shows the lowest variation followed by ROLS, 
LADTR, and, with a quite high variation, RMLE. The high RAND circumstances 
significantly increase variation especially for OLSU, RR, and RMLE. For OLSTR, 
ROLS, and LADTR also high q circumstances tends to increase variation.  

Panel 3 presents the mean absolute errors of the estimates. For this central 
measure of accuracy, the ranking of the methods is clear-cut. In each experiment, 
OLSTR leads to the smallest error closely followed by ROLS and LADTR. Clearly, 
the largest errors are given by OLSU whereas the second largest errors are got by 
RMLE. For this measure of accuracy, RR tends to significantly improve the esti-
mates when compared with OLSU. Thus, the incorporation of bias (lambda) in 
the model seems to shrink the absolute error. It is notable that the mean absolute 
errors for each method are quite same in the three first experiments (basic case, 
high r, and low r). Thus, the height of r does not affect the absolute error in the 
estimate of K. However, for the low q circumstances the errors are very large. 

4.2.2. Estimate of q 
Table 6 presents the descriptive statistics of the estimates of q with respect to 
experiment and estimation method. Panel 1 of the table presents the means of 
the estimates showing that all methods slightly underestimate q in all of the six 
first experiments. The only exception is found for RMLE in the low g circums-
tances. This underestimation may be due to the neglection of the MA part of the 
Koyck model (Franses & van Oest, 2004). In the low q circumstances, OLSU, 
ROLS, RR and RMLE lead to overestimation while in the high RAND circums-
tances it happens to OLSU, OLSRT, RR, and RMLE. However, in the low RAND 
circumstances all methods lead to overestimation of q. All six methods give the 
same results for the first three experiments (basic case, high r, and low r) indi-
cating that the height of profitability does not affect estimation. For these expe-
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riments, RMLE gives the average estimate closest to the correct value, followed 
by ROLS, LADTR, and RR. In the low RAND circumstances, every method leads 
to overestimation. Generally, the differences in the average estimates between 
the methods are quite small. 

 
Table 5. Descriptive statistics on the estimates of K (the level parameter of revenue distribution). 

Experiment OLSU OLSRT ROLS LADRT RR RMLE Correct value of K 

Panel 1. Mean of estimate 

Basic case 0.6192 0.6218 0.6208 0.6210 0.6190 0.6203 0.6190 

High r (0.10) 0.6365 0.6392 0.6381 0.6383 0.6363 0.6376 0.6364 

Low r (0.02) 0.6080 0.6106 0.6095 0.6097 0.6078 0.6090 0.6078 

High g (0.08) 0.6210 0.6217 0.6204 0.6210 0.6209 0.6214 0.6190 

Low g (0.02) 0.6119 0.6219 0.6209 0.6209 0.6119 0.6159 0.6190 

High q (0.60) 0.4295 0.4302 0.4331 0.4303 0.4293 0.4290 0.4286 

Low q (0.20) 0.8023 0.8101 0.8053 0.8130 0.8012 0.8046 0.8095 

High RAND (20) 0.5940 0.6187 0.6188 0.6228 0.5938 0.6013 0.6190 

Low RAND (5) 0.6138 0.6182 0.6186 0.6176 0.6135 0.6150 0.6190 

Panel 2. Variation coefficient 

Basic case 0.0841 0.0257 0.0265 0.0315 0.0840 0.0651 
 

High r (0.10) 0.0841 0.0257 0.0265 0.0315 0.0840 0.0656 
 

Low r (0.02) 0.0841 0.0257 0.0265 0.0315 0.0840 0.0647 
 

High g (0.08) 0.0698 0.0266 0.0278 0.0316 0.0697 0.0605 
 

Low g (0.02) 0.1225 0.0253 0.0259 0.0312 0.1224 0.0828 
 

High q (0.60) 0.1138 0.0159 0.0154 0.0236 0.1137 0.0800 
 

Low q (0.20) 0.0994 0.0508 0.0533 0.0565 0.0991 0.0862 
 

High RAND (20) 0.1753 0.0506 0.0522 0.0566 0.1752 0.1323 
 

Low RAND (5) 0.0362 0.0135 0.0144 0.0162 0.0362 0.0280 
 

Panel 3. Mean absolute error 

Basic case 0.0409 0.0130 0.0150 0.0173 0.0237 0.0312 
 

High r (0.10) 0.0420 0.0133 0.0150 0.0173 0.0237 0.0314 
 

Low r (0.02) 0.0401 0.0127 0.0150 0.0173 0.0237 0.0310 
 

High g (0.08) 0.0344 0.0132 0.0165 0.0184 0.0279 0.0315 
 

Low g (0.02) 0.0595 0.0128 0.0142 0.0166 0.0218 0.0386 
 

High q (0.60) 0.0390 0.0055 0.0083 0.0101 0.0169 0.0275 
 

Low q (0.20) 0.0617 0.0333 0.0386 0.0389 0.0474 0.0537 
 

High RAND (20) 0.0884 0.0258 0.0297 0.0304 0.0488 0.0671 
 

Low RAND (5) 0.0182 0.0067 0.0080 0.0095 0.0106 0.0142 
 

Legend: For the abbreviations of the estimation methods see Table 3. r = IRR, g = growth rate of expenditure, q = revenue lag 
parameter, and RAND = random variable. Source: From experimental values summarized by the authors. 
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Table 6. Descriptive statistics on the estimates of q. 

Experiment OLSU OLSRT ROLS LADRT RR RMLE Correct value of q 

Panel 1. Mean of estimate 

Basic case 0.3979 0.3970 0.3982 0.3982 0.3981 0.3989 0.4000 

High r (0.10) 0.3979 0.3970 0.3982 0.3982 0.3981 0.3989 0.4000 

Low r (0.02) 0.3979 0.3970 0.3982 0.3982 0.3981 0.3989 0.4000 

High g (0.08) 0.3972 0.3970 0.3985 0.3981 0.3974 0.3976 0.4000 

Low g (0.02) 0.3995 0.3970 0.3981 0.3983 0.3995 0.4034 0.4000 

High q (0.60) 0.5983 0.5981 0.5935 0.5981 0.5984 0.5978 0.6000 

Low q (0.20) 0.2032 0.1994 0.2044 0.1969 0.2040 0.2054 0.2000 

High RAND (20) 0.4111 0.4002 0.3993 0.3956 0.4112 0.4180 0.4000 

Low RAND (5) 0.4031 0.4010 0.4005 0.4018 0.4032 0.4042 0.4000 

Panel 2. Variation coefficient 

Basic case 0.0749 0.0441 0.0470 0.0551 0.0747 0.1008 
 

High r (0.10) 0.0749 0.0441 0.0470 0.0551 0.0747 0.1016 
 

Low r (0.02) 0.0749 0.0441 0.0470 0.0551 0.0747 0.1003 
 

High g (0.08) 0.0877 0.0484 0.0522 0.0581 0.0876 0.1000 
 

Low g (0.02) 0.0688 0.0422 0.0446 0.0529 0.0687 0.1227 
 

High q (0.60) 0.0349 0.0135 0.0137 0.0206 0.0349 0.0577 
 

Low q (0.20) 0.3014 0.2197 0.2278 0.2501 0.2990 0.3417 
 

High RAND (20) 0.1398 0.0854 0.0915 0.0972 0.1396 0.1900 
 

Low RAND (5) 0.0323 0.0232 0.0259 0.0284 0.0322 0.0426 
 

Panel 3. Mean absolute error 

Basic case 0.0237 0.0143 0.0150 0.0173 0.0237 0.0312 
 

High r (0.10) 0.0237 0.0143 0.0150 0.0173 0.0237 0.0314 
 

Low r (0.02) 0.0237 0.0143 0.0150 0.0173 0.0237 0.0310 
 

High g (0.08) 0.0279 0.0154 0.0165 0.0184 0.0279 0.0315 
 

Low g (0.02) 0.0218 0.0137 0.0142 0.0166 0.0218 0.0386 
 

High q (0.60) 0.0169 0.0067 0.0083 0.0101 0.0169 0.0275 
 

Low q (0.20) 0.0476 0.0354 0.0386 0.0389 0.0474 0.0537 
 

High RAND (20) 0.0489 0.0283 0.0297 0.0304 0.0488 0.0671 
 

Low RAND (5) 0.0106 0.0074 0.0080 0.0095 0.0106 0.0142 
 

Legend: For the abbreviations of the estimation methods see Table 3. r = IRR, g = growth rate of expemditure, q = revenue lag 
parameter, and RAND = random variable. Source: From experimental values summarized by the authors. 
 

Panel 2 presents the variation coefficients of the estimates. With respect to 
this dispersion measure the ranking of the estimation methods is clear. In each 
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experiment, the lowest variation coefficient has got by OLSTR followed by ROLS 
and LADTR. The highest variation coefficients have produced by RMLE (high-
est), OLSU, and RR. Generally, the coefficients are logically lowest in the low 
RAND circumstances and exceptionally high in the high RAND circumstances. 
However, these variation measures are clearly highest in the low q circumstances. 
Panel 3 presents the mean absolute errors for the estimation methods. Generally, 
the errors are the smallest for OLSTR, the second smallest for ROLS, the third 
smallest for LADTR, followed by RR, OLSU, and RMLE. The errors are excep-
tionally high in the low q and the high RAND circumstances. Similarly, they are 
exceptionally low in the low RAND circumstances. Thus, uncertainty in the 
form of RAND is an important source of the size of errors. 

4.2.3. Estimate of r 
Table 7 presents descriptive statistics of the (derived) estimates for r by estima-
tion method and experiment. For this study, these derived estimates are the most 
important estimates. Panel 1 presents the means of the (derived) estimates which 
in general are quite close to the correct value. In most circumstances, the esti-
mates given by OLSU, LADTR, RR, and RMLE overestimate r whereas the esti-
mates given by OLSRT and ROLS underestimate it. In the circumstances of high 
r, all methods slightly overestimate profitability. In the circumstances of low q, 
RR and OLSU give extremely low estimates whereas RMLE leads to an estimate 
clearly overestimating r. 

Panel 2 of the table presents the variation coefficients of the estimates by esti-
mation method and experiment. With respect to this dispersion measure, the 
ranking of the estimation methods is clear. The smallest coefficient of variation 
in each experiment has got by OLSTR followed by LADTR, ROLS, and RMLE. 
However, OLSU and RR have got exceptionally high coefficients in each experi-
ment, with an exception for the circumstances of the low q, where the coeffi-
cients are negative (due to a negative mean). With an exception for these nega-
tive values, all estimation methods have got a very high variation coefficient in 
the circumstances of the low r, the low q, and the high RAND. In practice, OLSU 
and RR are not useful estimation methods due to very high dispersion. 

Panel 3 presents the mean absolute errors in the (derived) estimation of r for 
each estimation method and experiment. The ranking of estimation methods 
with respect to this measure is clear-cut. The lowest mean of the absolute error 
has provided by OLSRT whereas the second lowest mean has got by LADRT and 
the third lowest by ROLS. In this ranking, OLSU and RR are clearly the last ones 
with very high mean absolute errors. The estimation methods have got the high-
est absolute errors in the circumstances of the low q and the high RAND. RMLE 
gives satisfactory errors but is clearly beaten by OLSRT, LADRT, and ROLS. 
However, RMLE has produced quite low errors especially in the circumstances 
of the low r and the high g, where g exceeds r (and steady ratio of revenue to ex-
penditure exceeds unity). 
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Table 7. Descriptive statistics on the estimates of r (IRR). 

Experiment OLSU OLSRT ROLS LADRT RR RMLE Correct value of r 

Panel 1. Mean of estimate 

Basic case 0.0546 0.0496 0.0499 0.0504 0.0542 0.0511 0.0500 

High r (0.10) 0.1075 0.1004 0.1005 0.1011 0.1070 0.1026 0.1000 

Low r (0.02) 0.0232 0.0192 0.0196 0.0200 0.0228 0.0204 0.0200 

High g (0.08) 0.0516 0.0490 0.0496 0.0500 0.0515 0.0501 0.0500 

Low g (0.02) 0.0580 0.0499 0.0502 0.0507 0.0579 0.0516 0.0500 

High q (0.60) 0.0534 0.0496 0.0468 0.0498 0.0531 0.0470 0.0500 

Low q (0.20) −0.0756 0.0495 0.0479 0.0518 −0.2620 0.0630 0.0500 

High RAND (20) 0.0584 0.0493 0.0469 0.0483 0.0579 0.0509 0.0500 

Low RAND (5) 0.0454 0.0504 0.0499 0.0508 0.0450 0.0500 0.0500 

Panel 2. Variation coefficient 

Basic case 1.3989 0.1066 0.1654 0.1589 1.4051 0.1902 
 

High r (0.10) 0.8607 0.0557 0.0787 0.0765 0.8618 0.1740 
 

Low r (0.02) 2.9160 0.3164 0.4616 0.4523 2.9528 0.3542 
 

High g (0.08) 0.6920 0.1487 0.2095 0.2089 0.6924 0.1579 
 

Low g (0.02) 2.7673 0.0963 0.1507 0.1364 2.7676 0.2617 
 

High q (0.60) 1.0571 0.0594 0.0791 0.0962 1.0592 0.0902 
 

Low q (0.20) −26.2703 0.2713 0.5007 0.3451 −11.6643 0.8726 
 

High RAND (20) 3.7435 0.2167 0.3348 0.3363 3.7587 0.4250 
 

Low RAND (5) 0.7174 0.0575 0.0889 0.0843 0.7211 0.0988 
 

Panel 3. Mean absolute error 

Basic case 0.0602 0.0042 0.0064 0.0060 0.0600 0.0075 
 

High r (0.10) 0.0724 0.0043 0.0061 0.0058 0.0722 0.0142 
 

Low r (0.02) 0.0534 0.0050 0.0071 0.0067 0.0533 0.0057 
 

High g (0.08) 0.0289 0.0059 0.0082 0.0077 0.0288 0.0062 
 

Low g (0.02) 0.1207 0.0038 0.0059 0.0051 0.1206 0.0105 
 

High q (0.60) 0.0449 0.0024 0.0039 0.0038 0.0449 0.0042 
 

Low q (0.20) 0.4532 0.0104 0.0175 0.0129 0.5848 0.0281 
 

High RAND (20) 0.1397 0.0086 0.0125 0.0122 0.1393 0.0153 
 

Low RAND (5) 0.0262 0.0024 0.0035 0.0035 0.0262 0.0039 
 

Legend: For the abbreviations of the estimation methods see Table 3. r = IRR, g = growth rate of expenditure, q = revenue lag 
parameter, and RAND = random variable. Source: From experimental values summarized by the authors. 
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5. Summary 

The objective of this study was to compare the performance of alternative estima-
tion methods in estimating the long-term profitability (r) of startups. The question 
is important, since most startups in the early stages suffer from a valley of death 
where the financial ratios are very low and do not predict future success properly. 
The distributed lag model based on the simplified Koyck transformation provides 
us with an approach to assess profitability of startups even from a short time-series. 
The objective was to use experimental design to assess different estimation me-
thods used to estimate the parameters of the model, especially r. This kind of ap-
proach is useful because it makes it possible to include the actual profitability in 
the experimental data and, therefore, assess the measurement error.  

The model used to construct the experimental data was based on the causal 
relationship between expenditures and revenues. It was assumed that a startup 
yearly invests an amount of expenditures that grow at a steady rate g. These 
yearly expenditures are assumed to create an infinite flow of geometrically dis-
tributed revenues with a lag parameter q and a constant r. Thus, the experiments 
were controlled by three parameters, g, q, and r. For each parameter two levels 
were constructed (High/Low) leading to 23 = 8 experiments, in all 9 with the ba-
sic case (experiment). In each experiment, randomized data were used to esti-
mate the three parameters of the Koyck model, the level parameter K, the lag 
parameter q, and, finally, the derived parameter r (calculated from K and q). Six 
different estimation methods (OLSU, OLSRT, ROLS, LADRT, RR, and RMLE) 
were assessed using descriptive statistics from the estimation in different expe-
riments (circumstances).  

The estimation methods generally slightly overestimated K and slightly unde-
restimated q. The underestimation of q may be a result of the neglection of the 
MA part of the Koyck model in estimation (Franses & van Oest, 2004). For r, the 
estimates were generally accurate with a slight overestimation (OLSU, LADTR, 
RR, and RMLE) or underestimation (OLSTR & ROLS). In almost all experi-
ments, the ranking of the six methods with respect to accuracy and dispersion 
was clear-cut: OLSTR (best), LADRT, ROLS, RMLE, RR, and OLSU (worst). The 
most challenging circumstances of the estimation methods were created by the 
experiment of the low q, where q was set to 0.2 to describe the circumstances of a 
labor-intensive startup or a retail startup with a very quick generation of reve-
nues. When q = 0.2, the average time lag between expenditure and revenue is 
only 0.25 year making the time-series of revenue and expenditure almost totally 
overlapping. Figure 4 shows the time-series (without RAND) for this experi-
ment reflecting a very difficult estimation task. The time series of revenue is 
non-steady only in years 1 - 2 leading to a very short valley of death, and after 
that there is very little information between revenue, expenditure, and lagged 
revenue to be used in the estimation of IRR.  

Table 8 presents a summary of the assessment of the six estimation methods 
for the estimation of the long-term profitability r. For each of the nine experi-
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ments, the table shows the rough ranks of the methods with respect to the effi-
ciency of estimation. The ranks indicate that OLSRT is the superior estimation 
method. In the experiments of the low r and high g (where r < g), OLSRT unde-
restimated r and was therefore slightly beaten by RMLE. In these experiments 
only, the (steady) revenue-expenditure ratio was less than unity, because r < g. 
However, also in these experiments the differences in efficiency between the top 
methods were very small and OLSRT anyway gave the smallest absolute error in 
estimation. However, when analyzing startups with low profitability or high 
growth rate, it would be safe to apply also RMLE to check whether there is found 
underestimation of r. It should be noted that also ROLS, that has a reve-
nue-expenditure restriction like RMLE, gave efficient estimates without any un-
derestimation. Thus, the restriction adjustment seems to be useful especially in 
these kinds of startups (circumstances) where g > r.  

 
Table 8. The ranks of different estimation methods by experiment. 

Experiment OLSU OLSRT ROLS LADRT RR RMLE 
Basic case 6 1 2 2 5 4 

High r (0.10) 5 1 2 2 6 4 

Low r (0.02) 6 2 3 3 5 1 

High g (0.08) 5 2 3 3 5 1 

Low g (0.02) 5 1 2 2 5 4 

High q (0.60) 5 1 2 3 6 4 

Low q (0.20) 5 1 3 2 6 4 

High RAND (20) 5 1 3 2 5 4 

Low RAND (5) 5 1 2 3 6 4 

Sum of ranks 47 11 22 22 49 30 

Legend: For the abbreviations of the estimation methods see Table 3. r = IRR, g = growth 
rate of expenditure, q = revenue lag parameter, and RAND = random variable. Source: 
From experimental values summarized by the authors. 

 

 

Figure 4. Revenue R, expenditure M, and lagged revenue lag(R) in the ex-
periment q = 0.20 (low q) (without RAND).  
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In summary, the study showed that OLSRT is, from the six methods assessed, 
the most efficient estimation method for r. In the same way, OLSU was proved 
to be the worst estimation method emphasizing the importance of forcing the 
regression through the origin. In fact, also LADRT, as forced through the origin, 
proved to be an efficient estimation method that was only slightly beaten by 
OLSRT. The incorporation of the revenue-expenditure restriction as adjust-
ments in the OLS and ML estimates was efficient only in some exceptional cases. 
This restriction generally increased the dispersion of the estimates. In many ex-
periments, RR was slightly more efficient than OLSU reflecting the effect of the 
bias (lambda). However, the experiments indicate that multicollinearity may sta-
tistically be of minor importance in the estimation of r. The contribution of the 
study is clearly in that it shows that the simplified Koyck transformation is very 
useful in estimating IRR when efficient estimators are employed. In spite of its 
simplicity, OLS as forced through the origin seems to provide us with accurate 
estimates of r in different, even very difficult circumstances. Experiments show 
that the unrestricted OLS (Laitinen & Laitinen, 2022) does not properly work in 
estimation and the incorporation of the revenue-expenditure restriction in OLS 
only makes the OLSRT less efficient (Laitinen & Laitinen, 2022; Laitinen, 2017).  

The present study suffers from many limitations which can be relaxed in fu-
ture studies. The present model was based on a simplification of the Koyck 
model and on a simplified model of a startup. In addition, only six estimation 
methods were compared with each other. Experiments were simple and based 
only two levels of the parameters. In future, the effect of the neglection of the 
MA part of the Koyck model should be analyzed more carefully. The model de-
scribing the development of a startup in its early years should be made more rea-
listic to correspond better to the actual development. More estimation methods 
should be assessed in experiments to find the most efficient method. Experi-
ments should be designed to conform better with the testing procedure. More 
parameters and levels should be applied in experiments. Statistical tests should 
be applied in comparing the efficiency of methods.  
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