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Abstract 
The objective of this paper is to develop a Bayesian forecasting model of secu-
rity returns in a security market in which daily trading is subject to price lim-
its. Traders and investors are assumed to be Bayesian decision makers under 
uncertainty, in the sense that they combine their a-priori information about 
the security returns with realized stock returns, to form the posterior and 
predictive distributions, on which trading decisions would be made. It allows 
traders and investors to adjust their long/short trading positions while consi-
dering the presence of upper price limits. In our model, security returns are 
assumed normally distributed, with an unknown mean and a known va-
riance. Our traders and investors apply Bayes’ rule to update their prior in-
formation to derive the security returns’ predictive distribution. Our major 
contribution is the derivation of the stock returns’ predictive distribution, 
which is analytically quite complex. To illustrate the usefulness of our fore-
casting model, we provide five numerical examples of the predictive distribu-
tions, in which we alter one of the parameters, ceteris paribus, and demon-
strate its impact on the predictions. This would allow traders and investors to 
upgrade their trading positions in the presence of an upper price limits. 
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1. Introduction 

Upper or lower price limits are set by stock exchange such that when the secu-
rity market hits the price limit, it would trigger a trading halt. For a small daily 
price change the trading would be halted for a specific time period (one or two 
hours), but for a large price change, trading can be suspended until the end of 
the trading day. A security market that reaches its daily price limit is referred to 
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as a locked market. Price limits are quite common in various Asian stock ex-
changes, in many foreign currency exchanges, and in all futures exchanges in the 
United States. The primary function of imposing price limits is to reduce securi-
ty market volatility and prevent market manipulation and panic. 

The objective of this paper is to extend the Bayesian methodology of Harel 
and Harpaz (2020). They used a Bayesian forecasting model (Lee, 2012) to pre-
dict the levels of the S & P 500 Index in the presence of circuit breakers. In this 
paper, it is assumed that traders and investors behave as Bayesian decision mak-
ers under uncertainty in a market that imposes an upper daily price limit. Our 
traders and investors combine their prior knowledge about the security which is 
based on historical and subjective information with the realized security returns, 
via Bayes’ rule, to update the posterior and predictive distributions on which 
trading decisions would be made. 

Prior studies of the behavior of investors in stock exchanges that imposed 
daily trading limits, were all empirical ones that focused primarily on the impact 
of the presence of price limits on market volatility, for example, Ayesha and 
Christo (2018), Berkman and Lee (2002), Chen, Rui and Wang (2005), and Dong 
and Li (2019). In particular, there were a sequence of empirical studies con-
ducted by Kim (2001), Kim and Limpaphayom (2000), Kim, Liu and Yang 
(2013), Kim and Rhee (1997), to name but a few. It should be noted that the null 
hypothesis that imposing stock price limits reduces security market volatility is 
still empirically inconclusive. We must emphasize that none of above-mentioned 
empirical studies tried to construct a theoretical model to forecast stock returns 
in the presence of price limits. Consequently, our model is unique, novel and 
completely different from all historically conducted empirical studies. 

Our paper is organized as follows. Section 2 introduces the Bayesian forecast-
ing model, when the security returns are assumed normally distributed with an 
unknown mean and a known variance, but the stock exchange imposes an upper 
price limit. Our traders and investors are assumed to be Bayesian decision mak-
ers under uncertainty. Our original contribution is the formulation of the secu-
rity returns’ predictive distribution in a security market with an upper price lim-
it. Our constructed predictive distribution is analytically quite complex. Section 3 
introduces five distinct numerical examples of the security returns’ predictive dis-
tributions for various parameter values. The last section provides the conclusion. 

2. The Bayesian Forecasting Model 

Various Asian stock exchanges and all the futures exchanges in the United 
States, set an upper limit return UL, whereby if the security return exceeds the 
upper limit UL, it would trigger a temporary trading halt for a specific period, 
and sometimes trading can be suspended until the end-of-the trading day. In our 
Bayesian model (Lee, 2012) the return on the security is assumed to be normally 
distributed, with an unknown return µ , and a known variance 2σ . Thus, the 
return likelihood function is given by, 
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Whereby, it is assumed that the mean return µ  cannot exceed the upper 
limit UL, set by the stock exchange. In addition, it is assumed that the prior dis-
tribution is Normal but truncated at UL, and it has known a mean 0m , and a 
known variance 2

0σ . 
Thus, the truncated prior return distribution ( )0 0 0| , , ,f r m ULµ σ  is given 

by, 
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The posterior distribution ( )1 0 0| , , ,f r m ULµ σ  can be calculated by using 
Bays’ rule (Lee, 2012), and it is proportional to the product of the prior distribu-
tion ( )0 0 0| , , ,f r m ULµ σ  and the likelihood function ( )| ,l r µ σ , we obtain: 
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with ( )1 0 0| , , , 0f r m ULµ σ = , if ULµ > . 
Combining the two terms in the right-hand side of Equation (3), deleting the 

constants which are intendent µ  on and simplifying, the truncated posterior 
distribution 1f  of can be written as: 
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with ( )1 0 0| , , , 0f r m ULµ σ = , if ULµ > . 
The posterior distribution of ( )1f ⋅  in Equation (4), is truncated at UL, and it 

turn out to be a conjugate Normal distribution, with mean 
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posterior Normal posterior distribution ( )1 0 0| , , ,f r m ULµ σ  is given by: 
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where Φ  is the cumulative Normal distribution. 
Note that once the security return hits the price limit UL, trading would be 

https://doi.org/10.4236/tel.2022.125068


A. Harel, G. Harpaz 
 

 

DOI: 10.4236/tel.2022.125068 1283 Theoretical Economics Letters 

 

halted. To predict the security return r in the presence of an upper limit UL, our 
Bayesian traders and investors are interested in the predictive distribution PR of the 
security return r, unconditional on µ . Thus, the predictive distribution of r is giv-
en by integrating the product of the posterior distribution ( )1 0 0| , , ,f r m ULµ σ  in 
Equation (4), and the likelihood function ( )| ,l r µ σ  in Equation (1), where 
( )xΦ  is the normalizing constant from Equation (6). We derive the security 

return’s predictive distribution in the presence of an upper price limit UL, as a 
function of the stock return r (ceteris paribus), 
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Note that the (error function) erf is defined as: 
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Since the predictive distribution in Equation (6) is quite complex to analyze 
analytically, and in the next section we will provide several numerical examples. 

3. Numerical Examples of the Predictive Distribution in  
Equation (6) 

In this section we provide five numerical examples of the predictive distribution in 
Equation (6). In each of the following five examples (Graphs 1-5), we alter one 
parameter, ceteris paribus, and plot the corresponding predictive distributions. 

Example 3.1: Consider the following model parameters: 0.2σ = , 0 0.3σ = , 

0 1m = , and 0.5UL = , and substituting these values in Equation (6) and plot-
ting it for the return interval: 2 1r− < < , we obtain the predictive distribution, 
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Graph 1. The Predictive Probability Distribution as a function of the security return, r. 
The model parameters are: 0.2σ = , 0 0.3σ = , 0 1m = , and 0.5UL = . 

Example 3.2: Consider the following model parameters: 0.2σ = , 0 0.4σ = , 

0 0.1m = , and 1UL = , and substituting these values in Equation (6) and plot-
ting it for the return interval: 5 2r− < < , we obtain the predictive distribution, 

 

 
Graph 2. The Predictive Probability Distribution as a function of the security return, r. 
The model parameters are: 0.2σ = , 0 0.4σ = , 0 0.1m = , and 1UL = . 

Example 3.3: Consider the following model parameters: 0.2σ = , 0 0.3σ = , 
0.2r = , and 0.5UL = , and substituting these values in Equation (6) and plot-

ting it for 0m : 0.5 2r− < < , we obtain the predictive distribution, 
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Graph 3. The Predictive Probability Distribution as a function of the security return, r. 
The model parameters are: 0.2σ = , 0 0.3σ = , 0.2r = , and 0.5UL = . 

 
Example 3.4: Consider the following model parameters: 0.3σ = , 0 0.15σ = , 

0 0.2m = , and 0.5UL = , and substituting these values in Equation (6) and plot-
ting it for the return interval: 1 1r− < < , we obtain the predictive distribution, 

 

 
Graph 4. The Predictive Probability Distribution as a function of the security return, r. 
The model parameters are: 0.3σ = , 0 0.15σ = , 0 0.2m = , and 0.5UL = . 
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Example 3.5: Consider the following model parameters: 0.2r = , 0 0.15σ = , 

0 0.2m = , and 0.5UL = , and substituting these values in Equation (6) and plot-
ting it for 0 1σ< < , we obtain the predictive distribution, 

 

 
Graph 5. The Predictive Probability Distribution as a function of the security return, r. 
The model parameters are: 0.2r = , 0 0.15σ = , 0 0.2m = , and 0.5UL = . 

4. Conclusion 

Our paper develops a Bayesian predictive model of security returns in markets 
that impose an upper price limit. When the security prices hit the upper price 
limit, trading is halted, and the market is referred to as locked market. Trading 
can be suspended for a few hours, and sometimes up to the end-of-the trading 
day. Various security exchanges in Asia, currency exchanges, and all futures ex-
changes in the United States impose price limits. The purpose of enforcing price 
limits is to mitigate market volatility and depress stock manipulation. In our pa-
per, traders and investors are assumed to be Bayesian decision makers under 
uncertainty. They combine their historical and subjective knowledge regarding 
the security future returns with the realized returns, to update the posterior and 
predictive distributions. Security returns are assumed to be normally distributed 
with unknown mean returns and known variances. Traders and investors are 
fully aware of the presence of an upper price limit, when forming their expecta-
tions. Thus, traders and investors start their analysis by using a truncated nor-
mal prior distribution, which is revised using Bayes’ rule to form the posterior 
and predictive distributions. 
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The major contribution of our paper is the formulation of the security returns’ 
predictive distribution, contingent on which future trading decision would be 
made. The predictive distribution is quite complex to analyze analytically, and 
we provide 5 numerical examples, by altering one parameter, ceteris paribus, 
and investigate the corresponding distributions. Our model can be useful to 
traders and investors who make decisions under uncertainty in a security market 
that imposes an upper price limit. When revising their predictions, traders and 
investors consider the presence of an upper price limit, and this allows them to 
calibrate their forecasts. 
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