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Abstract 
This note extends the studies on the impacts of partner heterogeneity in 
two-way flow Strict Nash network of (Billand et al., 2011) by allowing for the 
existence of small information decay. I show that the incorporation of small 
information decay does not change the results of this aforementioned paper: 
every Strict Nash network is a minimally connected iB  or branching net-
work. Since the studies on the roles of partner heterogeneity by this aforemen-
tioned paper are limited to the assumption that link formation is unilateral, I 
also propose another extension that studies the roles of partner heterogeneity 
in a more general model of network formation proposed by (Olaizola and 
Valenciano, 2015), which allows link formation to be both unilateral and bi-
lateral. I show that the inclusion of partner heterogeneity breaks away a major 
result in this aforementioned paper: Nash network no longer consists of at 
most one nontrivial strongly full subnetwork. 
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1. Introduction 

Social networks influence social and economic activities because they diffuse in-
formation related to these activities. Examples include employment through re-
ferral networks for jobs (Granovetter, 2018) and purchasing decision through 
interpersonal network where product information is exchanged (Katz et al., 
2017). This has motivated the literature of network formation, which predicts 
the patterns of networks that are formed given that agents create links with one 
another in order to share information and other resources. A large branch of this 
network formation model is the two-way flow model of noncooperative network 
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formation pioneered by (Bala and Goyal, 2000). As mentioned in (Galeotti et al., 
2006), this model can be interpreted in the context of telephone calls, where a 
link sender unilaterally pays for the link establishment cost in order to acquire 
nonrival information (e.g., information related to price and quality of consumer 
products) owned by another agent called link receiver. Once the link is estab-
lished the agent who receives the link can also acquire the information of the 
agent who initiates the phone call, hence the term “two-way flow”. This model is 
the basis that allows several researchers to study how factors such as agent hete-
rogeneity and information decay impact the decisions of agents to form link 
with one another as well as the resulted shapes of equilibrium networks. For 
example, Billand et al. (2011) assume partner heterogeneity. That is, link forma-
tion cost and value of information are determined by the identity of link receiv-
er1. This form of heterogeneity has become a small branch of literature of its own, 
encompassing analyses pertaining to equilibrium characterization (Billand et al., 
2011), existence of the equilibrium networks (Billand et al., 2012) as well as effi-
ciency (Unlu, 2018). 

In this note, I advance this branch of literature in the studies of partner hete-
rogeneity in two-way flow model of network formation by proposing an ex-
tended model that allows for existence of small information decay as in (De 
Jaegher and Kamphorst, 2015). My contributions are twofold. First, it helps un-
derstand how the coexistence of partner heterogeneity and information decay 
impact the shapes of equilibrium networks. Typically, in the literature these two 
factors are studied in isolation of one another as it helps understand how the 
equilibrium networks are impacted by each of these factors. This raises the ques-
tion of how the coexistence of both factors would impact the equilibrium net-
works. To my knowledge this note is the first work that seeks to answer this 
question by providing a detailed equilibrium characterization. Quite surprisingly, 
the addition of small decay assumption to the partner heterogeneity model of 
(Billand et al., 2011) does not change the external shapes of the equilibrium 
networks. However, the identities of agents located in the networks may change. 
In Example 1, I show that an agent who attracts other agents to form links with 
does not need to be an agent that incurs the lowest link formation cost as in 
(Billand et al., 2011). Rather, the agent who is chosen as a partner for link for-
mation is the agent that provides an optimal tradeoff between the link formation 
cost borne by the link sender and the relatively low degree to which information 
decays, which varies according to the locations of agent in the network. 

Another contribution of this note is seen in Example 2 in Discussion section, 
which extends the present unilateral model with partner heterogeneity by allow-
ing for link formation to be established either unilaterally or bilaterally. My in-
tention here is to study the roles of partner heterogeneity in a more general set-

 

 

1In the context of telephone call, an interpretation is that some agents possess information whose 
value is higher than that of others. In terms of call establishment cost, Billand et al. (2012) mentions 
that “If j is a busy person, then it is difficult to access her. It follows that the time that i spends (the 
cost that i incurs) to obtain an answer from j will depend on j’s characteristics.” 
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ting. Inspired by an innovative work of (Olaizola and Valenciano, 2015), a link 
that is formed unilaterally (weak link) suffers from a small decay while a link 
that is formed bilaterally suffers no decay (strong link). Thus, my Example 2 be-
comes an extension of (Olaizola and Valenciano, 2015) by incorporating partner 
heterogeneity. I show that an important property of Nash network in the model 
of (Olaizola and Valenciano, 2015), which is such that every Nash network that 
is minimally connected has at most one non-empty full subgraph consisting of 
strong links, is violated once partner heterogeneity replaces agent homogeneity. 
Indeed, to my knowledge this note is the first work that explores the roles of 
agent heterogeneity in such a general model of network formation2. 

This note proceeds as follows. First, I introduce the models and the definitions 
of Strict Nash networks and Nash networks in the next section. In the Main Re-
sult section, I provide a characterization of Strict Nash networks. Subsequently 
Discussion section shows an example related to (Olaizola and Valenciano, 2015) 
mentioned above. The last section concludes. 

2. The Model 

Since this note is an extension of (Billand et al., 2011), most notations will follow 
this aforementioned paper. 

Individual’s strategy: { }1, ,N n=   is the set of all agents. Let ,i j N∈ , 
i j≠ . , 1i jg =  if i forms a link with j or accesses j and , 0i jg =  otherwise. A 
collection of such decision of i is a strategy of i, which is { }, : ,i i jg g j N j i= ∈ ≠ . 
Since link formation is unilateral, a strategy profile { }:ig g i N= ∈  is, equiva-
lently, a network. 

Structure of information: Let , 1i jg =  if , 1i jg =  or , 1j ig =  or both, and 

, 0i jg =  otherwise. We say that an undirected link between i and j exists if 

, 1i jg = . Of course, { }, : , ,i jg g i j N i j= ∈ ≠  is called an undirected network.  
Value of Information and link formation cost: ijV  represents the value of 

information that i receives from j if information is transmitted perfectly. A value 
structure is { }ij ij N N

V
∈ ×

= . If ij jV V=  for every i N∈  then   is said to sa-
tisfy partner heterogeneity (in information value). Similarly, ijc  is cost that i 
bears if he forms a link with j and { } ,ij ij N N i j

c
∈ × ≠

=  is the cost structure. If 

ij jV V=  for every i N∈    is said to satisfy partner heterogeneity (in link 
formation cost). Throughout this paper, we assume that   and   satisfy 
partner heterogeneity. 

Information transmission and decay: A chain between k and j— ,i jP —is de-
fined as a sequence of agents 0 1, , , mj j j  such that 0 , mj j j k= =  and  

1, 1
l lj jg

+
=  for 0, , 1l m= − . A path from k to j— ,i jP —is defined likewise ex-

cept that 
1, 1

l lj jg
+
=  instead of 

1, 1
l lj jg

+
= . If a chain between i and j exists, we 

 

 

2Note that there are some discrepancies in terms of notations that I use here and those of (Olaizola 
and Valenciano, 2015). Specifically the term “component” in (Olaizola and Valenciano, 2015) is 
equivalent to the term “strongly full subgraph” in this note. “Nash profile” in (Olaizola and Valen-
ciano, 2015) is identical to “Nash network” in this note. I justify and elaborate on these notational 
discrepancies in Discussion section of this note. 
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sat that i observes j and vice versa. In g, let ( )iN g  be the set of agents that i 
observes including i himself3. In the paper of (Billand et al., 2011) information 
transmission is perfect so that if there is a chain between i and j then i receives 

ijV  and j receives jiV . This note extends this aforementioned paper by assum-
ing that information transmission is not perfect. This imperfect transmission is 
represented by the decay factor ( ]0,1σ ∈ . Consider two ij-chains, 1

,i jP  and 
2
,i jP . 1

,i jP  is said to be shorter than 2
,i jP  if ( ) ( )1 2

, ,i j i jP g P g< . The distance 
between i and j, ( ), ;d i j g , is defined as the amount of links in the shortest 
ij-chain. Similar to (De Jaegher and Kamphorst, 2015) an ex-post information 
value that i receives from j is ( ), ;d i j g

ijVσ . 
Small Decay Assumption: Since an ex-post information value that i receives 

from j is ( ), ;d i j g
ijVσ , by reducing the distance ( ), ;d i j gσ  an agent i can improve 

the benefits that he receives from j. To reduce the distance, i can do so by form-
ing a link with an agent that would create a new ij-chain that is shorter than the 
preexisting ones. However, if information decay is sufficiently low, i.e., σ  is 
sufficiently close to 1, then such an incentive disappears since the benefits from 
so doing cannot cover the cost c borned by i. This assumption is assumed 
throughout the paper of (De Jaegher and Kamphorst, 2015) and will be used 
throughout this note. 

Network properties: A network g ′  is a subnetwork of g if g g′ ⊂ . Let 
( )N g ′  denotes the set of all agents in g ′ . Let g ij−  be defined as g with the 

modification that 0ijg =  and g ij−  be defined as g with the modification 
that 0ij jig g= = . A network is minimal if there is at most one chain between 
any pair of agents. A network is connected if there is at least one chain between 
any pair of agents. A component of a network is a maximal connected subnet-
work. A component is empty if it contains only one agent. In a network g, the 
information that i receives is ( ) ( ) { }

( ), ;
,\

d i j g
i i jj N g iI g Vσ ′

∈
= ∑ . Suppose that g is 

minimally connected. Given that 1ijg =  let ( )ijA g  be a subnetwork consist-
ing of links of all agents that i is able to obtain information by accessing j. Let 

( ), ijj k N A′ ′∈ , j′  is said to be better-informed than k ′  if ( ) ( )j ij k ijI A I A′ ′≥ . 
j′  is best-informed in ijA  if ( ) ( )j ij k ijI A I A′ ′≥  for every ( )ijk N A′∈ 4. 

iB  and Branching Networks: Let ( )iR g  be the set of all agents that access 
i and ( )iO g  be the set of all agents that i accesses. The following definitions of 

iB  and Branching Networks are borrowed from (Billand et al., 2011). Consider 
X N⊂ . Let { }| there exists a path from for everXQ X j j to j y j X′ ′= ∪ ∈ . If X 

is a set that is minimal with respect to the property that XQ N= , then X is said 
to be a contrabasis of N. A contrabasis is an i-point contrabasis if there exists 
i N∈  such that every j X∈ , j i≠ , accesses i. If i is a point contrabasis of g 
and 2iR ≥  but 2jR <  for all j i≠  and j N∈ , g is said to be a iB  net-
work. Observe that if a minimally connected iB , then i is a unique multi-link 
recipient and any link that does not involve i points away from i. A network g is 

 

 

3Following the literature, we assume that i has an entry to his own information. 
4These notations are follow (De Jaegher and Kamphorst, 2015). 
 

https://doi.org/10.4236/tel.2022.124064


B. Charoensook 
 

 

DOI: 10.4236/tel.2022.124064 1211 Theoretical Economics Letters 

 

a branching network if there exists a unique agent i such that 0iR =  and 
1jR ≤  for all j i≠ . 

The payoffs (as in (Billand et al., 2011)): Let 2:π →   be such that 
( ),x yπ  is strictly increasing in x and strictly decreasing in y. The payoff of 

player i is given by: 

( )
( ) { } ( ) { }

, ,
\ \

,
i i

i j i j i j
j N g i j N g i

g V g cπ π
∈ ∈

 
=   

 
∑ ∑                 (1) 

Note that this payoff assumes that information transmission is perfect since the 
decay factor σ  is not included. A special case of this payoff is the so-called li-
near payoff, which is: 

( )
( ) { } ( ) { }

, ,
\ \i i

L
i j i j i j

j N g i j N g i
g V g cπ

∈ ∈

= −∑ ∑                  (2) 

The payoffs assuming small decay (as in this current note): As an exten-
sion of (Billand et al., 2011) that incorporates small decay, the payoff in Equation 
(1) above becomes: 

( ) ( )
( ) { }\

,
i

i i
j N g i

g I gπ π
∈

 
=   

 
∑                      (3) 

And the payoff in Equation (2) becomes: 

( ) ( )
( ) { }

, ,
\i

L
i i i j i j

j N g i
g I g g cπ

∈

= − ∑                    (4) 

where (recall that) ( ) ( ) { }
( ), ;

\i

d i j g
i jj N g iI g Vσ

∈
= ∑ . 

Nash network and strict Nash network: Let ig−  be a strategy profile of all 
agents except i so that i ig g g−∪ = . If ( ) ( )i i i i i ig g g gπ π− −′∪ ≥ ∪  for every 

ig ′  that is a strategy of i then ig  is a best response of i. If ig  is a best re-
sponse of i for every i N∈  then g is a Nash network. If every agent’ best re-
sponse is unique then g is called a Strict Nash network. 

3. Main Results 

My first proposition corresponds to the first part of (Billand et al., 2011). The 
only exception is that the proposition below allows for the existence of small de-
cay. All proofs are relegated to the Appendix. 

Proposition 1. Suppose that the payoff satisfies Equation (3), small decay is 
assumed, and value structure and cost structure satisfy partner heterogeneity, 
SNN is a minimally connected iB  or branching network.  

By allowing for the presence of small decay, Proposition 2 below extends the 
second part of Proposition 1 of (Billand et al., 2011): any minimally connected 

iB  or branching network can be supported as SNN. 
Proposition 2. Given the linear payoff (Equation (4)), any minimally con-

nected iB  or branching network can be supported as SNN by some ,σ   and 
 , where   and   satisfy partner heterogeneity.  

A remark is worthmentiong here. While Proposition 1 and 2 above show that 

https://doi.org/10.4236/tel.2022.124064


B. Charoensook 
 

 

DOI: 10.4236/tel.2022.124064 1212 Theoretical Economics Letters 

 

the inclusion of small decay does not change the external shape of SNN, identi-
ties of agents that receive link in SNN may change. Intuitively, without small 
decay, an agent j who receives a link from another agent i is the agent that in-
duces the lowest link formation cost in ( )ijA g . However, once small decay ex-
ists such is not necessarily the case. Indeed, even if j induces the highest link 
formation cost the fact that he possesses a higher amount of information than 
other agents can make him attractive as a link receiver. Example 1 below illu-
strates this point (Figure 1). 

Example 1. Consider the minimally connected branching network rooted at i 
below. This network is SNN assuming that the payoff is linear (see Equation (4)), 

{ }1 2 3 4
1, 1.0197, 1i j j j jc c c c c= = = = = = , { }1 2 3 4

1i j j j jV V V V V= = = = = = . 
Observe that 

1 kj jc c>  for 2,3,4k = . Hence, accessing 1j  is not a best re-
sponse of i if no decay is assumed as in (Billand et al., 2011). However, the pres-
ence of small decay 0.99σ =  causes i to be better off accessing 1j  rather than 

2 3,j j  or 4j . Specifically, for 0.99σ =  in 
1ijA  we have ( )1 1

3.97j ijI A = ,  

( ) ( )2 1 3 1 4
3.9502j ij j ij jI A I A I= = = . That is, 1j  is best-informed in 

1ijA . Let 

1
1.0197jc = , 

2 3 4
1j j jc c c= = = . Note that while 1j  is relatively more costly to 

form a link with than 2 3 4, ,j j j , the fact that he is best informed compensate for 
this relatively higher cost. Specifically,  

( ) ( )1 1 1 1
0.0198 0.0197

k kj ij j ij j jI A I A c c− = > − =  for 2,3,4k = .  

4. Discussion: On the Role of Partner Heterogeneity in a  
Mixed Model of Network Formation 

The purpose of this section is to study the role of partner heterogeneity in a 
model of network formation that is more general than what is “typically” studied 
in the literature. Specifically, the roles of agent heterogeneity are studied by as-
suming either that link formation is unilateral—requiring no mutual consent as 
in (Bala and Goyal, 2000)—or link formation is bilateral—requiring a mutual 
consent as (Jackson and Wolinsky, 1996). Note that the subbranch of literature 
in partner heterogeneity including (Billand et al., 2011), (Billand et al., 2012), 
(Unlu, 2018) as well as this current note also falls in to the first branch of litera-
ture that assumes unilateral link formation. Thus far, there has been no literature 
that studies the role of agent heterogeneity in a more general setting that en-
compasses both forms of link formation. 

This section intends to break this mold by making use of a mixed model of 
network formation pioneered by (Olaizola and Valenciano, 2015). This mixed  
 

 
Figure 1. Example 1. 
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model assumes that a link incurs no information decay if it is formed bilaterally 
(both agents pay for the link formation cost, called strong link) and a link incurs 
a portion of information decay equal to 1 α−  if it is unilaterally formed (only 
the link sender pays for the link formation cost, called weak link). My Proposi-
tion 3 below extends this mixed model by allowing for the presence of partner 
heterogeneity in   and  . It shows that a prominent property of Nash net-
work in this mixed model, which is such that every non-empty Nash network5 
has at most one connected full subnetwork consisting of strong links or strongly 
full subnetwork as defined below, disappears once partner heterogeneity is as-
sumed6. 

Before I proceed to Proposition 3 the following notations, borrowed with 
some modification from (Olaizola and Valenciano, 2015), are introduced. A link 
between i and j is weak if 1ijg =  but 0jig =  or vice versa. A link between i 
and j is strong if 1ijg =  and 1jig = . We write ij g∈  ( ij g∈ ) to denote the 
existence of a weak (strong) link between i and j. Note that ij g∈  also indicates 
that the link is sponsored by i. We further write ij g∈  if ij g∈  or ij g∈ . Let 
ij g∈  then ( )j iA g→

  is defined as the subnetwork consisting of all agents 
whose information is sent to i via the link ij g∈ .  

( )( ) ( )( )
( ), ;

j i

d i l g
j i ll N A gI A g Vα

→→ ∈
= ∑ 

  is the information that i receives from the 
link ij . 

Let C N⊆ . A subnetwork cg g⊆  is said to be a subnetwork induced by C 
or a full subnetwork if: 1) ( )cN g C=  and 2) a link exists in cg  if and only if 
it exists in g. cg  is a weakly full subnetwork of g if for any two nodes  

( ),i j C i j∈ ≠  there is a chain between j and i in g, and no subset of N strictly 
containing C meets this condition. The definition of a strongly full subnetwork 
is defined likewise, except that every chain between j and i has to consist of 
strong links. 

In terms of information flow, every link that is weak incurs (geometric) in-
formation decay equal to 1 α− . Every link that is strong incurs no information 
decay. Thus if jV  is the information of j and a chain between i and j consists of 
k weak links, then i receives k

jVα . A shortest chain between i and j is the chain 
that has smallest amount of weak links compared to other path between i and j. 
Naturally a distance between i and j is defined as amount of links of the shortest 
chain between i and j. 

A payoff of an agent i in g is: 

 

 

5Note that (Olaizola and Valenciano, 2015) uses the term Nash profile rather than Nash network as 
used in this current note, although they have the same meaning—network such that every agent 
chooses his best response in pure strategy. 
6Note that that term “connected full subnetwork consisting of strong links” and “strongly full 
subnetwork” here have the same meaning as “strong component” in (Olaizola and Valenciano, 
2015). The reason for not adopting the same terminology as (Olaizola and Valenciano, 2015) is 
that (Olaizola and Valenciano, 2015)’s definition of component is different from what is used 
in this note as well as (Billand et al., 2011) and (Bala and Goyal, 2000). Indeed, the definition of 
component in (Olaizola and Valenciano, 2015) is precisely the definition of a full subnetwork 
in this note. 
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( )
( ) { }

( ) ( ), ;

\i

d i j g d
i j i

j N g i
U g V c gα µ

∈

= −∑  

where ( ) ( )d
i ig O gµ = . 

Proposition 3. Let   , ,ij ik jl g∈  and   , ,ij ij ik ik jl jl= = = . If g is Nash then: 

( ) ( ) ( ) ( )1 1k i i j iI A c I Aα α→ →− ≥ ≥ −                 (5) 

and 

( ) ( )1 i k kI A cα →− ≥                       (6) 

Moreover, there exist   and   satisfying partner heterogeneity such that g is 
Nash and the above two inequalities are satisfied. 

Corollary 1. If   and   assume agent homogeneity, then inequalities 5 
and 6 cannot be simultaneously satisfied. Consequently, a Nash network con-
tains at most one strongly full subnetwork. On the contrary, if partner hetero-
geneity in   and   are assumed, there exists a Nash network that consists of 
more than one strongly connected full subnetwork, which in turn implies that 5 
and 6 are satisfied.  

The proof for this proposition and its corollary are trivial and hence omitted. 
Example 2 below, though, illustrates the intuition (Figure 2). 

Example 2. Consider the below network, which is a line whose sequence of 
agents—from left to right—is , , ,k i j li i i i  Note that this line has two non-empty 
strongly full subnetworks, namely k ii i  and j li i . We claim that this network is 
SNN for the following support: { }1.01, 1.02, 1.03, 1.04k i j lV V V V= = = = = ,  

{ }0.01, 0.0204, 0.03, 0.0104k i j lc c c c= = = = = , and 0.99α = . 
It is straightforward (yet tedious) to prove that this network is SNN by check-

ing that the above support causes each agent’s existing strategy to give a strictly 
higher payoff than his every other strategies. To partially verify that this network 
is SNN, let us verify that 5 and 6 in Proposition X are satisfied. To do so, first 
observe that 

ii
c  has to be sufficiently low that ki  is better off accessing ii . 

Otherwise, the link i ki i  become a weak link. This leads to: 

( ) ( )1 k i iI A cα →− ≥                          (7) 

Iff: 

( ) ( )( )2 3 4 21 V V V cα α− + + >                     (8) 

On the contrary, for this network to be Nash ic  is required to be sufficiently 
high. Otherwise, j is better of accessing i, which in turn causes the link between j 
and i to be strong instead of weak. This leads to: 

( ) ( )1i j ic I Aα →≥ −                          (9) 

 

 
Figure 2. Example 2: a bold link is a strong link. A dotted link is a weak link such that the 
arrow points towards the link receiver.  
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Iff: 

( )( )1 2> 1ic V Vα− +                         (10) 

Putting inequalities 8 and 10 together we have: 

( ) ( )( ) ( )( )2 3 4 1 21 1iV V V c V Vα α α− + + > > − +              (11) 

Observe that inequality 11 above corresponds to inequality 5 in Proposition 3. 
Next, consider kc . For this network to be Nash kc  has to also be sufficiently 

low. Otherwise, i is better off not accessing k, which in turn causes the link be-
tween i and k be weak rather than strong. This leads to: 

( ) ( )1 i k kI A cα →− ≥                       (12) 

Iff: 

( ) 11 kV cα− ≥                         (13) 

Observe that inequality 13 above corresponds to inequality 6 in Proposition 3. 
Let us partially check our { },j jV c  satisfy inequalities 11 and 13. For inequa-

lity 11: 

0.030693 0.0204 0.0203> >                   (14) 

For inequality 13: 

0.0101 0.01>                        (15) 

However, if the above support { },j jV c , which is such that the value structure 
and cost structure satisfy partner heterogeneity, is replaced by value and cost 
homogeneity as in (Olaizola and Valenciano, 2015) then this network cannot be 
SNN. To do so we assume 1 2 3 4 1V V V V= = = =  and 1 2 3 4c c c c c= = = = , in-
equality 11 becomes: 

( )( ) ( )1 1 2 1 2cα α α− + > > −                     (16) 

and inequality 13 becomes:  

 1 cα− >                              (17) 

which is impossible since such c cannot exist. What is the intuition? Lemma 1 of 
(Olaizola and Valenciano, 2015) states that as 1 cα− >  then we know that even 
if a link provides an entry to just one agent, then it is still worth making that link 
strong since c is sufficiently low. Then due to homogeneity assumption we know 
that if this fact holds true for a link then it holds true for every link in the net-
work, regardless of how the network appears. Of course, this line of reasoning 
ceases to hold once we assume partner heterogeneity, as partner heterogeneity 
allows the value of information and link formation cost to vary from one agent 
to another. 

Having shown the above example, this subsection finishes with the following 
remark. 

Remark 1. Partner heterogeneity can cause a Nash network in the general 
model of network formation proposed by (Olaizola and Valenciano, 2015) to 
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have more than one non-empty strongly full subnetwork.  

5. Conclusion 

In this paper, I study the roles of Partner Heterogeneity in Strict Nash network 
by extending the work of (Billand et al., 2011). I extend this work in two ways. 
First, I incorporate the assumption that a small amount of information decay 
exists. Interestingly, the inclusion of small decay does not change the results of 
(Billand et al., 2011): Strict Nash network is either a minimally connected iB  or 
branching network (See Proposition 1 and 2 in this note). A difference, though, 
is that an agent who is attractive as a link receiver is no longer an agent who in-
duces the lowest link formation cost. Rather, it is an agent who provides a better 
tradeoff in terms of relatively low link formation cost and relatively high quanti-
ty of information. This fact is illustrated in Example 1 in this note. 

Second, I study the roles of partner heterogeneity in a more general model of 
network formation pioneered by (Olaizola and Valenciano, 2015). This model is 
a “mixed” model of network formation in the sense that link formation is al-
lowed to be both unilateral and bilateral, rather than only unilateral as assumed 
in (Billand et al., 2011) upon which this note is based. I show that the inclusion 
of partner heterogeneity in this mixed model of network formation breaks away 
a primary feature of SNN in this model: SNN no longer has at most non-trivial 
strongly full subnetwork (See the definition of strongly full subnetwork in Dis-
cussion section). 

As mentioned, to the knowledge of the author this note is the first attempt in 
the literature to study the role of agent heterogeneity in a model of network for-
mation that is more general than what is typically studied in the literature, which 
is to assume that link formation is either unilateral or bilateral. Consequently, it 
motivates several research questions. These are, for examples, questions on the 
impacts of agent heterogeneity on the characterization of equilibrium networks 
and efficient networks, as well as existence of tension between the two with these 
general frameworks of (Olaizola and Valenciano, 2015) and (Olaizola and Va-
lenciano, 2018). These unanswered questions become further research to be ex-
plored. 
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Appendix 
Proof of Propositions 

Proof of Proposition 1. The minimality is a result of small decay assumption. 
For connectedness, we prove by contradiction. I divide into two cases: (i) a 
component, among multiple components, can be singleton and (ii) a component, 
among multiple components, can never be a singleton. For (i) the proof follows 
Lemma 5 of (De Jaegher and Kamphorst, 2015). For (ii), in an SNN g let 1cg  
and 2cg  be two non-empty components and let i accesses i′  in 1cg  and j ac-
cesses j′  in 2cg . Observe the fact that i chooses his unique best response 
means that the strategy to accessing i′  to obtain information from agents 1cg  
at the cost of ic ′  is superior to the strategy of removing the link with i′  and 
accessing j′  to obtain information from 2cg  at the cost of jc ′ . That is, ac-
cessing i′  to receive information from 1cg ii′−  while paying ic ′  gives i′  a 
higher payoff than removing the link ii′  and accessing j′  to receive informa-
tion from 2cg jj′−  while paying jc ′ . Similarly, observe that j’s strategy in g is 
to access j′ , which also means that j receives information from 2cg jj′−  while 
paying jc ′ . It follows that j is better off following i’s strategy: removing his link 
with j′  and accessing i′  instead. 

Next, we turn to prove that a unique non-empty component of SNN is either a 
minimal iB  or branching. The proof here makes use of Lemma 3 and Proposi-
tion 1 of (Charoensook, 2019). To do so the following notations from (Cha-
roensook, 2019) are introduced. In a minimally connected network g, a removal 
of a link 1ijg =  divides g into two components—one containing i and the other 
one containing j. These two are denoted by ( )iD g ij−  and ( )iD g ij−  and 
called anti-viewpoint of i and viewpoint of i respectively.  

( ) ( )i j
ixD g ij D g ij− ⊕ −  then denotes a network such that ( )iD g ij−  is 

jointed with ( )jD g ij−  by suppposing that i accesses ( )( )jx N D g ij∈ − . Next, 
consider two agents x and y. i is said to prefer x to y or ix y  if: (i) there exists 

( )ij N g∈  such that ( )( ), jx y N D g ij∈ −  and (ii)  

( ) ( )( ) ( ) ( )( )i j i j
i ix i iyD g ij D g ij D g ij D g ijπ π− ⊕ − ≥ − ⊕ − . Moreover, if the 

inequality above is strict, i is said to strictly prefer x to y or ix y . Next, a mi-
nimal network satisfies the Partially Consistent Partner Preference (henceforth, 
PCPP) if, for every k-agent chain whose sequence of agents is enumerated as 

1 2 1, , , ,k ki i i i−  with 4k ≥  in this network, either of the following two proper-
ties with respect to partner preference holds true: (i) 1

2 1
i

ni i −  then 2 1
ni

ni i −  
or (ii) 1 2

ni
ni i−   then 1

1 2
i

ni i−  . Moreover, a two-way flow model is said to sa-
tisfy this PCPP condition if every minimal network satisfies the PCPP condition. 
Using these notations, by Lemma 3 and Proposition 1 of (Charoensook, 2019) it 
suffices to prove that there exists no k-agent chain , , , ,i i j j′ ′

  such that 

ii j′ ′  but jj i′ ′  where 3k ≥ , which we do so onwards (Figure A1). 
Without loss of generality consider the network 1g . In this network consider 

the chain 1 2 3 4, , ,i i i i . We will show that if 1
2 3

ii i  then 4
2 3

ii i . To do so first 
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note that in 1g  ( )1
1 1 2

iD g i i−  is a singleton (a component with preceisely one 
agent), which is agent 1i . To ease the notational cumbersomeness we denote 

( )1
iD g ij−  by [ ]1i

7. 
Step 1: First, note that 1

2 3
ii i  in 1g  if and only if: 

[ ]( )( ) [ ]( )( )1 1 2 1 1 31 2 2 1 2 3, ,i i i i i iI i g c I i g cπ π⊕ ≥ ⊕             (18) 

See Figure A2 for an illustration of networks [ ]
1 21 2i ii g⊕  and [ ]

1 31 2i ii g⊕ . 
The above inequality leads to: 

[ ]( )( ) [ ]( )( )1 1 2 1 1 31 2 1 2 1 2 2 3, ,i i i i i iI i g K c I i g K cπ π⊕ − ≥ ⊕ −  

for any [ ]( ) [ ]( )1 1 2 1 31 2 1 2 1 20 ,i i i i i iK K I i g I i g< ≤ < ⊕ ⊕ , Now if we set 3
1K σ=  

and 2
2K σ=  we get: 

[ ]( )( ) [ ]( )( )1 1 2 1 1 3

2 3 2 2
1 2 1 3, ,i i i i i iI i g c I i g cπ σ π σ⊕ − ≥ ⊕ −  

Observe that 3σ  is the information benefit that 1i  receives from 4i  in  
[ ]( )1 1 2

2
1i i iI i g⊕ . Similarly, 2σ  is the information benefit that 1i  receives from 

4i  in [ ]( )1 1 2

3
1i i iI i g⊕ . Thus, the above inequality assumes as if the link 3 4i i  is 

removed from the networks [ ]
1 2

2
1 i ii g⊕  and [ ]

1 2

3
1 i ii g⊕ . This observation and 

the fact that 3 2 3 4g g i i= −  allows us to restate the above inequality as: 

[ ]( )( )( ) [ ]( )( )( )1 1 2 1 31 3 2 1 3 3, ,i i i i i iI i g c I i g cπ π⊕ ≥ ⊕          (19) 

See Figure A3 for an illustration of networks [ ]
1 21 3i ii g⊕  and [ ]

1 31 3i ii g⊕ . 
We further restate the above inequality as: 

 

 
Figure A1. Networks with six agents. 

 

 
Figure A2. Two networks as in Equation (18). 

 

 
Figure A3. Two networks as in Equation (19). 

 

 

7This proof can easily be generalized for any minimal network and any chain with more than three 
agents. I leave this to my readers. 
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( )( ) ( )( )1 2 1 33 2 3 3, ,i i i iI I g c I I g cπ σ π σ+ ≥ +  

iff: 

( )( ) ( )( )2 33 2 3 3, ,i iI g c I g cπ π≥  

so that 

( )( ) ( )( )2 33 1 2 3 2 3, ,i iI g L c I g L cπ π+ ≥ +  

for any 1 2L L≥ . Now set 1 21
1

i idL σ σ= =  and 132
2

i idL σ σ= =  we have: 

( )( ) ( )( )131 2
2 33 2 3 3, ,i ii i dd

i iI g c I g cπ σ π σ+ ≥ +  

Since 4 3 2 1g g i i= +  we know that the above inequality can be restated as: 

( )( ) ( )( )2 34 2 4 3, ,i iI g c I g cπ π≥  

so that 

( )( ) ( )( )2 34 2 4 3, ,i iI g X c I g X cπ σ π σ+ ≥ +  

Now set ( )( )4
4 1 3 4

i
iX I D g i i= −  the above inequality can be restated as: 

( ) ( )( )( ) ( ) ( )( )( )4 4
2 4 3 44 1 3 4 2 4 1 3 4 3, ,i i

i i i iI g I D g i i c I g I D g i i cπ σ π σ+ − ≥ + −  

Finally, note that 4g  is nothing else but the viewpoint of 4i  via 3i  or  

( )3
1 3 4

iD g i i− . Note further that ( )
2 4iI gσ  on the left-hand side of the inequality 

above is what 4i  receives if he establishes a link with 2i  in ( )3
4 1 3 4

ig D g i i= − , 
and ( )

3 4iI gσ  on the right-hand side of the inequality above is what 4i  rece-
ives if he establishes a link with 3i  in ( )3

4 1 3 4
ig D g i i= − . 

Hence, we can restate the above inequality as: 

( ) ( )( )( )
( ) ( )( )( )

34
4 4 2

34
4 4 3

1 3 4 1 3 4 2

1 3 4 1 3 4 3

,

,

ii
i i i

ii
i i i

I D g i i D g i i c

I D g i i D g i i c

π

π

− ⊕ −

≥ − ⊕ −
 

Iff: 
4

2 3
ii i . 

Hence, we conclude that 1 4
2 3 2 3

i ii i i i→   in 1g . This completes our proof. □ 
Proof of Proposition 2. First, we consider any SNN that is supported by   and 
  that satisfies partner heterogeneity for 1σ = . Note that for any ,x y N∈  
and ,x y  in the same viewpoint of i it holds true that x yI I=  for 1σ =  and 

1lim 0y xI Iσ→ − = . Note further that for 1σ <  in this minimally connected 
network it holds true that x is preferred to y as a partner if and only if  

y x y xc c I I− ≥ −  where y xc c≥  and y xI I≥ 8. Since  

1lim 0y x y xc c I Iσ→− ≥ − =  and I is continuous in σ , we conclude that there 
exists σ  such that y x y xc c I I− ≥ − —equivalently x is preferred to y—for 
every ( ],1σ σ∈ .                                                  □ 

 

 

8That is, it may be cheaper to form a link with x than with y but connecting to y gives a higher in-
formational quantity relative to connecting to x. However, if the former outweights the latter then x 
is preferred to y. 
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