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Abstract 
Nanocrystalline SnO2 and CuO doped with SnO2 were prepared by the co- 
precipitation method and characterized for different physiochemical proper-
ties and microbiological activity. The composition and morphological forma-
tion were characterized by XRD, HRTEM, Raman, FTIR, and UV-vis spec-
troscopy. The Powder X-ray analysis reveals that Sn4+ ions have substituted 
the Cu2+ ions without changing the monoclinic structure of SnO2 but the av-
erage particle size of the SnO2 and CuO doped SnO2 samples from 11 and 5 
nm respectively. However, it exhibits an inhibiting strong bacterial growth 
against tested bacterial strains. 
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1. Introduction 

Recently, metal oxide nanoparticles received great interest and attention from 
dynamic researchers in the application of biomedical field technology [1]. Among 
the Cu doped SnO2 nanoparticles are considered very interesting materials in 
chemical and physical studies. As highly efficient catalysis, sensors and biosen-
sors, and photodegradation owing to their potential features and unique proper-
ties include semiconductivity and less toxicity [2] [3] [4] [5]. Stannic Oxide is a 
colorless, odorless, diamagnetic, and amphoteric solid. SnO2 is an important 
wide bandgap semiconducting metal oxide (Eg = 3.6 eV, 330 K) that has a wide 
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range of applications, such as in transparent conducting electrodes, gas sensors, 
Li batteries, and optoelectronic devices [6] [7] [8] [9]. The p-type transition 
metal oxide with a narrow bandgap CuO nanoparticles, Eg = 1.2 eV shows unique 
properties, such as super paramagnetism and high magnetic susceptibility at low 
temperatures [10] [11] [12] [13]. Copper oxide nanomaterials may have the ad-
vantage of a lower surface potential barrier than that of the metals, which affects 
electron field emission properties. Copper-oxide is considered a potential field 
emitter, an efficient catalytic agent, and a good gas sensing material. An im-
proved understanding of nanoparticles and biological cell interactions can lead 
to the development of new sensing, diagnostic, and treatment capabilities, such 
as improved targeted drug delivery, gene therapy, magnetic resonance imaging 
(MRI) contrast agents, and biological warfare agent detection [14] [15]. Nano-sized 
metallic copper and its oxides possess the good potential for photo-catalytic, 
sensing applications [16] [17] [18]. 

In recent years, different methods were used to synthesize various metal oxide 
nanoparticles, such as the mechano chemical method [19], solvothermal [14] 
sol-gel method, chemical co-precipitation method [16] [17]. In addition, various 
attempts were made to enhance the biological activities of metal oxides [20] [21]. 
The antibacterial/biological activities of pure and doped SnO2 nanoparticles 
were recently studied by researchers [22] [23]. Numerous types of doped nano-
particles showed outstanding antibacterial properties against different bacteria 
such as Escherichia coli, K. neumo, and S. aureus, etc. These nanoparticles can 
induce membrane stress by direct contact with walls of bacterial cells, damaging 
and disrupting cell membranes and leading to cell death [24] [25] [26] [27] [28]. 
Compared to the pure SnO2 nanoparticles, the Cu doped SnO2 nanoparticles in-
hibit more of those bacterial. Therefore, in this study, an attempt was made to 
synthesize both pure and Cu dope SnO2 nanoparticles in the absence of reducing 
agents and their antibacterial activity against three bacterial. 

2. Experimental Section 
2.1. Co-Precipitation Method 

Analytical grade Tin tetrachloride Dehydrate (SnCl4·2H2O), Copper(II) nitrate 
hydrate(Cu(NO3)2 xH2O), and Ammonia solution (NH4OH) were used as start-
ing materials for Sn, O & Cu, respectively to prepare nanoparticles of SnO2 
compound in the precipitation method. Then the mixture was stirred for 30 
min. After mixing, the precipitation of the dissolved chemicals was achieved by 
the addition of a 4 M NH4OH solution drop by drop with continuous stirring for 
about 30 min. In this method, the process of precipitate formation was con-
trolled by pH and temperature change. Precipitates were then filtered, washed 
away properly with de-ionized water to eliminate any chloride or other impurity. 
Then these particles were dried at 120˚C for 12 h in an oven. Finally, the synthe-
sized particles are fully dried form were ground to a fine powder in Figure 1. 
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Figure 1. Preparation flowchart of CuO doped SnO2 nanoparticles. 

2.2. Characterization 

The prepared CuO-doped SnO2 nanoparticles underwent analysis to identify 
their structure, surface morphology, composition, and also to know about opti-
cal properties. The structural properties of CuO-doped SnO2 nanoparticles were 
studied using an X-ray diffractometer (Philips PW1700) with Cu Kα (λ = 1.5406 
Å) radiation in Bragg angle range of “20 - 80”. The Fourier transform infrared 
(FTIR) spectra of the samples were collected using an AVATAR 360 spectrome-
ter with KBr as compressed slices, in the range of 4000 - 400 cm−1. Absorption 
spectra and Optical band gap was measured using OPTIMA SP-3000 UV-Vis 
Spectrometer in the range of 300 - 800 nm. High-resolution transmission elec-
tron microscope (HRTEM) was taken with a JEOL-3010 operating at 200 kV and 
EDX spectra of prepared CuO-doped SnO2 nanoparticles.  

2.3. Antibacterial Activity 

Microbiological activities of the SnO2 nanoparticles are examined against clini-
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cally isolated; gram-negative E. coli bacteria by Agar well diffusion method. The 
SnO2 nanoparticles are diffused out into the medium and interacted in a plate 
freshly seeded with the test organisms. The resulting zones of inhibition will be 
uniformly circular as there will be a confluent lawn of growth. The diameter of 
the zone of inhibition is measured in centimeters. The medium is prepared by 
dissolving 28 g of the commercially available Nutrient Agar Medium (Hi-Media) 
in 1000 mL of distilled water. The dissolved medium is autoclaved at 15 lb pres-
sure at 121˚C for 15 min. The autoclaved medium is mixed well and poured 
onto 100 mm Petri plates (25 - 30 mL/plate) while still molten. 1 L of nutrient 
broth is prepared by dissolving 13 g of commercially available nutrient medium 
(Hi-Media) in 1000 mL distilled water and boiled to dissolve the medium com-
pletely. The medium is dispensed as desired and sterilized by autoclaving at 15 lb 
pressure (121˚C) for 15 min. Gentamycin with a concentration of 20 mg/mL is 
used as the positive control.  

3. Results and Discussion 
3.1. X-Ray Diffraction Analysis 

The XRD pattern of SnO2 and CuO doped SnO2 are illustrated in Figure 1 The 
growth of nanoparticles reveals along (110), (101), (200), (211), (220), (310), (301) 
plane at an angle 26.6490, 33.9450, 51.6110, 54.6480, 61.8460, 64.9060, 78.4270 re-
spectively, which is indexed to the tetragonal rutile structure of SnO2 (JCPDS file 
no. 71-0652) [29] [30]. Crystallites sizes of nanoparticles were obtained using Debye 
Scherer’s formula and were found to be in the range 10 - 15 nm. The significant 
effect of Cu doping on structural parameters of the nanoparticle can be seen in 
Figure 2 clearly. Diffraction maxima intensity along (110) is reduced while noti-
ceable improvement is observed in diffraction maxima intensity within Cu doping 
concentration. This confirms the Cu atom successfully replaced the Cu atom from 
the SnO2 lattice and developed Cu doping SnO2 material (Figure 3). 

 

 
Figure 2. Power XRD pattern of the SnO2 and CuO- 
doped SnO2 nanoparticles. 
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Figure 3. The XRD pattern of the CuO doped 
SnO2 nanoparticles. 

3.2. Optical Analysis 

Understanding the photosensitive behavior of nanoparticles of SnO2 and CuO 
doped SnO2 to explore electronic structure information of nanoparticles is es-
sential Figure 4, illustrated absorbance spectra of nanoparticles in the UV-vis 
region. Pure and Cu doped nanoparticles reveal strong absorbance (band edge) 
at 446 and 566 nm which arises due to the interband transition in SnO2 material 
[31] [32]. This confirms the reduction in defects vacancy and photoresponse 
improved. Tauc’s plots of nanoparticles are illustrated in Figure 5. From Figure 
5 to extrapolate linear portion of plots to zero absorption coefficient on the 
x-axis, these intercept values are the optical band gap of materials.  

3.3. FT-IR Analysis 

Figure 6 shows the FTIR spectra showing absorption regions and their functional 
groups of SnO2 and CuO doped SnO2 nanoparticles. The broadband around the 
3392 cm−1 and band at 1626 cm−1 can be attributed to the O-H vibration of ab-
sorbed water on the sample surface. Intense broadband around 661 cm−1 was ob-
served the samples are assigned to the O-Sn-O bridge functional groups of SnO2 
which confirms the presence of SnO2 as a crystalline phase [33] [34].  

3.4. HRTEM Analysis 

The morphology of SnO2 and CuO doped SnO2 composite was investigated by 
TEM techniques (Figure 7 and Figure 8). Figure 7 and Figure 8 display the 
HRTEM images of SnO2 and CuO doped SnO2 nanoparticles and reveal the ag-
gregated. Hence, HRTEM analyses also indicate the successful formation of spher-
ical shapes. The selected area diffraction (SAED) pattern of SnO2 and CuO doped 
SnO2 shows the ring patterns, which is a characteristic feature of polycrystalline. 
As is evident, an interplanar distance of 0.333 nm is close to the d-spacing of the 
(110) planes of the tetragonal rutile SnO2. On the other hand, an interplanar dis-
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tance of 0.252 nm is in good agreement with the d-spacing of the (002) planes of 
the monoclinic structure CuO [35]. From these results, CuO-SnO2 nanocomposite 
structure has been possibly facilitating the creation of the p-n junctions compared 
with large-grained CuO-SnO2 normal composite materials. 

 

 
Figure 4. The UV pattern of the SnO2 and CuO 
doped SnO2 nanoparticles. 

 

 
Figure 5. The Band gap energy of the SnO2 and 
CuO doped SnO2 nanoparticles. 

 

 
Figure 6. FTIR spectrum of the SnO2 and CuO doped 
SnO2 nanoparticles. 
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Figure 7. The HRTEM of the SnO2 nanoparticles. 

 

 
Figure 8. The HRTEM of the CuO doped SnO2 nanoparticles. 

3.5. EDX Analysis 

The surface electronic state and composition of SnO2 and CuO doped SnO2 were 
assessed by EDX analysis (Figure 9). The survey EDX spectrum shows the clear 
signals of Copper (Cu), oxygen, (O) and tin (Sn), Nickel (Ni), Calcium (Ca), and 
Chlorine (Cl) elements, which are consistent with the EDX reports. It is clear 
from Figure 9 that Cu ions are successfully incorporated in the host SnO2 ma-
terial. The consistent and sharp peaks with tin oxide and cupric-tin oxide dem-
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onstrated that both synthesized nanoparticles were crystalline. Hence, synthe-
sized nanoparticles were obtained in their pure forms. 

3.6. Antibacterial Activity Analysis 

CuO doped SnO2 a nanoparticle were investigated to evaluate antibacterial activ-
ity against bacterial strains. As K. neumo, S. aureus and E. coli by Agar-well dif-
fusion method. Evaluation of the antibacterials activity of these varieties record-
ed in Table 1 and illustrated in Figure 10. The results revealed that higher inhi-
bition zone was recorded in E. coli 10 mm in 0.005 moles of CuO doped SnO2, a 
gram +ve bacterial strain whereas gram +ve K. neumo showed inhibition of 9 
mm in 0.01 mole CuO doped SnO2 (Figure 10). Both the bacterial strains were 
tested against 1 mg SnO2 nanoparticles. S. aureus is a major hospital-acquired 
pathogen thus the prevention of microbial surfaces is of utmost concern in the 
health care system similar results were reported [36] [37] [38] [39] [40]. Metal 
oxide nanoparticles possess a high surface area which is responsible for their in-
creased chemical and biological activity. It is assumed that nanoparticles interact 
with the cell wall of the bacteria and disturbs the membrane permeability and 
respiration system of the bacteria and consequently, leading to their death. That 
created by nanoparticles depends on their bacterial potential. 

 

 
Figure 9. EDX of the CuO doped SnO2 nanoparticles. 

 
Table 1. Antibacterial Activity of the CuO doped SnO2 nanoparticles. 

Microbes 
Zone of inhibition (mm) 

0.01 0.001 0.005 Strep 
K. neumo 9 8 7 7 
S. aureus 7 9 8 8 

E. coli 8 9 10 7 
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Figure 10. Antibacterial Activity of the CuO doped SnO2 nanoparticles.  

4. Conclusion 

In summary, SnO2 and CuO doped with SnO2 were prepared by the co-precipitation 
method. As grown nanoparticle structural and optical properties were studied in 
detail in correlation with the Cu doping concentration. Structural studies of na-
noparticles found that the crystallinity of the particles becomes improved on Cu 
doping in the SnO2 matrix. The current study showed a significant level of anti-
bacterial activity in all tested bacterial strains. Further, re-engineering offers in-
teresting and immense future impact with unexplored biological activities. 
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