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Abstract 
The integration of distributed generations (DGs) into distribution systems 
(DSs) is increasingly becoming a solution for compensating for isolated local 
energy systems (ILESs). Additionally, distributed generations are used for 
self-consumption with excess energy injected into centralized grids (CGs). 
However, the improper sizing of renewable energy systems (RESs) exposes 
the entire system to power losses. This work presents an optimization of a 
system consisting of distributed generations. Firstly, PSO algorithms evaluate 
the size of the entire system on the IEEE bus 14 test standard. Secondly, the 
size of the system is allocated using improved Particles Swarm Optimization 
(IPSO). The convergence speed of the objective function enables a conjecture 
to be made about the robustness of the proposed system. The power and vol-
tage profile on the IEEE 14-bus standard displays a decrease in power losses 
and an appropriate response to energy demands (EDs), validating the pro-
posed method.  
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1. Introduction 

For several decades, fossil fuels have been recognized as one of the main causes 
of global warming [1]. As a result, we are experiencing adverse effects such as 
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climate change, which leads to flooding. 
Furthermore, these resources are being progressively depleted in the industry 

and technology sectors [2]. This distributed generation comprises all renewable 
energies such as wind power, biomass, geothermal, solar, hydropower, hydrogen 
generators, etc. [3]…These sources have garnered significant attention in recent 
decades [4]. Current electrical systems integrate the development of new solu-
tions and diverse technologies to meet the growing demand for electrical energy 
caused by demographic evolution, technological advancements, and the pursuit 
of decent life [5]. Among these distributed generators, distributed solar produc-
tion is predominantly used to reinforce low voltage lines [6]. DGs offer signifi-
cant advantages for electric systems located outside urban areas, particularly for 
networks with low voltage levels and repeated power outages. These sources are 
increasingly used for active power generation in distribution networks in iso-
lated areas [7]. The installation of DGs is essential for lines with demand ex-
ceeding supply [8]. Given the rapid growth of renewable energy penetration in 
distribution networks, strategies regarding the appropriate location and size of 
these sources are increasingly significant. In [9], a solution for the fault man-
agement system and real-time control and operation system is proposed, along 
with the design and main function modules of DGs. In [10], an online voltage 
and power control-based management algorithm is suggested. To ensure safety 
and optimal operation, the management of energy flows in a distributed energy 
management system controlled by an event is described in [11]. Electric systems 
provide the possibility of having active power which is always supported by reac-
tive power to meet the needs of users with non-linear loads [12]. The power 
transmission on the transport line increases as the energy demand at the load 
increases. Furthermore, nonlinear loads in electric networks are responsible for 
energy disturbance problems such as power factor disturbances, voltage fluctua-
tions, odd harmonics, and high demand for reactive power. The majority of en-
countered issues stem from the demand for reactive power. To compensate for 
reactive power requirements, distribution systems may employ flexible tech-
niques based on inverters connected to the grid [13]. One of these techniques is 
the use of flexible AC transmission systems (FACTS) [14], which play a crucial 
role in power compensation. These resources can increase the available transfer 
capacity of the transmission line and regulate reactive power flow in the electric-
al system which can create fluctuations and stability of the system voltage. One 
of the most commonly used FACTS devices in current electrical systems is the 
Static Synchronous Compensator (STATCOM), which is a parallel or shunt 
compensator. The STATCOM has various applications in the management and 
control of electrical systems. One of the most commonly used FACTS devices in 
current electrical systems is the Static Synchronous Compensator (STATCOM) 
[15], which is a parallel or shunt compensator. These methods all facilitate vol-
tage regulation, improvement of power factor, mitigation of current and voltage 
harmonics [16], as well as compensation of reactive power. To enhance the daily 
energy quality, the shunt compensator maintains the capacitor voltage at the 
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level of the continuous bus which is assumed to be stable. It automatically injects 
or absorbs both active and reactive power into the system, opposite in amplitude 
to the coupling point’s common point. Furthermore, it balances power fluctua-
tions in the system connected to the proposed network by performing charging 
and discharging operations on capacitors. Furthermore, in the event of proper 
allocation and sizing, it can enhance the reliability and quality of the system in 
question, while minimizing investment and operational costs while mitigating 
environmental risks associated with decentralized or centralized electricity pro-
duction.  

2. Literature Review 

In the literature [17], many works have focused on the implementation and siz-
ing of DG in distribution networks, with the aim of improving the quality of low 
and high-voltage electric energy [18]. Numerous studies have suggested scena-
rios for load shedding or strengthening using primary sources. In addition to 
these methods, energy optimization and planning models employ mathematical 
approaches and strategies based on deep learning or artificial intelligence (AI) 
[19]. Some algorithms are used based on system complexity. Optimization mod-
els and mathematical approaches are used to find optimal and adequate solu-
tions. In [20], evolutionary algorithms are proposed. However, some intelligent 
techniques take time and may sometimes provide only local optimal solutions 
instead of the appropriate global optimal solutions [21]. The same applies to 
certain algorithms that generate too many redundant steps, making the control 
and management system very slow. The most commonly used algorithms in-
clude artificial rabbit algorithms, genetic algorithms, non-dominated sorting 
genetic algorithms, particle swarm optimization, and hybrid algorithms based on 
genetic algorithms and particle swarm optimization. Technical term abbrevia-
tions will be explained upon first use. 

Photovoltaic power generation is becoming increasingly successful in the field 
of emerging energy technologies. Maximum Power Point Tracking technology is 
an integral part of any solar power generation system. In the presence of local 
shading, the output power of the solar panel exhibits a phenomenon with mul-
tiple peaks [22]. The use of a method should be proven to keep an eye on peak 
performance, as well as in the state of local optimization. However, the adaptive 
approach of particle swarm optimization used by the intelligent algorithm suf-
fers from tracking problems such as significant oscillations, low precision and a 
long optimization time [23]. This article presents a control strategy based on a 
greedy algorithm for an adaptive particle swarm optimization algorithm to solve 
this challenge. The limitations of traditional adaptive particle swarm optimiza-
tion methods are overcome by combining global and local optimal particle dif-
ferences with the proportional coefficient of particle motion speed. 

The result is a reduction in the world’s fossil fuel reserves. Furthermore, the 
primary source of environmental pollution and climate degradation is humani-
ty’s excessive dependence on fossil fuels for its energy. The focus of future ener-
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gy development will be on producing and utilizing new energies, primarily based 
on solar power, to better safeguard the ecological environment of the planet 
through sustainable development. Improvements are not possible as the text al-
ready adheres to the given principles and lacks context. Maximizing Power Point 
Tracking (MPPT) is an integral aspect of photovoltaic energy production be-
cause, in a dynamic natural environment, maximum photovoltaic power is es-
sential to improve electricity production efficiency. MPPT is an automated me-
thod that optimizes system parameters based on solar cell characteristics. Re-
searchers are constantly improving the MPPT algorithm to combat the problem 
of low energy conversion rates in shady conditions. 

In order to study the proposed system, this work seeks to evaluate the dynam-
ic behavior in transient and steady state of the voltage and power fluctuation. To 
estimate the robustness of the system, an objective function is defined based on 
constraints due to the stochastic behavior of the non-linear loads. The speed of 
convergence of this objective function leads to a conjecture about the robustness 
of the system. Evaluating the overall size of the system gives an idea of the ener-
gy efficiency of the proposed system. Another method of assessing power quality 
in a distributed generation system is to evaluate the rate of harmonic distortion 
at a common point of coupling. However, it is difficult to know the robustness of 
the system without clearly defining the constraints. The proposed method de-
fines the constraints required to achieve good voltage and power performance. 

3. Methodology 
3.1. Minimization of the Power Losses Using the Test of Standard  

IEEE 14 Bus 

Although distributed generations are encouraged to integrate their energies into 
the electrical network, there are times when non-compliance with standards or 
poor management of energy flows creates disturbances during periods when the 
load does not require too much energy. The presence of DGs can disturb receiv-
ers or lines, which can damage equipment. This is why it is important to sche-
dule power flows and regulate the integration rate of renewable energies in a 
non-proprietary source. Figure 1 depicts the power flows between two buses 
[24]. 
 

 

Figure 1. Line feeder for radial distribution system. 
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Given the objective function F φ ψ= + , the line can be modelled taking into 
account the power LossesP , the reactive losses ( ), 1

losses
t tP + , the nominal voltage Vψ  

and the voltage Vt at node t. The parameter tµ  represents a state of connection 
or disconnection of a DG. The following equations correspond to the modelling 
of the line of a radial distribution system [25]. 
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where minV  and maxV  are minimal and maximal bus voltages. 
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Considering (Equation (7)) we can have: 
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maxI  is maximal current that can be injected at node t 
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3.2. Voltage Enhancement 

The importance of taking into account the parameters of a line lies in the fact 
that when the line is poorly modelled it can cause losses or even deterioration 
[26]. This is why, in Equation (1), the flow of energy along this section is con-
trolled by shaping the signals between two distinct points known as nodes. The 
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whole system is modelled in such a way that each circuit portion constitutes a 
sub-system as shown in Figure 2. The evaluation of the size of the DG at each 
node takes into account the availability of the transited energy at the different 
busbar connections where other sources can be injected [27]. 

4. Standard Particle Swarm Optimization 

The particle swarm optimization (PSO) algorithm is a random search algorithm 
based on group cooperation developed by simulating the foraging behavior of a 
flock of birds [28]. The evolution process of the standard particle swarm opti-
mization algorithm is as follows [29]: 

( ),1 ,2 ,, , ,i i i i NX x x x=                      (16) 

( ),1 ,2 ,, , ,i i i i NV v v v=                       (17) 

1t t
i iX X ε+ − <                        (18) 

( ),1 ,2 ,, , ,besti besti besti besti NP P P P=                  (19) 

( ),1 ,2 ,, , ,besti besti besti besti NG g g g=                  (20) 

( ) ( )1
1 1 2 2

t t t t
i i i besti i besti iV V c r P X c r g Xω+ = + − + −           (21) 

( )1 1 , 1,2, ,t t t
i i iX X v t Nχ+ += + =                 (22) 

max min
max

max
i iter

iter
ω ω

ω ω
−

= −                   (23) 

w is the inertia weight, and the size of w determines the strength of the particle 
swarm’s local and global search ability. c1 is the individual learning factor, c2 is 
the social learning factor, and proper selection of learning factors can prevent 
particles from falling into local optimums. r1 and r2 are random numbers of [0, 
1] [30]. pbest is the individual optimal value; gbest is the group optimal value. 
 

 

Figure 2. IEEE 14 bus configuration in radial distribution system. 
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5. Improved Particle Swarm Optimization (IPSO) 

Fixed inertia weights and learning factors limit the evolutionary process of the 
standard particle swarm optimization algorithm. In the complex changing envi-
ronment, MPPT control of standard particle swarm optimization is easy to fall 
into the local optimum. In order to make the algorithm more effective in track-
ing the maximum power of the PV array under local shading conditions, scho-
lars proposed an adaptive particle swarm optimization algorithm. w gradually 
decreases from strong global tracking ability to strong local tracking ability. At 
the same time, c1 keeps decreasing and c2 keeps increasing, which avoids falling 
into the local optimum and improves the tracking speed. The updated formulas 
of w, c1, and c2 are as follows: 

( ) ( ) min
min max min

avg min

f i f
w w w w

f f
−

= − − ×
−

              (24) 

1 1min 1max
max

cos
2
iterc c c
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= + ×  × 
               (25) 

2 2min 2max
max

sin
2
iterc c c

iter
 ×π

= + ×  × 
               (26) 

In the above formulas, min 0.3w = , max 0.6w = ; 1min 0.6c = , 1max 2c = ;

2min 0.4c = , 2max 1.6c = ; iter  is the current iteration number, and max 15iter = ; 
( )f i  is the fitness value of the current particle. 

6. Results and Discussion 
6.1. Load Profile 

Figure 3 shows the active power profile demanded by the load at a common 
coupling point. This power demand is evaluated over a period of one day. 
Thanks to this power profile subscribed to at the PCC, it is possible to reduce ac-
tive power losses thanks to the configuration on the IEEE 14 bus standard test. 
The proposed system is configured in a radial architecture. This radial system 
provides a global view of the allocation of the size of power that can be sub-
scribed from the various buses via a voltage or current transformer. 

After assessing the size of the system as a whole, Figure 4 shows the profile of 
the active power subscribed by the load and that of the available power produced 
by the grid and PV system as a whole. It can be seen that for one day, the energy 
produced is more than sufficient to meet demand. There is a peak in the power 
produced at periods such as 1 pm, 2 pm, 6 pm and 7 pm, which correspond to 
the hours of full power. During this time the user does not need energy storage 
because the reference load margin is much lower than the power transit level at 
the common point of coupling. Most systems of the size shown in Figure 4 are 
found in urban areas, where the surplus energy produced by decentralized dis-
tributors is fed into the low-voltage distribution network. 
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Figure 3. Load power profile during a day. 
 

 

Figure 4. Load demand at the point of common coupling during a day. 

6.2. Voltage Profile 

In Figure 5 we can observe the voltage profile of different configurations, 
namely the network with battery and PV, the network without PV and the net-
work with PV. This figure shows a considerable voltage drop at buses 2 and 4 
over long periods. It can be seen that the voltage level stabilises when the grid 
and PV are combined with a battery bank. And as the number of DGs increases, 
the voltage level becomes stable. Furthermore, in the absence of 2DGs, it can be 
seen that at nodes 7, 8 and 9, the current and voltage levels are stable. These 
nodes can be used to connect loads, which implies that receivers can be con-
nected to this bus. But in the absence of DGs, it is almost impossible to install 
receivers throughout the system, as this could create a general blackout, due to 
fluctuations in the frequency of the electrical grids. 

6.3. Power Profile 

Figure 6 illustrates the power profiles of the different configurations that can be 
obtained using the model proposed for standard IEEE 14 bus test. There is a  
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Figure 5. Voltage profiles for different configurations of DGs. 
 

 

Figure 6. Power losses profiles on IEEE 14 bus after DGs integration. 
 
high power loss at 2, 3, 12 and 13. In the absence of the energy storage system 
and the photovoltaic (PV) generator, the power losses are enormous. However, 
as the number of DGs increases, these power losses are reduced and stabilize at 
around 0.5 MW. The presence of a battery bank makes it possible to compensate 
for reactive energy. This has enabled the power profile to be stabilized by main-
taining the frequency of the electrical network in the presence of the DGs. 

6.4. Optimization the System Using Improved PSO (IPSO) 

After evaluating the size of the proposed system as a whole, the objective func-
tion was used to optimize the system by reducing power losses on the IEEE14 
bus standard test. Figure 7 shows that the improved PSO reduces power losses 
compared with the conventional PSO. The same applies to the convergence of 
the improved PSO, which remains constant from n = 40 iterations. The speed of 
convergence of the fitness function allows us to make a conjecture about the ro-
bustness of the proposed system as well as the feasibility of its implementation. 
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Figure 7. Evaluation of the performance of IPSO compared to the classical PSO. 
 
Table 1. Comparison of the proposed algorithm. 

Types of DGs GA [31] PSO [32] WOA [33] BPSO [34] Proposed PSO 

Grid/PV 20.4 MW 32.6 MW 21 MW 23.8 MW 45 MW 

PV/ESS 15.1 MW 25.4 MW 18.4 MW 17.5 MW 35 MW 

Grid/PV/ESS 24.6 MW 30.1 MW 22.3 MW 44.2 MW 62 MW 

 
Based on the different results obtained on the IEEE 14 bus standard test, the 

evaluation of the size of the proposed system is given in Table 1. A number of 
algorithms have been proposed, based on the same configurations and the same 
scenarios. A comparison is made. It can be seen that the proposed system is 
cost-effective in terms of performance and the size of the system, which has led 
to an improvement in the active power produced by the system as a whole. A 
good speed of convergence is observed compared to the data provided by tech-
niques such as GA, PSO, WOA, and BPSO. 

7. Conclusion 

After evaluating the size of the entire system composed of distributed generators 
(DGs), PSO algorithms improved the energy quality by reducing power losses. 
The voltage profile was observed during the testing of the IEEE 14 bus standard. 
The assessment and sizing of the proposed system yielded better performance. A 
comparison between standard PSO and improved PSO leads to the conclusion 
that the proposed technique enhances energy quality better than classical PSO. 
This study can be more intriguing if the harmonic distortion rate is calculated at 
a common coupling point. The aim of this study was to investigate an algorithm 
capable of reducing power losses in the entire system consisting of distributed 
generations, and to examine the behavior of voltage profiles on the test of the 
IEEE 14-bus standard. After studying the size of the overall system, it was found 
that the proposed model could significantly improve the active power profile. 
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This study could therefore be an effective contribution to the optimization of the 
energy efficiency of systems incorporating distributed generation.  
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