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Abstract 
This paper presents the optimal scheduling of renewable resources using in-
terior point optimization for grid-connected and islanded microgrids (MG) 
that operate with no energy storage systems. The German Jordanian Univer-
sity (GJU) microgrid system is used for illustration. We present analyses for 
islanded and grid-connected MG with no storage. The results show a feasible 
islanded MG with a substantial operational cost reduction. We obtain an av-
erage of $1 k daily cost savings when operating an islanded compared to a 
grid-connected MG with capped grid energy prices. This cost saving is 10 
times higher when considering varying grid energy prices during the day. Al-
though the PV power is intermittent during the day, the MG continues to 
operate with a voltage variation that does not 10%. The results imply that 
MGs of GJU similar topology can optimally and safely operate with no energy 
storage requirements but considerable renewable generation capacity.  
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1. Introduction 

Microgrids (MGs) are small-size controllable power systems that use renewable 
generation resources, such as solar, wind, and biomass. They are characterized as 
resilient small-scale power systems that can withstand failures  [1]  [2]  [3]. Dep-
loying MGs has become increasingly feasible, reliable, and cost-effective with 
high penetration of renewable energy resources. MGs generally complement 
utility grids and operate as grid-connected or islanded electric power systems. A 
grid-connected MG exchanges power with the utility grid. An Islanded MG op-
erates as a stand-alone small-size power grid.  

The power of renewable resources is, by nature, intermittent. This impacts the 
stability of MGs if not properly controlled to maintain the generation-load bal-
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ance in real-time. The availability of energy storage or connection to a utility 
grid provides potential sources of microgrid stabilization. Energy storage has a 
high initial cost, and its lifetime is short. Furthermore, MGs in distant areas are 
not connected to the power grid. Under these scenarios, optimally scheduling 
MG resources while maintaining a reliable microgrid with a consistent genera-
tion-load balance has been a challenging research problem.  

However, the current research in MG resource scheduling is generalized in the 
context of the MG topology and elements.  [4] presents a two-stage adaptive ro-
bust optimization model for minimizing operational costs while increasing resi-
liency against high-impact and low-probability events. In  [5]  [6]  [7], stochastic 
programming methods were used to address the uncertainty of power demand 
and renewable energy resources. A novel binary backtracking search algorithm 
has been introduced to control switching local power generation resources  [8]. 
Scheduling based on shaping the power demand curve was presented in  [9] [10] 
[11] to devise optimal scheduling of grid-connected MG, mainly using multi- 
dimensional competitive and mixed integer non-linear programming algorithms. 
Experimental analysis on optimizing the operation of a real grid-connected MG 
has been presented in  [12].  [13] presents an analytical target cascading method 
to construct a stakeholder-parallelizing distributed robust adaptive optimization 
for multi-microgrids.  [14] investigates the feasibility of scheduling distributed 
energy resources while considering voltage and frequency constraints.  [15] shows 
scheduling MG resources in grid-connected or islanded modes with energy sto-
rage to achieve generation-load balance. 

This research is motivated by the need to study resource scheduling of MGs 
with no energy storage since energy storage requires high initial investment 
costs and their lifetime is short. We use the MG of the German Jordanian Uni-
versity as a case study of this research. Like GJU, many MGs operate without 
energy storage. We present optimal scheduling of MG resources using interior 
point optimization for both islanded and grid-connected operations. In an is-
landed operation, Diesel Generation (DG) is used to complement the renewable 
generation that is intermittent in nature and to provide MG stability. The results 
show a feasible islanded MG with a substantial operational cost reduction while 
guaranteeing power availability to balance the power load in real time.  

The remainder of this paper is organized as follows: Section 2 presents a mi-
crogrid system. The problem formulation and optimal scheduling are presented 
in Sections 3 and 4. Section 5 provides details of the microgrid application of 
GJU. Section 6 presents the testing results of MG optimal scheduling. Finally, 
the paper is concluded in Section 7. 

2. Microgrid System 

Microgrids generally comprise several renewable generation resources and loads 
and are managed and operated in real-time either in a grid-connected or is-
landed mode. 
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2.1. Generation 

Renewable generation comprises solar and wind resources generally comple-
mented by on-site diesel generators, energy storage batteries, and interconnec-
tion to the main power grid. Storage batteries typically have a short lifetime and 
are expensive to install.  

Solar power 
Solar power is produced by a large array of photovoltaic cells, formally de-

fined as  [16]: 

( )( )1 25pvP AG Tη α= − −                     (1) 

where G, T, A, η, and α denote solar radiation, ambient temperature, area of pa-
nels, system efficiency, and power degradation, respectively. The output power 
of the photovoltaic array at substation i is formally defined as: 

( ) ( )1
pvN

pv pviiP t P t
=

= ∑                       (2) 

where Npv represents the number of substations connecting photovoltaic arrays. 
Diesel Generators 
Since the output power of solar and wind is intermittent and non-controllable, 

it is necessary to have storage and controllable generation in the microgrid that 
can replace power shortage and maintain constant local power. The output 
power of N diesel generators is formally defined as: 

( ) ( )1G Gii
NP t P t
=

= ∑                        (3) 

where ( )GiP t  denotes the output power of the ith diesel generator at time t. 
The cost of power is defined as  [17]: 

( )( ) ( )( )( )fixed
i Gi Gi iC P t A F P t C t= + ∆                 (4) 

where Ci, A, F, and ∆t denote the cost ($), price of diesel ($/Liter), variable cost, 
and time interval, respectively. 

2.2. Utility Power 

In a grid-connected mode, the operational cost also includes the cost of power 
absorbed from the utility grid. The cost depends on the market selling price of 
power ( )GrP t  absorbed from or injected to the utility grid at time t, defined as: 

( )( ) ( ) ( )Gr Gr GrC P t t P tρ=                     (5) 

where ( )tρ  denotes the energy price at utility grid ($/kWh) at time t. A nega-
tive value represents energy sold from MG to the utility grid. 

2.3. Load Profile 

MG load profiles are generally time-varying and are shaped by the type of load. 
In a university campus, the load profile is given by the power demand ( )DP t  at 
time t, defined as: 

( ) ( )( )
1 2

2 3

3 4

sinD

A t t t
P t B t A t t t

A t t t

ω φ
 ≤ <


= − + ≤ <
 ≤ <

              (6) 
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where A and B are constants and can be calculated using the curve fitting of the 
historical power demand data. Furthermore, w and φ  denote the angular fre-
quency and the phase shift of power demand, respectively. 

3. Problem Formulation 

We consider GJU microgrid architecture for the problem formulation of sche-
duling. The high operational cost of MG is mainly given by the cost of power 
produced by the diesel generators and the cost of power absorbed or injected 
into the utility grid. The objective function : G Rπ →  is, therefore, formally 
defined as:  

( ) ( )( ) ( )( )24
0 1,Gr Gi Gr G i Git i

N
rP P C P t C P tπ

= =
= +∑ ∑          (7) 

where: 
 ( )( )Gr GrC P t  and ( )( )i GiC P t  denote the cost of power that comes from 

utility grid at time t and the cost of power produced by the ith diesel generator 
at time t. 

 GrP  and GiP  denote vectors of 24 elements representing day-ahead sche-
dules in the set G that maps to the set of real numbers R.  

The MG operates under the following various constraints: 
1) Generation – Load balance 

( ) ( ) ( ) ( ) ( )G D RES Gr LossP t P t P t P t P t= − − −∑            (8) 

where: 
( )RESP t : Output power from different available renewable energy sources. 
( )LossP t : Losses in the distribution lines. 

( )DP t : Power demand 
2) Limits of the ith diesel generators output power 

( )min max
Gi Gi GiP P t P≤ ≤                      (9) 

where: 
min

GiP : Minimum output power of the ith diesel generator. 
max

GiP : Maximum output power of the ith diesel generator. 
3) Local power availability level (Lav) and utility grid power fraction (fav), de-

fined as: 

( ) ( )( )1 100%Lav t fav t= − ∗                 (10) 

( ) ( )
( )

Gr

D

P t
fav t

P t
=                      (11) 

where Lav is in the range: 

( )min maxLav Lav t Lav≤ ≤                   (12) 

Let the equality and inequality constraints (8) - (12) be denoted by a real- 
valued vector ( ),Gr Gih P P , the scheduling problem is then formally defined with 
an objective function π  as:  
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( ),min ,
Gr GiP P R Gr GiP Pπ∈  subject to: ( ), 0Gr Gih P P ≤           (13) 

We seek to find the optimal schedules of the day-ahead GrP  and GiP , that 
minimize the operational costs of MG while satisfying the various constraints. 
This problem is a non-convex nonlinear programming problem, and a closed- 
form solution does not exist.  

4. Optimal Scheduling 

The optimization in microgrid scheduling has been presented in several articles, 
including  [18] [19] [20] [21]. We use the interior point method  [22] for solving 
(13). In this method, the values of (Lav, fav, GrP , GP , GiP ) are updated itera-
tively. The values of ( DP , RESP , min

GiP , max
GiP , minLav , maxLav , fixed

iC , K, and 
A are set constant and they represent MG operating constraints. Even though 
the power exchange between the MG and the utility grid is limited by (12), resi-
liency and reliability can still be enhanced. The following steps represent the in-
terior point method:  

1) Add slack variables to convert inequalities constraints into equalities. 
2) Eliminate bounds on constraints by adding a barrier function into π . 
3) Formulate Karush-Kuhn-Tucker (KKT) by taking the gradient of Lagran-

gian. 
4) Linearize the equations by using Newton-Raphson method and solve itera-

tively. 
5) Employ a line search using a merit function, trust regions, and filter me-

thods. 
Figure 1 gives a flow chart of the solution algorithm. An initial guess of power 

values ( ),Gr GiP P  is made to compute the objective function π . The values are 
updated in the direction of the search for several iterations until convergence. 
 

 

Figure 1. Flow chart of the solution. 
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We use APMonitor Optimization Suit (APM) with Interior Point OPTimizer 
(IPOPT) to implement the algorithm  [23]. APM is optimization software for 
mixed-integer and algebraic differential equations. It can be used with MATLAB, 
Python, and a web interface. 

5. Microgrid Application 

The German Jordanian University (GJU) microgrid application is used for test-
ing. It has been used for demonstration in the 3DMicrogrid project  [24] and has 
been illustrated in MG-related research  [25] [26] [27]. 

5.1. GJU Microgrid 

GJU microgrid consists of PV generation interconnected with loads of sixteen 
buildings and a point of common coupling with the utility grid located in the 
main station south of campus. The main station contains two 33/11kV trans-
formers. Each of these transformers feeds a group of three 11/0.4kV transfor-
mers around the campus feeding the buildings. These two groups of transfor-
mers are connected in a ring configuration via a circuit breaker between trans-
formers 1 and 6 to support the reliability and flexibility of the microgrid. Figure 
2 shows a detailed snippet of the GJU single-line diagram with one substation 
connecting to a 0.45 MWP PV station, 1.6 MW load, 0.4 MVAR capacitor bank, 
and a 150 KVA backup Diesel Generator with 400/11kV transformer.  

At GJU, six diesel generators are installed in buildings A to F. They are used to 
accommodate the intermittence of PV resources. The ratings in kVA for the 
transformers (T1, T3, T5, and T6) and (T2 and T4) are 1000 and 1500, respec-
tively. The Power Factor is 0.95 and is driven by six capacitor banks with a total 
value of 1200 kVar in buildings: A, B, C, H, and M. A single controllable point 
of interconnection to the main grid exists with a circuit breaker on for a grid- 
connected mode and off for an isolated mode. The substation at the intercon-
nection has 33/11kV transformer, which interconnects to the main grid for a 
two-way power flow. The transmission lines interconnect generation resources 
and building substations with 11/.4kV bus transformers. 
 

 

Figure 2. Single-line diagram for one substation. 
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5.2. Load Profile 

The loads at GJU are categorized in buildings A, B, C, D, E, and F as essential, 
nonessential, and air conditioning. These loads are remotely controllable via 
controllable circuit breakers. Figure 3 shows a typical load profile for a Winter 
and a Summer Day, where peak loads occur during working hours 8:00-17:00 
and is at 1.05 and 1.6 Mega Watt (MW), respectively.  

Using (6), the curve-fitting values for this load profile are given as follow: 

( ) ( )( )
195 0 6
851.49sin 15 82.5 195 6 17.5

195 17.5 24
D

t
P t t t

t

 ≤ <


= − + ≤ <
 ≤ <

       (14) 

5.3. PV Generation 

The PV power generation at GJU exists at Buildings B, D, E, and F, with a total 
capacity of 1.8 MW. The PV power generation for a Winter and a Summer Day 
is shown in Figure 4. The production patterns indicate the intermittent nature 
of PV with variations dependent on weather conditions. 

6. Testing Results 

In this section, the testing results are presented for the estimates of load and PV 
generation, operation cost analysis, and power flow and stability analysis for 
both grid-connected and islanded microgrids. 

6.1. Load and PV Estimates 

We use Equation (1) to compute the estimated PV power and Equation (6) to 
estimate the power demand a day ahead. Figure 5 and Figure 6 compare the  
 

 

Figure 3. Load profile for summer and winter day. 
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Figure 4. PV power generation for summer and winter day. 
 

 

Figure 5. Actual and estimated power demand for 30/12/18. 
 

 

Figure 6. Actual and estimated PV power for 30/12/18. 
 
actual and the estimated power demand and PV power generation for day 
30/12/2018, respectively. The results indicate accurate power demand and gen-
eration estimates and represent an average variation of less than 10%. 
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6.2. Operational Cost Analysis 

The operational cost analyses of GJU grid-connected MG are presented in this 
section. Since the output power of renewable energy is not controllable, and GJU 
has no energy storage, diesel generators are used to compensate for the power 
shortage in real time. For this purpose, one generator is turned on all the time. 
For the winter day analysis, only two generators: DG1 and DG2, were used. The 
rating of DG1 is 703 kVA, while DG2 is 350 kVA. We use the data sheets of the 
diesel generators to compute their operational costs. The parameters in (5) are 
then given as:  

( ) ( )( )1 10.0001 0.175 19.62DGC t A DG t t= + + ∆  

( ) ( )( ) ( )( )2
1 2 20.0001 0.2181 5.6955DGC t A DG t DG t t= + + ∆  

with A = 0.68 $/Liter. 
We use two scenarios for the operational cost analysis. In scenario A, electric-

ity prices remain constant. In scenario B, electricity prices vary.  
Scenario A 
In this scenario, the grid energy prices are constant and are set to 0.37 $/kWh. 

Power flow analyses are made on the winter day while the local power availabili-
ty factor (Lav) is set to a range between 70% - 100%. The availability level varies 
at every time interval depending on the optimization results. Figure 7 shows the 
power demand, power flow of the utility grid, and power generation of PV and 
DGs. The results show that diesel generators replace utility grid power, and both 
PV and DG meet the GJU power demand. Therefore, the local power availability 
level during the day is 100%. This implies that the operating cost of diesel gene-
rators is much less than the utility grid. The operational cost of power (on the 
winter day) with a normal operation where power is supplied by the utility grid  
 

 

Figure 7. Power demand, grid power flow, PV power, and DGs power with constant grid 
energy prices – winter day and 70% - 100% local power availability. 
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and PV in a net metering configuration is $2176.9. In the islanded MG, the op-
timal operational cost gets reduced to $1086.5. In this case, the design can be set 
to sell power in case of excessive power generation. 

Scenario B 
In Scenario B, there are two load peaks: morning and evening. During these 

peaks, the cost of the grid power gets higher to shape the load. In this scenario, 
these peaks are assumed to be between the time intervals of 6:00-8:00 and 
16:00-18:00. The price of the grid energy during these times is 0.37 $/kWh. 
During the other time intervals, the price is 0.17 $/kWh. The local power availa-
bility factor (Lav) is set to the 70% - 100% range. Figure 8 shows the power de-
mand, power flow of the utility grid, and the power generation of PV and DGs. 
During off-peak, the power demand is met by PV, DG, and the utility grid. The 
operational cost of power (this winter day) with the normal operation when 
power is supplied by the utility grid and PV in a net metering configuration is 
$1157.84. In the islanded MG, the optimal operational cost gets reduced to 
$1082.64. 

These results indicate that the utility grid’s energy price drives the local power 
availability level. When prices get higher during peak hours, the MG raises the 
local power availability level to avoid buying energy from the utility grid at a 
high price. The power shortage is compensated solely by the DG. As a matter of 
fact, GJU operates an islanded MG as described in scenario A, which provides an 
average of $1k price reduction. We used scenario B as a hypothetical case to 
show the cost feasibility and sensitivity of MG scheduling. The results show that 
the variation of Lav(t) is primarily driven by the energy prices of the utility grid. 
The total cost reduction in scenario B was lower because of the assumption of 
the grid’s low energy prices during off-peak hours while meeting 70% of Lav(t) 
minimum threshold value. 
 

 

Figure 8. Power demand, grid power flow, pv power, and dgs power with varying grid 
energy prices – winter day and 70% - 100% local power availability. 
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6.3. Power Flow and Stability Analysis 

We used the Phasor Simulation in MATLAB for symmetrical load profiles in a 
1-minute resolution. The Power factor is set as 0.95 because of the availability of 
1.2 MVAR capacitor banks distributed across the campus buildings. We used 
controlled current sources for each phase to represent the power demand and 
the PV system. The temperature and radiation readings in (1) were used to ob-
tain the PV output power readings, where: 

A: Area of panels (10462.38 m2).  
η: Overall efficiency of the system (13.5%). 
α: Power degradation (0.45%). 
We use scenario B to study the power flow and stability of GJU MG. This 

scenario provides a mix of generation resources that involve not only PV and 
DG power generation but also the power of the utility grid. Generally, a grid- 
connected MG does not encounter severe stability challenges. Figure 9 shows 
the output power flow of PV, DG1, and DG2. Since DG1 was turned on at 11:48 
(42,840 seconds of the simulation time), the transient reaction can be noticed. 
 

 

Figure 9. The output power flow at PV, DG1, and DG2. 
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Figure 10. Voltage variations of the grid and buildings B – F. 
 

Figure 10 shows voltage variations of the Grid and voltage readings at Build-
ings B – F. The grid voltage variations remain between 0.00019 - 0.0001906, and 
the voltage variations at different buildings stay between 220 - 231 V, indicating 
a completely stable microgrid. Distribution companies generally permit voltage 
variation within ±10% of the declared voltage based on the IEC (International 
Electric Code). More significant voltage variations may lead to a complete black- 
out and may result in damage to connected devices. 

7. Conclusions 

This paper presents the optimal scheduling of MG with no storage. The objective 
is to showcase GJU MG as a feasible, resilient, cost-effective islanded MG opera-
tion with PV and DG generation resources. The MG is an AC mid-size with a 
1.8 MW PV installed capacity. The high operational cost of MG is driven by DG 
and the utility grid, formally defined as a non-linear convex optimization prob-
lem. We used the interior point method to solve for the optimal schedules of DG 
for scenario A when grid energy prices remain constant and scenario B when the 
prices vary. The results of optimal schedules in scenario A show daily cost 
savings of $1 k with a complete islanded MG operation compared to a grid- 
connected MG. On the other hand, the results of optimal schedules in scenario B 
(hypothetical) show daily cost savings of $75 compared to a grid-connected MG. 
The simulation results for both scenarios also show an acceptable range of vol-
tage variations due to the availability of capacitor banks at MG.  
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In conclusion, we provide implications for MGs that operate in a similar setup 
as GJU and in the same environmental zone where the sun shines for about 300 
days a year. The implications are: 
 MG can be optimally and safely operated with no battery storage require-

ments if there exists enough DG generation capacity 
 MG can be cost-effective and resilient if operated in an islanded mode and 

can provide large amounts of cost savings if enough PV installed capacity ex-
ists.  

 MG can be guaranteed to operate in the 70% - 100% local power availability 
level range if there exists sufficient local generation potential of PV and DG. 

 MG’s high availability levels of local power can potentially reduce operational 
costs in return for investment and contribute to clean energy. 

Future research will investigate primary and secondary control of MG opera-
tional scenarios using agents. Providing a complete agent-based MG operational 
control remains a challenging research problem. 
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