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Abstract 
The copper indium gallium selenium (CIGS) thin film is widely acknowledged 
as the most promising material for photovoltaic applications. Mainly due to 
appealing chemical and physical structures properties, low fabrication cost, 
high efficiency, and uncomplicated integration especially with the advance-
ment in the use of the flexible substrate. Promising results have been achieved 
in CIGS-based solar cells in the last few years and these devices could be key 
in unlocking the potential of green energy. Therefore, it is necessary to un-
derstand the parameters that are critical to improving the efficiency of these 
devices. Parameters such as doping concentration, thickness, substrates, and 
energy bandgap. In this review, we comprehensively report on these parame-
ters with an aim of showing the recent progress on the various methods used 
to optimize them, all geared towards efficient and low cost solar cells for PV 
applications. 
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1. Introduction 

With growing worldwide demand for energy and environmental impact asso-
ciated with conventional sources, projections show a very probable energy crisis 
shortly. This has led to intense research on efficient sources of green energy like 
wind energy [1], thermal energy [2] and tidal energy [3], hydropower [4], and 
solar energy [5]. Trends in the last 35 years show 8-fold growth in the generation 
and consumption of green energy technologies (see Figure 1(a)). Though each 
one of them has received considerable attention, their applications are still not as  
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Figure 1. (a) Shows the world’s share of renewable energy technologies in the last 35 years. Insert shows, the breakdown of these 
renewable technologies in Japan. (b) Shows the global solar energy consumption and the leading consumer countries [8]. 
 

competitive to the fossil sources of energy. For example, although hydropower 
plants are fundamental to the sustainable growth of renewable energy [4], the 
increased demand for water and other sources like irrigation may be in direct 
conflict with the objectives of river conservation. Wind power has been gaining 
worldwide attention as a large-scale energy source, however, its reliability is a se-
rious challenge due to the intermittent nature of wind power [6]. To this end, 
the solar energy option offers great potential especially considering that the solar 
power received on earth is ~104 times larger than humanity’s mean consumption 
[7]. In the last 12 years, the demand for solar energy has soared [8], which calls 
for intense research in this field to meet this demand. 

Solar energy harvesting forms what is referred to as photovoltaic energy har-
vesting and deals with the direct conversion of photons to electrons being key to 
meeting the world’s demands for clean, sustainable, and abundant energy. In the 
recent past exponential development of photovoltaic (PV) technologies (polycrys-
talline thin-film like copper-indium-gallium-diselenide, perovskite solar c ls, sil-
icon solar cells, dye-sensitized solar cells or organic solar cells) has led to signifi-
cant reduction in the price of solar electricity, making it a potential competitor 
to the commonly used power sources [9]. 

The application of PVs however can further be enhanced by having more effi-
cient solar cells. According to the Solar cell efficiency tables (Version 55) [10] 
the efficiency of solar cells (measured by a recognized test centers) is 26% and 
38.8% for single and multiple junctions cells respectively. However, various re-
search groups have reported efficiencies as high as 43% [11]. The key challenge 
is to not only improve the efficiency of solar cells but also make them affordable. 
Currently, the bulk semiconductor dominates the market due to their easier 
processing and manipulation [12]. Among them is the important copper-in- 
dium-gallium-diselenide (CIGS) thin film solar cells which are characterized by 
high absorption coefficient and adjustability of graded band gap for solar spec-
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trum [13]-[19]. 
Expanding applications of CIGS in PV devices demands for the optimization 

of parameters that are keys to the enhancement of the efficiency of these devices. 
To fully realize the potential of CIGS for PVs applications parameters such dop-
ing concentration, thickness, substrates and energy band gap must be well un-
derstood. In addition to effect of forming CIGS based heterojuctions for enhanced 
performance. Therefore, this review mainly focuses on recent (mostly within past 
10 years) progress on the improving the performance of CIGS based devices by 
optimizing the parameters. 

2. CIGS Parameters 

1) Thickness 
The standard thickness of the CIGS layer is ≈2 µm. Reducing this thickness 

can be a key in reducing the overall production cost and the materials usage. 
However reducing the thickness can reduce the amount of light absorbed by the 
layer and back contact recombination because of electrons being generated near 
the back coat. Soumaila et al. [20] investigated the influence of absorber back 
surface region grading [20] in CIGS solar cells. To achieve the optimal perfor-
mance, thickness of the back surface grading layer and the absorber bulk thick-
ness were varied. The results showed that back surface grading greatly improved 
the performances of CIGS [20] [21] [22]. Figure 2(a) shows that the efficiency of 
the device increased with increasing the absorber bulk thickness d. Primarily due 
to an increased short-circuit current density (Jsc), which varies by 3.2 mA/cm2 
from 29 mA/cm2 when d changed from 0.5 μm - 2 μm (see Figure 2(b)). Other 
parameters such as fill factor (FF) and open-circuit voltage (Voc) are also enhanced 
as d was increased because of increased light absorption and the reduction of the 
back contact recombination. Increasing the grading height (ΔGGI) is a key in 
suppressing the back interface recombination. Figure 2(c) shows that absorbers 
with high ΔGGI have relatively longer lifetimes, suggesting a reduction in back 
interface recombination. 

CIGS (In = 0.7, Ga = 0.3) thin films with two thickness 500 nm and 1000 nm 
were deposited by thermal evaporation technique on glass, silicon and ITO sub-
strates at room temperature [24] and later annealed at three different tempera-
tures. The change of current vs. voltage (I-V) explained the basic properties of 
the solar cell device. The I-V characteristic of the solar cells showed that the best 
composition was when the thin film was deposited on glass substrate with thick-
ness of 1000 nm. Besides, doubling the thin film thickness from 500 increased the 
energy gap from 1.82 eV to 1.87 eV. In general, the carrier concentration and 
Hall mobility was enhanced with the increased thickness. Serap et al. [23] depo-
sited CIGS ultrathin films of different thicknesses (52 nm, 89 nm, 183 nm and 
244 nm) which showed a single crystal structure and increased crystal sizes with 
the increasing thickness. Interestingly, the increased particle size leads to the 
enhanced absorption but band gaps were decreased. The simulated results  
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Figure 2. The (a) conversion efficiency and (b) short-circuit current density (Jsc) of the solar cells as function of the thick-
ness of the back surface grading layer d grad and back surface region band-gap variation (Eg) [20]. (c) Time-resolved photo-
luminescence (TRPL) transients of absorbers with different ΔGGI (the black lines are best exponential fits) [21]. (d) J-V 
characteristic of experiment and simulated CIGS-3/n-Si hetero junction solar cells [23]. 

 
for the current density versus voltage show in Figure 2(d) a good agreement 
with the experimental values. Nevertheless, the fill factor varied considerably for 
the calculated and experimental values, which could be attributed to the loss 
mechanisms due to factors like ohmic contact resistance and the grain boundary 
defects. 

2) Substrate effect 
The substrate in CIGS has a critical role in the development of the whole struc-

ture. A rigid Soda-lime glass (SLG) substrate is widely applied in the CIGS thin 
film sector because of its material properties, which can supply favorable amounts 
of Na to the absorber during evaporation or selenization process. Solar cells 
prepared through a multistage process on glass substrates showed high efficiency 
to the tune of 16.0%. Whereas those on steel sheet substrates without a diffusion 
barrier showed efficiency levels of 0.2%. Interestingly, changing the process to a 
single stage enhance the efficiency levels in the steel substrate but reduced it in 
the glass substrate [25]. 

The use two steel substrates i.e. Stainless chromium (Cr) steel and Cr-free 
steel sheets [25] was investigated in terms of the diffusion of iron (Fe) and other 
substrate elements into the CIGS layer by Secondary Ion Mass Spectrometry 
(SIMS). The influence of the impurities on the solar cell parameters was deter-
mined by current voltage (JV) and external quantum efficiency (EQE) mea-
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surements. The diffusion of substrate elements into the CIGS layer was found to 
be more pronounced in the case of unalloyed steel substrates as Compared to Cr 
steel. This was because Cr oxide layer at the surface of the Cr steel foil acted as a 
Fe diffusion barrier. Other substrates have also been used, for example polycrys-
talline CuInSe2 thin films were deposited on a flexible metal foil substrates using 
the selenization technique. Here, E-beam evaporated Cu-ln precursor layers were 
reacted with an atmosphere containing H2Se gas at around 400˚C [26]. Mo, Ti 
and Al foils were considered as possible substrate materials for CulnSe2 solar 
cells. From the results, Al was found to be the most reactive of the three foil sub-
strates studied. 

An interesting development in the applications of the CIGS solar cells is the 
advancement of the flexible substrates, which can open new markets for indoor 
and outdoor applications. For example, flexible modules facilitate easier installa-
tion features on integrated photovoltaics with minimal transport, portable con-
sumer devices and automobiles [27]. Good progress has been made on flexible 
CIGS solar cells especially using the polyimide-based substrates. Generally, flexi-
ble substrates can be of three types: metallic foils, polyimide sheets, and Zirconia 
[14]. Liu et al. [28] developed a flexible CIGS solar cell on stainless steel sub-
strates by using Ti/TiN composite structures as the diffusion barrier layer. De-
spite the several drawbacks of the flexible substrates such as being fragile and 
heavy. Conversion efficiency of 8.9% of CIGS/SS solar cells with Ti/TiN compo-
site structure were achieved which was close to the 9.1% value of CIGS cells fa-
bricated on soda-lime glass substrates. Higher efficiency of 20.4% on a polyimide 
film has been reported giving optimism on the ability of these flexible substrates 
based solar cells matching the efficiency of solar cells on rigid substrates [29] 
[30]. 

3) Effects of temperature 
Varying temperatures during CIGS thin film deposition can be used to deter-

mine the effect of thin film growth in relation to solar cell efficiency. Stuckel-
berger et al. [31] investigated the complex temperature dependence of defects 
and voltage in CuInxGa1-xSe2 thin solar cells. The growth temperature ranged 
from room temperature to 100˚C and the thin films were deposited by Mia-Sole 
on flexible stainless steel substrates. They concluded that a crucial understanding 
of light-induced and heat-induced metastabilities at the microscale is vital in re-
lation to the overall module performance especially the efficiency values. In ad-
dition, the deposition of polycrystalline CIGS thin films onto Mo-coated soda- 
lime glass substrates using the three-stage co-evaporated process was done [32]. 
And, carried out at the substrate temperature (Tsub) varying from 350˚C to 
550˚C coupled with independent control Cu, In, Ga and Se sources show that 
that the cell efficiency increased with the increase in growth temperature. Inte-
restingly, the simulated results revealed that the solar cell performances de-
pended on the increase in operating temperatures for all CIGS semiconductor 
with varying temperature gradients in comparison to the experimental values. 
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To further enhance the efficiency of the solar cell device, varying substrate 
temperature can be coupled with the use of a buffer layer. For example, zinc sul-
fide (ZnS) thin films were sputtered under various substrate temperatures rang-
ing from 100˚C to 400˚C. The results revealed that the sputtered ZnS thin films 
with an optimized substrate temperature of 100˚C could serve as a buffer layer 
for heterojunction thin film solar cells with quaternary compound semiconduc-
tor-based absorber layers [33]. Another study used cadmium sulphide (CdS) buf-
fer layer, and showed that the solar cell performance is affected by the operating 
temperature [34]. 

4) Effects of post-selenization and use of a precursor 
The quality of CIGS thin films can be improved by deposition of the precur-

sors followed by post- selenization which in the process improves the cell effi-
ciency. Post-selenization of copper, gallium and indium precursors to fabricate 
CuInxGa1_xSe2 (CIGS) thin films can be achieved by the use of Se vapour, die-
thylselenide or H2Se gas. Using Cu–In–Ga precursors and H2Se gas Cu(In1_x- 
Gax)Se2 (CIGS) thin films fabricated [35]. To improve the optoelectronic prop-
erties, a high temperature selenization and in situ annealing process was con-
ducted. Morphological and crystal characterization showed that the films had 
large grain size and with improved crystallinity. Conversely, sputtering of CuIn-
Ga precursors followed by chalcogenization was done to fabricate CIGS thin 
films. Two stage selenization processes were employed and then the microstruc-
tural characteristics of CIGS films studied [36]. The selenization temperature for 
the two processes was varied between 450˚C and 580˚C to establish the rela-
tionship between the microstructural characteristics and compositions of the 
CIGS films. From the results, the CIGS thin films formed using isothermal sele-
nization were found to have dense grain structure whose grains increased in size 
after an increase in the selenized temperature. However, the Se/(Cu + In + Ga) 
ratios of the films indicated that Se was distributed non-uniformly in the films. 

Further investigation employed a rapid thermal process of stacked elemental 
layers. Here, the properties of the Cu,Ga and In layers deposited by DC-sput- 
tering were studied [37]. By varying the thickness ratio of the In/CuGa layer, the 
chemical compositions of the metallic precursor were optimized. The optimized 
precursor was then selenized under various temperatures after which the per-
formance of the fabricated CIGS solar cells could be investigated and analyzed. 
The experimental results showed that the performance of the CIGS solar cells 
enhanced at higher selenization temperatures. The use off non-vacuum coating 
techniques for CIGS thin films is an interesting thing and many efforts have 
been made to develop for solar cell applications. The approach may either use 
solution type precursors or particle-based precursors [38]. For instant, Gas flow 
sputtering of CIGS with slightly Cu-poor stoichiometry was performed with two 
opposing CIGS targets i.e selenium only provided by target and additional sele-
nium from an elemental source inside the sputtering system [39]. From the re-
sults, the thin films deposited without extra selenium produced cells of efficiency 
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2% while films with additional selenium produced cells of up to 12% efficiency. 
These results proved that extra supply of selenium during sputtering improves 
efficiency of solar cell. 

Even at nano-scale, post-selenization and use of a precursor remains key pa-
rameters ffor improving the efficiency of the CIGS based solar cells. For exam-
ple, CIGS nanoparticles with uniform size of 15 nm in diameter and a chemical 
composition of Cu0.9In0.64Ga0.23Se2.00 were synthesized using spray pyrolysis tech-
nique. Selenization of the spray deposited CIGS nanoparticles was conducted in 
a homemade two-zone rapid thermal annealing_RTA_ furnace using Se pellets 
as a source of Se Vapor. The study revealed that achievement of higher Se supply 
to CIGS nanoparticles was as a result of either increasing Se evaporation tem-
perature or by increasing the flow rate of carrier gas resulting to larger CIGS 
grains with higher degree of crystallinity [38]. 

Varying of annealing temperatures is known to enhance the crystal growth in 
CIGS thin films. Zhang et al. [40] prepared CIGS thin films by directly sputter-
ing a CIGS quaternary target consisting of Cu:In:Ga:Se = 25:17.5:7.5:50 at %. 
Structural and composition properties of the CIGS thin films were explored after 
annealing at a temperature of 550˚C under vacuum and Se-containing atmos-
phere [41]. Recrystallization of CIGS thin films was found to occur with a pre-
ferred orientation in the (112) direction. The results proved that the CIGS thin 
films annealed under vacuum exhibited a portion loss of Se while those annealed 
under Se containing atmosphere revealed compensation of Se. Another study to 
check on the structural, morphological, optical and electrical properties of elec-
trodeposited CIGS thin films were also investigated by considering two different 
annealing atmospheres such as vacuum and N2 + Se vapor. The films were elec-
trodeposited from an aqueous-based solution at room temperature in a three 
electrode cell configuration whereby platinum plate was used as the counter 
electrode and a glass/ITO substrate as the working electrode [42]. The results 
revealed that the crystal structure remained the same for all the samples but the 
grain size varied with the variation of the annealing atmosphere leading to the 
conclusion that the annealing process had a great influence on grain nucleation 
and growth. 

In addition, CIGS thin films were prepared onto different substrates by ther-
mal evaporation technique in a high vacuum system of (10−5) torr [43]. The de-
posited thin films were then annealed at (100, 200 and 300)˚C temperature. The 
structural and optical properties of the deposited thin films revealed that the 
surface morphology and optical band gap increased with the annealing temper-
ature. Besides, annealing in selenium-free atmosphere show that the grain growth 
of CIGS films was enhanced with the increase of the annealing temperature 
ranging from 450˚C to 525˚C [40]. Another approach is to incorporate the cop-
per into indium selenide thin-films. Here, an ion-exchange reaction was used to 
incorporate Cu ions from aqueous solution into indium selenide thin-films. A 
precursor structure was prepared for conversion into CuInSe2 (CIS) layers suita-
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ble for solar cell processing [44]. This process resulted to thin films with a 
graded compositional depth-profile containing the crystalline phases β-Cu2-x Se 
and γ-In2Se3. Annealing of these layers in the presence of Se vapour showed to 
homogenise the compositional depth-profile of the layers and to form chalcopy-
rite CIS. CIGS absorber layers were deposited by multi-stage evaporation process 
at a substrate temperature below 500˚C on Mo coated soda-lime glasses [45]. 
Sodium fluoride post deposition treatment was applied on CIGS layer during 
cool-down of the substrate. The results showed that the microstructure of CIGS 
composition depth GGI composition profiles changed depending on the [Se/metal] 
conditions. 

5) Doping effect 
Doping concentration of different layers plays an important role in relation to 

maximizing the efficiency and minimizing the fabrication cost of any solar cell. 
A theoretical study of a CIGS thin film solar cell which produced a maximum ef-
ficiency of 24.27% [46] shows that the optimized efficiency can be obtained by 
determining the optimum band gap of the absorber and varying the doping 
concentration of constituent layers. The Ga content denoted by x = Ga/(In + Ga) 
was selected as 0.35 which provided the optimum band gap of absorber layer as 
1.21 eV. A one-dimensional simulator ADEPT/F 2.1 was used to analyze the fa-
bricated device parameters. The simulation results revealed that the efficiency 
increased with increase in band gap. It was noted that after certain band gap lev-
el (1.21 eV), the efficiency decreases despite an increase in the band gap. A proof 
that CIGS cell suffers from lattice mismatch effect for the Ga/(In + Ga) ratio is 
above 0.35. A study on the doping concentration in CIGS thin-film solar cells, 
done at each layer of the cell with an aim to obtain the optimum doping concen-
tration was done using ADEPT 2.0, a 1D simulation software. The results re-
vealed that energy conversion efficiency decreases with increasing doping concen-
tration in the window layer (ZnO) and the buffer layer (CdS). Conversely, it was 
observed that cell efficiency increases with increasing doping level in the absorp-
tion layer (CIGS). Therefore it can be concluded that doping concentration play 
significant role on the performances of the CIGS solar cell (ZnO/CdS/CIGS) struc-
tures [47]. 

Sodium is another interesting candidate for doping. Ideally, CIGS absorbers 
have the following shortcomings; including poor crystallinity, large porosity, and 
rough surfaces, which result in lower power conversion efficiency as compared 
to vacuum-based CIGS solar cells. Therefore, promoting absorber grain growth 
is fundamental to enhancing the performance of these devices especially the so-
lution-based solar cell. The use of Sodium which is alkali based has been shown 
to improve the grain growth and enhance the absorbing ability of the CIGS layer 
[48]. Specifically it leads to morphological changes leading to improved carrier 
collection and minority carrier lifetimes. Another way of doping is the use of 
Cs-PDT although the mechanism of doping remains controversial. The entry of 
Cs makes more Na enter the absorber besides, the Cs atoms entering the film not 
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only locate at the grain boundary but also enter the grains. Implying that they 
could passivate the defects both at the grain boundary and grain interior, im-
proving the hole carrier concentration and minority carrier lifetime [49]. 

3. Conclusion 

From the above discussion, it shows that CIGS quaternary compound is good 
candidate for use as an absorber layer in high efficiency thin films solar cells. 
However, the efficiency of the CIGS thin films solar cells is dependent on the 
following factors: substrate and growth temperature, deposition techniques and 
the stoichiometry composition. Unlike the other compounds, in thin films of the 
alloy CIGS copper, indium, and gallium typically redistribute during growth to 
create composition profiles in the final layers completely different from their in-
itial distribution. Therefore, it is necessary to discuss the essential materials such 
as gallium and its impact on the structural properties of CIGS solar cells. This 
provides a better understanding of the relationship between the emitter and ab-
sorber bulk in relation to electronic fields, carrier transport, and recombination 
processes that determine device performance. In this review, we have discussed 
these parameters with an aim of showing the recent progress on the various me-
thods used to optimize them, all geared towards efficient and low cost solar cells 
for PV applications. 
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