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Abstract 
Silicon phthalocyanine derivatives 1a and 1b were synthesized and characte-
rized by UV, 1H-NMR and MS. The photophysical properties of the com-
pounds in DMSO were investigated. The maximum absorption peaks of 
compounds 1a and 1b at the Q-band are 681 nm. With ZnPc (ΦF = 0.20, ΦΔ = 
0.67) as a reference, the fluorescence quantum yield (ΦF) of 1a and 1b are 0.20 
and 0.31 respectively, and the singlet oxygen quantum yield (ΦΔ) are 0.66 and 
0.59 respectively. The DNA-photocleavage activities of compounds 1a and 1b 
were studied by gel electrophoresis. Compounds 1a and 1b possess good 
photocleavage activity to pBR322 DNA. The results demonstrate that com-
pounds 1a and 1b are potential photosensitizers for tumor therapy. 
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1. Introduction 

Photodynamic therapy (PDT) has attracted much attention as a promising 
treatment modality for some cancers [1] [2] [3] [4] [5]. In the PDT process, a 
nontoxic photosensitizer will preferentially accumulate in tumor cells or their 
vasculature. After photoirradiation at a specific wavelength [6] [7] [8] [9], these 
photosensitizers will produce cytotoxic reactive oxygen species (ROS), princi-
pally singlet oxygen (1O2), which then kills the tumor cells [10] [11]. Photosensi-
tizers that localize to mitochondria are considered more interesting for killing 
cells than those localizing at other cellular sites because they can cause cell death 
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by apoptosis [12] [13]. It was reported that delocalized lipophilic cations inhe-
rently share the ability to cross the mitochondrial membranes and target the 
mitochondria [14]. 

Phthalocyanines have been widely studied as potential PDT agents due to 
their tumor-localizing properties, photophysical and photochemical properties 
and modifiable structure [15] [16] [17]. The solubility of phthalocyanines is very 
important for biological studies. The water solubility of phthalocyanine can be 
constructed by the introduction of hydrophilic substituents, such as sulfonate 
[18], N-methylimidazo-lium [14] and N-methylpyridinium [19]. 

In this paper, two silicon phthalocyanine derivatives were designed based on the 
idea that a phthalocyanine substituted with 1-(N-methyl) imidazoliumyl-ethyloxy 
or 2-(N-methyl) pyridyl-ethyloxy should possess the characteristics of a lipo-
philic cation, namely, be preferentially localized to the mitochondria. Addition-
ally, the introduction of a quaternary ammonium salt can greatly enhance the 
aqueous solubility of phthalocyanines. The synthesis, photophysical properties 
and DNA-photocleavage activity of silicon phthalocyanine derivatives 1a and 1b 
(Scheme 1) are reported herein. 

2. Experimental Section 
2.1. Reagents and Apparatus 

Experimental details Silicon (IV) phthalocyanine dichloride (SiPcCl2) was syn-
thesized by a reported procedure [20]. All other solvents and reagents were 
commercially available and were used without further purification. NMR spectra 
were recorded with a Varian Mercury 300 spectrometer. Mass spectra were rec-
orded with IonSpec 4.7 Tesla FT mass spectrometer. Electronic absorption spec-
tra in the UV-Vis region were measured with a UV-2450 spectrophotometer. 
Fluorescence spectra were collected with RF-5301PC fluorescence spectrometer. 

2.2. Synthesis of Bis[2-(1-imidazolyl) ethoxy] silicon  
phthalocyanine (2a) 

A mixture of SiPcCl2 (0.50 g, 0.82 mmol), 1-(2-hydroxyethyl)imidazole (0.74 g,  
 

 
Scheme 1. Synthesis of the target compounds 1a and 1b. 
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6.56 mmo1), and NaH (0.10 g, 8.2 mmol) in toluene (20 mL) were refluxed for 
24 h. After evaporating the solvent in vacuo, the residue was dissolved in excess 
CHCl3. The mixture was filtered and the filtrate was concentrated under reduced 
pressure. The residue was successively washed with water, acetone and dichlo-
romethane, and purified by recrystallization with chloroform/petroleum ether to 
give 2a as a dark blue solid (0.18 g), yielding 29.4%. 1H-NMR (300 MHz, CDCl3, 
ppm): δ = 9.543 - 9.672 (m, 8H, Pc), 8.381 - 8.409 (m, 8H, Pc), 5.974 (s, 2H, 
imidazole), 5.279 (s, 2H, imidazole), 4.342 (s, 2H, imidazole), 0.969 (t, J = 5.1 
Hz, 4H, CH2), −1.887 (t, J = 5.1 Hz, 4H, CH2-O). ESI-MS: m/z 763.5 for [M + 
H]+, 651.2 for [M-O-CH2-CH2-imidazole]+. 

Synthesis of Bis[2-(2-pyridyl) ethoxy] silicon phthalocyanine (2b): Ac-
cording to the above procedure, SiPcCl2 (0.50 g, 0.82 mmol) was treated with 
2-hydroxyethylpyridine (0.8 mL, 6.56 mmo1), and NaH (0.10 g, 8.2 mmol) in 
toluene (20 mL) to give 2b as a dark blue solid (0.22 g), yield 34.3%. 1H-NMR 
(300 MHz, CDCl3, ppm): δ = 9.554 - 9.582 (m, 8H, Pc), 8.329 - 8.356 (m, 8H, Pc), 
7.455 (d, J = 1.8 Hz, 2H, pyridine), 6.412 - 6.550 (m, 4H, pyridine), 4.274 (d, J = 
3.6 Hz, 2H, pyridine), −0.083 (t, J = 5.7 Hz, 4H, CH2), −1.834 (t, J = 5.1 Hz, 4H, 
CH2-O). ESI-MS: m/z 785.3 for [M + H]+, 662.1 for [M-O-CH2-CH2-pyridine]+. 

2.3. Synthesis of Bis[2-(1-(N-methyl) imidazolyl) ethoxy] silicon  
phthalocyanine diiodide (1a)  

A mixture of compound 2a (0.50 g, 0.65 mmol) and a large excess of methyl 
iodide (0.4 mL) in chloroform (20 mL) was stirred for 24 h at room temperature. 
The mixture was filtered, and the solvent and excess methyl iodide as the filtrate 
were removed. The crude product was washed successively with chloroform and 
acetone and dried in a vacuum. Compound 1a was obtained as a dark blue solid 
(0.50 g), yielding 73.1%. 1H-NMR (300 MHz, DMSO-d6, ppm): δ = 9.691 - 9.720 
(m, 8H, Pc), 8.565 - 8.592 (m, 8H, Pc), 6.685 (s, 2H, imidazole), 6.576 (s, 2H, 
imidazole), 5.493 (s, 2H, imidazole), 3.426 (s, 6H, CH3), 1.361 (s, 4H, CH2), 
−1.988 (s, 4H, OCH2). ESI-MS: m/z 919.7 for [M – I]+, 396.5 for [M – 2I]2+. 

Synthesis of Bis[2-(2-(N-methyl) pyridyl) ethoxy] silicon phthalocyanine 
diiodide (1b): According to the above procedure, compound 2a (0.68 g, 0.65 
mmol) was treated with a large excess of methyliodide (0.4 mL) in chloroform 
(20 mL) to give 1b as a dark blue solid (0.71 g), yield 68.3%. 1H-NMR (300 MHz, 
DMSO-d6, ppm): δ = 9.619 - 9.626 (m, 8H, Pc), 8.578 - 8.595 (m, 8H, Pc), 7.811 
(d, J = 2.7 Hz, 2H, pyridine), 7.325 - 7.441 (m, 4H, pyridine), 5.671 (d, J = 3.9 
Hz, 2H, pyridine), 1.738 (s, 6H, CH3), 0.438 (s, 4H, CH2), −1.858 (s, 4H, OCH2). 
13C-NMR (75 MHz, DMSO-d6): δ = 147.7, 133.3, 132.8, 130.7, 122.3, 120.6, 
118.0, 52.4, 46.3, 33.7. ESI-MS: m/z 941.6 for [M – I]+, 799.5 for [M – Me – 2I]+, 
407.5 for [M – 2I]2+. 

2.4. UV-vis Absorption Spectra of Compounds 1a-1b 

The compound storage solution (10 mM) was diluted 10 times with DMSO to a 
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1 mM solution, and then the solution (1 mM, 2 μL) was diluted with DMSO to a 
final concentration (5 μM, 400 μL). Six test concentrations (5 μM, 4 μM, 3 μM, 2 
μM, 1 μM, and 0.5 μM) were prepared by the stepwise dilution method. Using 
DMSO as a blank reference, the UV-Vis absorption spectra of compounds in 
DMSO at room temperature were measured with a UV-2450 spectrophotometer. 

2.5. Fluorescence Spectra of Compounds 1a-1b 

The test solutions of compounds 1a-1b and ZnPc in DMSO at different concen-
trations (5 μM, 4 μM, 3 μM, 2 μM, 1 μM, and 0.5 μM) were prepared by the 
stepwise dilution method. The fluorescence emission spectra of the compounds 
at room temperature were collected with RF-5301PC fluorescence spectrometer, 
and the slit width was set as Ex = 3.0 and Em = 3.0, the excitation wavelength 
was 610 nm.  

2.6. Singlet Oxygen Quantum Yields of Compounds 1a-1b 

To evaluate the photosensitizing efficiency of compounds 1a and 1b, their singlet 
oxygen quantum yields (ΦΔ) were determined in DMSO by a steady-state me-
thod with 1,3-diphenylisobenzofuran (DPBF) as the scavenger [21]. DMSO so-
lutions containing compounds 1a, 1b or ZnPc (0.2 µM) and DPBF (50 µM) were 
prepared in the dark. The DMSO solutions were irradiated with a 150 W halo-
gen lamp at a distance of 15 cm, and then the photooxidation of DPBF was mo-
nitored at an interval of 10 s up to 90 s. 

2.7. DNA-Photocleavage Activity of Compounds 1a-1b 

The DNA-photocleavage activity of compounds 1a and 1b was studied using 
supercoiled pBR322 DNA (0.05 μg) in a Tris-HCl/EDTA (TE, 10 mM, pH 7.5) 
buffer on irradiation with a 150 W halogen lamp at a distance of 15 cm. After 
light exposure, each sample was analyzed by agarose (0.9%) gel electrophoresis. 

3. Results and Discussion 
3.1. Photophysical Properties of Compounds 1a-1b 

The UV-vis absorption spectra of compounds 1a and 1b in DMSO were typical 
of the spectra of nonaggregated phthalocyanines (Figure S1 in the Supporting 
Information), showing intense absorption peaks in the Soret-band (B-band) and 
Q-band regions, with the Q-band having a vibrational peak at its higher energy. 
The electron absorption peaks and molar extinction coefficients (ε) of com-
pounds 1a and 1b are shown in Table 1. 

Upon excitation at 610 nm, the compounds show a fluorescence emission at 
688 nm for 1a and 683 nm for 1b (Figure S2 in the Supporting Information). 
Using ZnPc as the reference, the fluorescence quantum yield (ΦF) of compounds 
was calculated using Equation (1) [22]:  

ΦF(sample) = (Fsample/Fref)·(Aref/Asample)·ΦF(ref)                  (1) 
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Table 1. Photophysical properties of compound 1a and 1b in DMSO. 

Compd. 
Absorption peaks (nm) [ε (M−1·cm−1)] 

λEm (nm)a ΦF
b ΦΔ

b 
B-band Q-band (λvib) Q-band (λmax) 

1a 357 [6.871 × 104] 612 [3.623 × 104] 681 [2.179 × 105] 688 0.20 0.66 

1b 357 [5.214 × 104] 613 [2.732 × 104] 681 [1.608 × 105] 683 0.31 0.59 

aExcited at 610 nm. bUsing ZnPc in DMSO as the reference (ΦF = 0.2, ΦΔ = 0.67). 
 
where ΦF(ref) is the fluorescence quantum yield for ZnPc (ΦF(ZnPc) = 0.2 in DMSO 
[23]), Fsample and Fref are the areas under the fluorescence emission curves of 
the phthalocyanine and ZnPc, respectively. Asample and Aref are the absor-
bances of the phthalocyanine and ZnPc at the excitation wavelengths, respec-
tively.  

From the areas under the fluorescence emission curves (Figure S2), the fluo-
rescence quantum yield (ΦF) was calculated as 0.20 for compound 1a and 0.31 
for compound 1b (Table 1). 

3.2. Singlet Oxygen Quantum Yields of Compounds 1a-1b 

The decrease in the absorption of DPBF was monitored at 416 nm as shown in 
Figure 1, which is due to the compound sensitized generation of singlet oxygen 
followed by photooxidation of DPBF. Using ZnPc as the reference, the singlet 
oxygen quantum yields (ΦΔ) of compounds were calculated using the equation 2 
[22]:  

ΦΔ(sample) = (Ksample/Kref)·(Aref/Asample)·ΦΔ(ref)                (2) 

where ΦΔ(ref) is the singlet oxygen quantum yield for ZnPc (ΦΔ(ZnPc) = 0.67 in 
DMSO [23]), Ksample and Kref are the DPBF photobleaching rates in the pres-
ence of the phthalocyanine and ZnPc, respectively. Asample and Aref are the in-
tegrated areas of the Q-band absorption peak of the phthalocyanine and ZnPc in 
the wavelength range of 610 - 800 nm, respectively. 

From the slope of the graph obtained by plotting the change in optical density 
against the time interval (Figure 2), the singlet oxygen quantum yields were 
calculated as 0.66 for compound 1a and 0.59 for compound 1. 

3.3. DNA-Photocleavage Activity of Compounds 1a-1b 

Photocleavage activities of supercoiled pBR322 DNA (0.05 μg) by compound 1a 
or 1b (10 μM) with different illumination times were shown in Figure 3. Com-
pounds 1a and 1b with light irradiation can cleave supercoiled DNA (Form I) to 
nicked DNA (Form II), and the photocleavage activities increase with the pro-
longation of illumination time. To avoid prolonged exposure of DNA to air, it is 
considered the optimal illumination time is 35 minutes. Photocleavage activities 
of supercoiled pBR322 DNA (0.05 μg) by compound 1a or 1b in different con-
centrations with light irradiation for 35 min were shown in Figure 4. Com-
pounds 1a and 1b at a concentration of 20 μM show significant photo-induced 
DNA cleavage activities.  
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Figure 1. Absorption spectra of DPBF (50 μM) in the presence or absence of compound (2 μM) in DMSO at differ-
ent illumination times. (a) DPBF, (b) 1a + DPBF, (c) 1b + DPBF, (d) ZnPc + DPBF. 

 

 
Figure 2. Plot of change in absorbance of DPBF (50 µM) at 416 nm vs different irradia-
tion time in the presence of compound 1a or 1b (0.2 µM) versus ZnPc (0.2 µM) as the 
reference in DMSO. 
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Figure 3. Photocleavage activities of supercoiled pBR322 DNA (0.05 μg) by compound 1a 
(a) or 1b (b) (10 μM) with different illumination time (10 μL mixtures). Lane 1: DNA in 
dark, Lane 2: DNA + light irradiation for 40 min, Lane 3 - 8: compound (10 μM), Lane 3: 
DNA, Lane 4: DNA + light irradiation for 10 min, Lane 5: DNA + light irradiation for 20 
min, Lane 6: DNA + light irradiation for 30 min, Lane 7: DNA + light irradiation for 35 
min, Lane 8: DNA + light irradiation for 40 min. 
 

 
Figure 4. Photocleavage activities of supercoiled pBR322 DNA (0.05 μg) by compound 1a 
(a) or 1b (b) in different concentration (10 μL mixtures) with light irradiation for 35 min. 
Lane 1: DNA in dark, Lane 2: DNA + light irradiation for 35 min, Lane 3: DNA + com-
pound (25 μM) in dark, Lane 4 - 8: light irradiation for 35 min, Lane 4: DNA + com-
pound (0.5 μM), Lane 5: DNA + compound (1 μM), Lane 6: DNA + compound (10 μM), 
Lane 7: DNA + compound (20 μM), Lane 8: DNA + compound (25 μM). 

4. Conclusion 

In summary, we synthesized and characterized two silicon phthalocyanine de-
rivatives 1a and 1b, and evaluated their photophysical properties in DMSO and 
DNA-photocleavage activities. The maximum absorption peaks of compounds 
1a and 1b at the Q-band are 681 nm. With ZnPc (ΦF = 0.20, ΦΔ = 0.67) as a ref-
erence, the fluorescence quantum yield (ΦF) of 1a and 1b are 0.20 and 0.31 re-
spectively, and the singlet oxygen quantum yield (ΦΔ) are 0.66 and 0.59 respec-
tively. Compounds 1a and 1b possess good photocleavage activity to pBR322 
DNA. The above results show that two silicon phthalocyanine derivatives are 
promising antitumor agents for photodynamic therapy.  
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Supporting Information 
1H-NMR, 13C-NMR and MS spectra of all new compounds, absorption and fluorescence spectra for compounds 1a 
and 1b in DMSO. 
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Figure S1. UV-Vis absorption spectra of compounds 1a (a) and 1b (b) in DMSO at different concentrations. The inset plots the 
absorbance at 681 nm (λmax) versus the concentration of the compound. 
 

 
Figure S2. Fluoresence emission spectra of compounds 1a (a) and 1b (b) in DMSO at different concentrations (λEx = 610 nm). 
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Figure S3. 1H NMR spectrum of compound 2a in CDCl3. 
 

 
Figure S4. MS spectrum of compound 2a. 
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Figure S5. 1H NMR spectrum of compound 1a in DMSO-d6. 

 

 
Figure S6. 13C NMR spectrum of compound 1a in DMSO-d6. 
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Figure S7. MS spectrum of compound 1a. 
 

 
Figure S8. 1H NMR spectrum of compound 2b in CDCl3. 
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Figure S9. MS spectrum of compound 2b. 

 

 
Figure S10. 1H NMR spectrum of compound 1b in DMSO-d6. 
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Figure S11. 13C NMR spectrum of compound 1b in DMSO-d6. 
 

 
Figure S12. MS spectrum of compound 1b. 
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