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Abstract 
Monocular visual odometry (VO) is the process of determining a user’s tra-
jectory through a series of consecutive images taken by a single camera. A 
major problem that affects the accuracy of monocular visual odometry, how-
ever, is the scale ambiguity. This research proposes an innovative augmenta-
tion technique, which resolves the scale ambiguity problem of monocular 
visual odometry. The proposed technique augments the camera images with 
range measurements taken by an ultra-low-cost laser device known as the 
Spike. The size of the Spike laser rangefinder is small and can be mounted on 
a smartphone. Two datasets were collected along precisely surveyed tracks, 
both outdoor and indoor, to assess the effectiveness of the proposed tech-
nique. The coordinates of both tracks were determined using a total station to 
serve as a ground truth. In order to calibrate the smartphone’s camera, seven 
images of a checkerboard were taken from different positions and angles and 
then processed using a MATLAB-based camera calibration toolbox. Subse-
quently, the speeded-up robust features (SURF) method was used for image 
feature detection and matching. The random sample consensus (RANSAC) 
algorithm was then used to remove the outliers in the matched points be-
tween the sequential images. The relative orientation and translation between 
the frames were computed and then scaled using the spike measurements in 
order to obtain the scaled trajectory. Subsequently, the obtained scaled tra-
jectory was used to construct the surrounding scene using the structure from 
motion (SfM) technique. Finally, both of the computed camera trajectory and 
the constructed scene were compared with ground truth. It is shown that the 
proposed technique allows for achieving centimeter-level accuracy in mono-
cular VO scale recovery, which in turn leads to an enhanced mapping accu-
racy. 
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1. Introduction 

Visual odometry (VO) is a process, which estimates the camera poses from a se-
ries of successive images [1] [2] [3]. The process, which is considered as a core 
element of simultaneous localization and mapping (SLAM), has been widely 
used in the field of robotics [4] [5] [6]. VO is capable of determining accurate 
trajectories when stereo cameras are used [7]. This is due mainly to the availabil-
ity of accurate and consistent depth information, which can then be used to de-
termine the scale value. However, a stereo camera pair will potentially degene-
rate into a monocular camera when the baseline between the stereo camera be-
comes much smaller than the distance between camera and scene [8]. Addition-
ally, the stereo visual odometry system requires self-calibration after a long-term 
operation to reduce the mechanical vibration encountered in the implementa-
tion [1] [9]. In contrast, monocular cameras are compact and inexpensive com-
pared with stereo cameras. However, monocular VO suffers from scale ambigu-
ity. The monocular camera cannot compute the length of translational move-
ment from feature correspondences only, as the distance between the camera 
and the features cannot be estimated by triangulation directly. 

Scale ambiguity can be retrieved by imposing additional information, includ-
ing known initials, additional constraints, and the addition of other sensors. 
Klein and Murray [10] assumed that the translation length of the initial camera 
movement is known, while Davison et al. [6] started a visual mono SLAM from a 
predefined landmark. However, the use of initial assumptions leads to a scale 
drift as a result of error accumulation over time. 

Additional constraints, such as known camera height above the ground, have 
also been proposed to resolve scale ambiguity. Kitt et al. [11] and Choi et al. [12] 
extracted the ground surface and applied it to calculate the planar homography 
matrix to retrieve the scale factor. Song et al. [13] used a combination of several 
cues within a predefined region, which allowed for highly accurate ground plane 
estimation and consequently led to a scale recovery. Nevertheless, these ap-
proaches are constrained by limited information about environments. Gakne et 
al. [14] presented a method for estimating the scale ambiguity and reduce drift 
by using a 3D building model. The correction of the scale improved the posi-
tioning solution by 90% compared to a solution that does not correct the scale 
drift. However, these methods need an available 3D model with known preci-
sion.  

The addition of other sensors was considered by some researchers to resolve 
the VO scale ambiguity, either through direct or indirect measurement. As an 
example, Scaramuzza et al. [15] adopted a speedometer as an additional sensor, 
where the scale factor is computed through the time difference between the 
camera frames and the corresponding vehicle speed. Unfortunately, however, it 
is not always possible to use a speedometer. A low-cost inertial measurement 
unit (IMU) was used by [16] [17] to estimate the scale factor in VO. Unfortu-
nately, low-cost IMUs suffer from significant error accumulation over time, 
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which limits the accuracy of VO [18].  
Some recent research suggested scale estimation methods, but they were ded-

icated to pedestrians. For example, [19] [20] applied a hard constraint by having 
the sensors fixed to a helmet, which is not valid in some contexts. Another ap-
proach used the pedestrian face as an identified object to estimate the scale [21]. 
In this approach, two cameras are installed; one of them captures the user’s face, 
while the other one is a world-facing camera. The world-facing camera is per-
forming the VO, and the scale can be computed from the face. However, this 
approach requires that the pedestrian face to be static while the hand is moving. 
Other approaches used an average step length and a pedometer to estimate the 
monocular VO scale [22] [23]. Nevertheless, the step lengths and an average step 
length are not constant through the walk-in urban environments because the 
pedestrian must avoid other pedestrians, cars and wait at street crossings.  

This paper introduces a novel scale recovery approach using the Spike range-
finder measurements. Our approach estimates the translation scale from the 
measured distances of the sequential images using Spike, which results in an ac-
curate VO solution. Through such an ultra-low-cost sensor, our visual odometry 
approach can recover the scale with centimeter-level accuracy, which makes it 
attractive to a number of applications such as pedestrian navigation and aug-
mented reality. This paper is structured as follows. Section 2 provides some 
background information about the used Spike device. Section 3 introduces the 
VO method used in this paper. In Section 4, the data acquisition is presented. 
The obtained results and some discussion are presented in Section 5. Some con-
cluding remarks are presented in Section 6.  

2. Spike Rangefinder 

The Spike is a small, low-cost laser-based rangefinder device. It is typically at-
tached to a smartphone to measure the distance to an object and then localizes it 
by making use of the smartphone’s photo (Figure 1). The device pairs with the 
smartphone via Bluetooth, which allows it to take advantage of the smartphone’s 
camera, GPS/GNSS, compass, and Internet connection. It comprises some fea-
tures such as real-time measurements from a photo, measuring the distance be-
tween two objects, and measuring remote objects and collecting GPS/GNSS lo-
cation from a distance. The first feature enables a user to obtain measurements 
of areas, heights, widths, and lengths instantly from a photo-taking with the de-
vice. This feature is especially useful for hard to reach objects. In the second fea-
ture, the Spike calculates the distance between two objects by aiming it at the 
first object and take a photo, and then pointing it at the second object and take a 
photo. For the third feature, the device can capture a target’s coordinates (lati-
tude, longitude, and altitude) by measuring the distance to the target and taking 
advantage of the smartphone’s GPS/GNSS and compass. 

The Spike laser rangefinder supports ranges between 2 - 200 meters, with an 
accuracy of ±5 cm [24]. All the measurements are saved with the image using the  
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Figure 1. Spike device mounted on a smart-
phone (https://ikegps.com/spike/). 

 
Spike App and can be exported as a Spike file (XML format). 

3. Proposed VO Approach 

The VO technique used in this paper was carried out using the MATLAB com-
puter vision toolbox. The workflow of the VO approach is presented in Figure 2. 
As a pre-processing step, the standard camera calibration is performed by taking 
images of a checkerboard from different positions and angles to determine the 
intrinsic parameters matrix of the iPhone 6 camera used in data acquisition [25] 
[26] [27]. 

In order to estimate the relative pose between sequential images, feature 
points are extracted through the Speeded-Up Robust Features (SURF) approach 
[28]. SURF is composed of three steps, namely feature extraction, feature de-
scription, and feature matching. The outliers were then excluded from the 
matched points, which otherwise can cause significant errors in the camera pose 
estimation process. The random sample consensus (RANSAC) technique is used 
to reject the outliers in the data [29]. The 3 × 3 fundamental matrix is then 
formed, which encodes the rotation and translation between two frames when 
an uncalibrated camera is used. The fundamental matrix is computed using the 
inlier point matches through the epipolar constraint, as presented in Equations 
(1) and (2) [26]: 
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Figure 2. Detailed steps of the VO block. 

 
where Pi and P(i+1) are vectors in the homogeneous coordinate system containing 
the detected point coordinates in the image frame (i) and its correspondence in 
the image frame (i+1), respectively, and (F) is the fundamental matrix. The 
eight-point algorithm, which requires a minimum of eight points and their cor-
respondences, can be used to estimate the fundamental matrix since it is defined 
up to a scale factor. When n matched points are found, where n > 8, the 
least-squares estimation method is used to compute the fundamental matrix. In 
this case, Equation (3) can be re-written as: 
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When the intrinsic camera parameters are known, the essential matrix (E) is 
used, which is related to the fundamental matrix through Equation (4) [26]: 

TE K FK=                              (4) 

where (K) is the calibration matrix of the camera system. The essential matrix has 
five degrees of freedom and can be decomposed using singular value decomposi-
tion to yield the relative rotation matrix (R) and the normalized translation (T) 
between the frames. The decomposition process is given in detail in [30]. 

The range measurements acquired by the Spike are used to calculate the scale 
factor of the relative pose. While moving in a straight line, the baseline between 
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two frames(S) equals the range difference between the previous frame (rp) and the 
current frame (rc), i.e., 

p cS r r= −                               (5) 

The current scaled location and orientation of the system relative to the first 
frame can be obtained using Equations (6) and (7). Where (C) is the current loca-
tion, (P) is the previous location, (Rp) is the previous orientation, and (Rc) is the 
current orientation. The coordinates of the subsequent frame can then be com-
puted relative to the previous frame. Figure 3 shows an example using three 
frames, where (T1) represents the normalized translation between the first frame 
and the second frame, (S1) is the baseline between the first and the second 
frames, (S2) is the baseline between the second frame and the third, (R1) the rota-
tion between the second frame and the first frame, and (T2) is the coordinates of 
the third frame in the second frame coordinate system. Having the computed 
scaled trajectory, we can then construct a 3D model of the surrounding scene 
with the actual scale.  

pC P S R T= + ∗ ∗                           (6) 

c pR R R= ∗                              (7) 

4. Data Acquisition 

Two datasets were collected along precisely surveyed tracks in both of outdoor 
and indoor environments, as shown in Figure 4. The precise local coordinates of 
both tracks were estimated using observations from a Leica TS12 total station 
with a distance accuracy of 1 mm + 1.5 ppm, which served as the ground truth. 
The outdoor dataset consisted of 26 images, and the trajectory was approx-
imately 21 meters in length. The indoor dataset, on the other hand, consisted of 
61 images, and the trajectory was around 28 meters in length. The setup com-
prises a Spike device connected to an iPhone 6, which was mounted on a levelled 
pole, as shown in Figure 5. 

5. Results and Discussion 

The proposed approach has been tested in both of outdoor and indoor environ-
ments and processed, as explained in Section (3). The outdoor images were 
processed using Pix4D mapper software [31]. Two scenarios were considered in 
the data processing and point cloud generation. In the first scenario, the images  
 

 
Figure 3. The orientation and position of the other 
frames relative to the first frame. 
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(a)                                         (b) 

Figure 4. Outdoor and indoor data sets layout (Ryerson University). (a) Rogers commu-
nications centre building. (b) The ground floor of the Podium building. 
 

  
(a)                                         (b) 

Figure 5. Spike device mounted on a smartphone. (a) Spike application interface. (b) 
Spike device. 
 
were geolocated using the camera poses estimated from VO after correcting for 
the scale factor using the Spike measurements. The generated point cloud from 
this scenario will be referred to as the Spike-based point cloud in the sequel. In 
the second scenario, the images were geolocated using iPhone GPS coordinates. 
The generated point cloud from this case will be referred to as the iPhone-based 
point cloud in the sequel. The camera calibration parameters are also estimated 
through the MATLAB camera calibration tool, as shown in Figure 6. Figure 
6(a) shows the mean reprojection error per image, along with the overall mean 
error, which is found to be 0.38 pixels. The reprojection error is defined as the 
distance, in pixels, between the reprojected 3D points and correct image points. 
In general, a mean reprojection error of less than one pixel is acceptable [32]. 
Figure 6(b) provides a camera-centric view of the patterns, which examine the 
relative positions of the camera and the pattern to ensure that they match what is 
expected. As an example, a pattern that appears behind the camera indicates a 
calibration error. 

The matching results between sequential frames before removing the outliers 
are shown in Figure 7. While the inlier matched points between the sequential  
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Figure 6. Calibration results using MATLAB camera calibration tool. (a) 
Image reprojection errors. (b) 3-D camera extrinsic parameters. 

 

 
Figure 7. Matched points between sequential frames before removing the 
outliers. 
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images are shown in Figure 8. 
The essential matrix can be computed using the matched points between the 

two frames. Then, the essential matrix is decomposed to obtain the normalized 
relative translation (T) and rotation matrix (R), which represents the rotation 
between the two frames. The following numerical example shows the mathe-
matical steps to calculate the second frame pose relative to the first frame, as-
suming that the first frame coordinates are (0, 0, 0) and the first rotation matrix 
is the identity matrix.  

The measured ranges of the first and second frames are: 

13.12 mpr =  

11.1 mcr =  

Consequently, from Equation (5), the baseline can be computed as follow 

2.02 mp cS r r= − =  

The normalized relative translation (T) and rotation matrix (R) obtained 
through the decomposition of the essential matrix are: 

0.00307
0.05695

0.99837
T

− 
 = − 
  

, 
0.99998 0.00417 0.00267

0.0041 0.99998 0.00376
0.00268 0.00375 0.99998

R
 
 = − − 
 − 

 

Using Equations (6) and (7), the current location and orientation can be ob-
tained as:  

 0 1 0 0 0.00307 0.0062
Current Location 0 2.02 0 1 0 0.05695 0.1150

0 0 0 1 0.99837 2.016

− −       
       = + ∗ ∗ − = −       
              

 

0.99998 0.00417 0.00267 1 0 0
Current Orientation 0.0041 0.99998 0.00376 *  0 1 0

0.00268 0.00375 0.99998 0 0 1

1 0.0026 0.0041
0.0042 1 0.0038
0.0026 0.0037 1

   
   = − −   
   −   
 
 = − − 
 − 

 

By repeating the previous steps, the estimated camera poses relative to the first  
 

 
Figure 8. Point matching after outlier removal. 
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frame can be obtained. Figure 9 and Figure 10 show the estimated camera poses 
for both of the outdoor and indoor datasets, respectively. As can be seen, the 
camera orientations are the same, regardless of whether or not the Spike is used. 
However, the scale is incorrect, which is adjusted using the Spike measurements. 

Figure 11 and Figure 12 compare different trajectories for both of the out-
door and the indoor datasets, respectively. In both figures, the total sta-
tion-based reference trajectory is presented in red colour, while the Spike-based 
scaled trajectory is presented in green, and the trajectory without using the Spike 
is presented in blue. As can be seen, it is evident that there is an apparent drift 
between ground truth trajectories and the trajectories estimated from VO. This 
drift is likely attributed to a rotation estimation error. The root-mean-squares 
error (RMSE) of both datasets is presented in Table 1. The total RMSE of the 
outdoor data trajectory is about 70 cm, while the total RMSE of the indoor data  
 

 
Figure 9. Camera poses for the outdoor data set. (a) Using spike measurements. (b) 
Without using spike measurements. 
 

 
Figure 10. Camera poses for the indoor data set. (a) Using Spike measurements. (b) 
Without using Spike measurements. 
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Figure 11. Comparing the different trajectories of outdoor dataset. 
 

 
Figure 12. Comparing the different trajectories of indoor dataset. 
 
Table 1. RMSE of both outdoor and indoor datasets. 

 XRMSE (meter) YRMSE (meter) TotalRMSE (meter) 

Outdoor dataset 0.22 0.65 0.69 

Indoor dataset 0.19 0.54 0.58 

 
is about 60 cm. However, it is observed that the estimated trajectory using Spike 
is close to the reference trajectory. This shows that the proposed approach using 
the Spike measurements allows for scale recovery of the monocular VO and pre-
cise localization of the camera. Table 2 and Table 3 compare the scale obtained 
from VO using the Spike with the ground truth scale measured by the total sta-
tion. The average scale errors of the outdoor and indoor data sets are in the 
range of 1 cm and 3 cm, respectively. This shows that augmenting the range in-
formation with the monocular VO can recover the scale ambiguity to centime-
ter-level accuracy. 

https://doi.org/10.4236/pos.2020.114004


A. El Amin, A. El-Rabbany 
 

 

DOI: 10.4236/pos.2020.114004 56 Positioning 
 

Table 2. Scale error on the outdoor dataset. 

Distances between sequential Poses 
Scale error 

Ground Truth VO using Spike 

2.005 2.017 0.012 

2.001 2.008 0.007 

1.992 2.027 0.035 

2.001 2.018 0.017 

1.999 2.060 0.061 

2.010 1.987 −0.023 

2.009 1.969 −0.041 

1.989 1.985 −0.003 

1.991 2.019 0.028 

2.007 2.010 0.003 

 
Table 3. Scale error on indoor dataset. 

Distances between sequential Poses 
Scale error 

Ground Truth VO using Spike 

2.00 2.01 0.01 

2.00 1.97 −0.03 

2.00 2.02 0.02 

2.00 1.98 −0.02 

2.00 1.99 −0.01 

2.00 1.98 −0.02 

1.00 1.03 0.03 

1.07 1.09 0.02 

2.08 1.99 −0.09 

2.05 2.01 −0.04 

2.05 1.98 −0.07 

2.03 2.02 −0.01 

2.04 1.98 −0.06 

2.08 1.99 −0.09 

2.04 2.01 −0.03 

 
To further assess the effectiveness of the proposed approach, the point clouds 

of the two data sets were generated using the Pix4D mapper. Figures 13-16 
show the results of comparing the Spike-based and the iPhone-based point 
clouds. We compared the dimensions of different features from both point 
clouds, using CloudCompare software, with the ground truth measured in the 
field using a tape with 2 mm precision (Figures 13-16). It was found that the 
Spike-based point cloud is more precise than the iPhone-based counterpart. 
Knowing that the points were manually picked, and hence, there is also a manual 
measurement error in the estimated distances in Figures 13-16. This shows that  
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(a)                                     (b)                                         (c) 

Figure 13. (a) Ground truth; (b) Spike point cloud; (c) iPhone point cloud. 
 

   
(a)                                      (b)                                         (c) 

Figure 14. (a) Ground truth; (b) Spike point cloud; (c) iPhone point cloud. 
 

   
(a)                                          (b)                                        (c) 

Figure 15. (a) Ground truth; (b) Spike point cloud; (c) iPhone point cloud. 
 

the use of Spike measurements to recover the scale ambiguity is an efficient and 
cost-effective approach, which significantly improves the mapping accuracy. 
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(a)                                     (b)                                          (c) 

Figure 16. (a) Ground truth; (b) Spike point cloud; (c) iPhone point cloud. 

6. Conclusion 

In this paper, we presented a novel approach, which takes advantage of the 
low-cost Spike laser rangefinder to resolve the scale ambiguity in monocular 
visual odometry. The proposed approach was tested in both of outdoor and in-
door scenarios, and the results were compared to a ground truth measured by a 
high-end total station. It was shown that the proposed solution allows for 
achieving centimeter-level accuracy in monocular VO scale recovery, which 
leads to an enhanced mapping accuracy. 
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