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Abstract 
Subduction plays a fundamental role in plate tectonics and is a significant 
factor in modifying the structure and topography of the Earth. It is driven by 
convection forces that change over a >100 Myr time scale. However, when an 
oceanic plateau approaches, it plugs the subduction, and causes slab necking 
and tearing. This abrupt change may trigger a series of geodynamic (tectonic, 
volcanic) and sedimentary responses recorded across the convergence boun-
dary and its surrounding regions by synchronous structural modifications. 
We suggest that a large enough triggering event may lead to a ripple tectonic 
effect that propagates outwards while speeding up the yielding of localized 
stress states that otherwise would not reach their threshold. The ripple effect 
facilitates tectonic, volcanic, and structural events worldwide that are see-
mingly unrelated. When the world’s largest oceanic plateau, Ontong Java 
Plateau (OJP), choked the Pacific-Australian convergence zone at ~6 Myr 
ago, it induced kinematic modifications throughout the Pacific region and 
along its plate margins. Other, seemingly unrelated, short-lived modifications 
were recorded worldwide during that time window. These modifications 
changed the rotation of the entire Pacific plate, which occupies ~20% of the 
Earth’s surface. In addition, the Scotia Sea spreading stopped, global volcan-
ism increased, the Strait of Gibraltar closed, and the Mediterranean Sea dried 
up and induced the Messinian salinity crisis. In this paper, we attribute these 
and many other synchronous events to a new “ripple tectonics” mechanism. 
We suggest that the OJPincipient collision triggered the Miocene-Pliocene 
transition. Similarly, we suggest that innovative GPS-based studies conducted 
today may seek the connectivity between tectonic, seismic, and volcanic 
events worldwide.  
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1. Introduction 

The evolution of the Earth system is dictated mostly by tectonic and volcanic 
processes that occur throughout the geological history. These processes take 
place through events that reshape the Earth lithosphere both at shallow and deep 
levels and facilitate the occurrence of subsequent tectonic and volcanic events 
such as ocean opening and closing, periods and regions with extensive seismici-
ty, erosion and sedimentation variations and, in a global perspective, drive the 
climatic changes. The linkage between the tectonic events and their causative 
tectonic processes is not straightforward. This linkage usually relies on structural 
relations, and temporal association, between processes that have spatial affinity. 
However, to date, an inclusive mechanism linking such processes on a global 
scale has not been suggested.  

The study presented here proposes that the most powerful force in plate tec-
tonics, slab pull, is capable of triggering a chain of tectono-magmatic events that 
are advanced around the world. The paper discusses the major role of subduc-
tion in plate tectonics and asks what happens when subduction (and hence slab 
pull) is interrupted. To illustrate the chain reaction effect, we first focus on the 
interruption in the subduction of the largest plate on earth, the pacific plate. We 
then show how the chocking of the ~3000 km long Melanesian subduction Arc 
at the southern Pacific Ocean six million years ago, by the arrival of the Ontong 
Java Plateau, provoked an abrupt global stress change that activated numerous 
short-lived events. Our new concept links together numerous tectonic and vol-
canic events with global distribution to a single cause—the disruption of sub-
duction—is presented as a “ripple tectonics” concept in order to inspire a better 
understanding of the causality between tectonic and volcanic events worldwide 
and throughout the Earth’s geologic history. We hope that the new concept will 
inspire innovative GPS-based studies that will seek the connectivity between 
tectonic, seismic, and volcanic events worldwide.  

2. Ontong Java Plateau and the Melanesian Arc 

Subduction is one of the essential processes in plate tectonics. Slab pull is widely 
regarded as one of the most powerful forces on Earth [1]. The subduction is 
closely linked with mantle convection that changes over time scales of >100 Myr 
[2] [3]. This long-lasting process is accompanied by seismicity, volcanism, and 
modifications in the stress distribution in the subducting and overriding plates 
and their surrounding margins. The main question is what happens when the 
subduction is stalled and even stops. Bercovici et al. [3] show that when an ocea-

https://doi.org/10.4236/pos.2020.113003


Z. Ben-Avraham et al. 
 

 

DOI: 10.4236/pos.2020.113003 35 Positioning 
 

nic plateau approaches a subduction zone it causes slab necking, which leads to 
its possible tear along with abrupt continental rebound and rapid changes in 
plate motion. The larger the plateau/continental crust approaching, the faster 
and larger is the change and the greater is the global impact.  

One of the most interesting case studies to examine this effect is the 
long-lasting ~120 Myr Pacific-Australian convergence. This convergence along 
the 4000 km long Melanesian Arc was choked by the arrival of the Ontong Java 
Plateau (OJP) during the Miocene-Pliocene transition at ~6 Ma (Figure 1). 
The OJP is the world’s largest oceanic plateau [4]. Its seafloor expression ex-
tends across 2 × 106 km2, ~2.5 km above the surrounding ocean floor, and its 
entire 4.27 × 106 km2 extent covers ~0.8% of the Earth surface [5] [6] [7]. The 
plateau consists of an exceptionally thick crust associated with volcanism, that 
drifts along with the Pacific Plate towards the south-west [8] [9]. The arrival of 
the OJP at the Melanesian Arc severely choked the smooth subduction process 
[10]. The subduction transformed into a collision of the plateau, while the Pacif-
ic slab was torn from underneath. This short-timed disruption occurred during the  
 

 
Figure 1. Location of the sites mentioned in the text (numbers surrounding the figure specify geographic coordinates). OJP: On-
tong Java Plateau; MA: Melanesian Arc. Numbered locations: 1: San Andreas fault, 2: Alpine fault, 3: Aleutian Arc, 4: Pitman 
Fracture Zone, 5: Juan Fernandez microplate, 6: Easter microplate, 7: East Pacific Rise, 8: Menard Fracture Zone, 9: Emerald 
Fracture Zone, 10: Canterbury Basin, 11: Hjort Trench, 12: South Tasman Sea, 13: Macquarie Plate, 14: West Scotia Sea, 15: Ma-
gallanes-Fagnano fault, 16: Andean mountains, 17: Argentinian and Malvinas basins, 18: Southern Atlantic spreading, 19: Central 
Atlantic spreading, 20: North Atlantic spreading, 21: Arctic Ocean, 22: Central North Sea, 23: Labrador Sea, 24: Grand Banks, 25: 
Western Greenland, 26: Nova Scotia continental shelf, 27: United States Atlantic margin, 28: Alpine arc, 29: Mid: Hungarian line, 
30: South Caspian Sea, 31: Cyprus, 32: Dead Sea Fault, 33: Tibetan Plateau, 34: Tengchong volcanic field, 35: Indian Ocean Triple 
Junction, 36: Bowie seamount, 37: Hawaii hotspot, 38: Macdonald seamount, 39: Tahiti volcano, 40: Caroline chain, 41: Galapagos 
hotspot, 42: Cook islands, 43: Austral islands, 44: Marquesas islands, 45: Mayotte and Comores Islands, 46: Somali Basin, 47: 
Bowland and Rosencrans, 48: Tasmantid Seamounts, 49: Annobon Island, 50: Cameroon and Guinea, 51: Biu Plateau and Came-
roon Volcanic line, 52: Namjagbarwa and Yuli, 53: Calatrava, 54: Sao Vicente, 56: Alboran Sea.  
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Miocene-Pliocene transition, at ~6 Myr. It rotated the direction of the Pacific 
plate motion by 5˚ - 15˚ clockwise relative to hotspots [10] [11], and triggered 
several short-lived changes across the Pacific plate and its margins. These in-
cluded a shift in volcanism of the five long-lived, plume-fed hotspots; triggering 
of “crack spots” that developed as extensional volcanism at preexisting zones of 
weakness reactivated by Pacific plate stresses transition; tectonic modifications 
along the Pacific-North American, Pacific-Antarctic and Pacific-Australian plate 
boundaries such as trench migration and back-arc rifting, transpression at the 
San Andreas (California) and Alpine (New Zealand) strike-slip faults and Aleu-
tian Arc [12]. While some of these modifications were short-lived, others in-
itiated a cascade of events that persisted through time.  

Our hypothesis suggests that the short-lived choking of the Melanesian Arc 
extended beyond the Pacific plate. It triggered a series of synchronous tectonics 
events worldwide, which occurred mainly, yet not exclusively, along plate boun-
daries, during the Miocene-Pliocene transition. Each of these events was on the 
verge of stress-threshold when the rapid catalyst enabled it to cross-over and 
yield. Once occurred, these events may have resulted in additional processes 
such as initiation or cessation of volcanism, basin closure, extensive erosion, and 
sedimentation. The following paragraphs describe the major events that co-occurred 
worldwide around 6 Ma. Some of them were gathered in the comprehensive re-
view by Leroux et al. [13]. The locations of the sites discussed are shown in Fig-
ure 1.  

3. Ripple Tectonics 

In the Pacific region, the Pacific-Antarctic relative motion was disrupted at the 
end of Chron C3a (6.033 Ma [14]) as recorded by the short-lived 8˚ clockwise 
rotation of the abyssal hill fabric along the Pitman Fracture Zone [15] [16]; for-
mation of the Juan Fernandez and Easter microplates along the East Pacific Rise 
(5.25 Ma [17] [18]); trend change in the lineation azimuths of the Menard Frac-
ture Zone, attesting to an increase in the Pacific-Antarctic half-spreading rate 
[19], and initiation of a propagating ridge system along the Emerald Fracture 
Zone [20]; and an increase in convergence at the Alpine fault in New Zealand 
between 8 - 6 Myr, that was accompanied by an increased subsidence of the 
Canterbury Basin offshore and reversal in its decreasing sedimentation rate [21]. 
Meanwhile, the subduction across the Hjort Trench, and the ocean crust defor-
mation of the South Tasman Sea are associated with the initiation of the Macqu-
arie Plate as an independent rigid plate around 6 Ma [22]. Further north, a ma-
jor change in the Philippine plate motion occurred during the Miocene-Pliocene 
transition [23] [24].  

Meanwhile, in the southeast, the opening of the West Scotia Sea ceased at 6 Ma 
[25]. At the same time (~6 Ma) strike-slip motion along the Magallanes-Fagnano 
fault system took over the displacement and acted as the western segment of the 
left-lateral South America-Scotia plate boundary [26] [27]. A phase of drastic in-
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crease in the uplift of the southern Andean mountains was recorded at ~6 Ma [28].  
In the Atlantic, sedimentation tripled over the Argentinian and Malvinas ba-

sins of the southern Atlantic during the Miocene-Pliocene transition [29] [30] 
and is associated with a decrease in the south Atlantic spreading rate [31]. The 
drastic decrease around 6 Ma was reported across the southern Atlantic [32] 
[33], the central Atlantic offshore Iberia [34], and the northern Atlantic [35] 
[36]. A simultaneous and rapid increase in subsidence occurred across the mar-
gins of the North Atlantic and Arctic oceans, in the Central North Sea, the La-
brador Sea and Grand Banks, offshore western Greenland, the Nova Scotia con-
tinental shelf and the United States Atlantic margin. Cloetingh et al. [37] suggest 
that a regional stress shift causes the simultaneous events.  

Further east, the Africa-Eurasia-Anatolia convergence caused compression 
across the Alpine arc periphery [38]; tectonic inversion along the Mid-Hungarian 
line [39] [40]; subsidence of the south Caspian Sea [41]; and the uplift and 
emergence of Cyprus above the Mediterranean Sea Level since the late Miocene 
[42] [43]. This was accompanied by eastward migration of the Sinai-Arabia rota-
tion pole and an increase in vertical subsidence along the Dead Sea Fault plate 
boundary [44]. These modifications occurred along with a slight counterclock-
wise rotation in the absolute motion of the African plate around 6 Ma [45]. This 
change was accompanied by a decrease in the spreading rate between Africa and 
its surrounding plates—South and North America as well as India [33].  

North of the Indian plate, a rapid exhumation of the southern Tibetan Plateau 
~6 - 5 Ma was accompanied by the formation of normal faulting that controlled 
volcanic eruptions of the Tengchong volcanic field [46]. A major inversion and 
peak metamorphic recrystallization were recorded across the Himalayan Main 
Central Thrust [47]. Meanwhile, at the southern margin of the plate, a rapid in-
crease in spreading velocity was recorded around the Indian Ocean Triple Junc-
tion with the Antarctic plate around 5 Ma [48] [49].  

Evidence for modifications in volcanism was recorded worldwide [50] [51]. 
Five long-lived hotspot tracks sharply changed their trajectory around approx-
imately at 5 Ma (Bowie Seamount, Hawaii, Macdonald seamount, Tahiti, Caro-
line Chain [11]). In addition, hotspots rejuvenated in the Galapagos, Cook, Aus-
tral and Marquesas islands at 5.9 Ma [52] [53] [54] [55]; Mayotte and Comores 
Islands, and in the Somali Basin, East Africa at 5.4 Ma; Bowland and Rosencrans, 
Central Panama at ~5 Ma [56]; Tasmantid Seamounts at ~5 Ma; Annobon Isl-
and, Cameroon and Guinea [57]; Biu Plateau and Cameroon Volcanic line [58]. 
In addition, rare carbonatite rocks emerged between 6 - 5 Ma in Namjagbarwa 
and Yuli (China), Calatrava (Spain), and Sao Vicente (Cape Verde [59]). Their 
formation is associated with thermal mantle instabilities [60] and therefore their 
onset at ~6 Ma indicates a sharp geodynamic transition [13].  

One of the most pronounced examples that we ascribe to the ripple tectonic 
effect is the closure and subsequent opening of the Mediterranean Sea. The tec-
tonic closure of the Mediterranean Sea from the Atlantic Ocean occurred after a 
long and progressive decline of the roll-back processes in the Gibraltar Arc sub-
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duction system, and the opening of the Alboran Sea [61] [62] [63], while the 
Africa-Eurasia plate convergence vector changed from a N-S direction to a 
NW-SE one [64]. It was only at 5.97 Ma that the gateway emerged above sea lev-
el, closed the Mediterranean, and initiated the Messinian Salinity Crisis (5.97 - 
5.33 Ma [65] [66] [67] [68]—one of the most dramatic ecological events in Earth 
history [13]. The isolation and consequent drop of hundreds of meters in the 
Mediterranean Sea water level [69] [70] [71] induced massive erosion of the 
surrounding landmass and reorganization of the marine landscape [13] [65] [72] 
[73]. The short-lived isolation ended abruptly at 5.33 Ma with the catastrophic 
Zanclean flooding that incorporated tectonic processes at the Gibraltar area, 
with the sea-level change, faulting, and gravity-induced slumping [74]. The 
flooding transgressed inland onto the Mediterranean margins. The abrupt end of 
the crisis at 5.33 Ma marks the ending of the Messinian age and the beginning of 
the Zanclean, which defines the Miocene-Pliocene transition [75]-[80].  

At the easternmost end of the Mediterranean, the flood progressed into the 
shallow and elongated Dead Sea Fault valley. Desiccation of these waters yielded 
a significant thickness of evaporites [81], that in later stages enhances the vertical 
subsidence of the fault valley [82], facilitated the formation of lakes and formed 
hospitable environments for waves of hominin dispersal out of Africa [83]. 

Amongst the tectono-magmatic events linked here with the Melanesian Arc 
choking, the timing of the Messinian Salinity Crisis is the most accurate. We sug-
gest that the initiation of the Messinian Salinity Crisis at 5.97 Ma marks the tim-
ing of Melanesian Arc choking and the initiation of the ripple tectonic mechan-
ism that influenced the Gibraltar area. Hence, the collision of the OJP with the 
Melanesian arc might have caused the Miocene-Pliocene transition.   

4. Conclusion 

Although the ongoing tectonic and volcanic activity of the Earth is expected to 
produce repetitive events, their simultaneous occurrence around 6 Ma could be 
more than a coincidence. In many localities, worldwide long-lasting stress buil-
dup reached very close to yielding. The chocking of the Melanesian Arc by the 
arrival of the OJP and the necking and slab tear from underneath induced an 
abrupt global stress change that activated the short-lived events in these locali-
ties. For this reason, these events initiated almost synchronously. The new “rip-
ple tectonics” concept suggested here provides a broad tectonic context for re-
lating seemingly unrelated global events that occurred during other periods. By 
analyzing the trigger and following events, we can better understand the beha-
vior of the Earth as an intimately interconnected system. The new concept 
enables GPS-based studies conducted today to seek connectivity between see-
mingly unrelated tectonic, seismic, and volcanic events worldwide.  
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