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Abstract 
Limited by diffraction limit, low spatial resolution is one of the shortcomings 
of terahertz imaging. Low spatial resolution is also one of the reasons limiting 
the development of stress measurement using terahertz imaging. In this pa-
per, the full-field stress measurement using Terahertz Time Domain Spec-
troscopy (THz-TDS) is combined with Super-Resolution Convolutional 
Neural Network (SRCNN) algorithm to obtain stress fields with high spatial 
resolution. A modulation model from a plane stress state to a THz-TDS sig-
nal is constructed. A large number of simulated sets are obtained to train the 
SRCNN model. By applying the trained SRCNN model to imaging the nu-
merical and physical stress fields, the improved spatial resolution of stress 
field calculated from the captured THz-TDS signal is obtained.  
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1. Introduction 

Terahertz technology has obtained great development in recent 20 years [1] [2]. 
It has great application prospects in nondestructive testing, biomedical imaging, 
safety inspection and astronomy science [3] [4] [5] [6]. In terms of mechanics, it 
is possible to measure the internal stress of optically opaque materials [7] [8]. 

Based on the stress-optic effect of materials in the THz band, the THz-TDS 
technique can be used to measure the internal stress of optically opaque mate-
rials. In 2008, Ebara [9] et al. measured the stress-induced birefringence of sev-
eral opaque polymers using a THz-TDS system. In 2011, Takahashi [10] et al. 
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obtained an intensity image of THz radiation on a loaded polyethylene speci-
men, and detected internal cavity interfaces and mechanical stresses. Since 2014, 
Li, Wang [11] [12] et al. have proved the validity of stress optical law in THz 
band. Three plane stress state parameters of isotropic and anisotropic materials 
were measured by using a polarization-sensitive THz-TDS system. The full-field 
two-dimensional stress state of the stressed specimen can be obtained by 
point-by-point scanning in the THz-TDS system. However, the low spatial reso-
lution of THz radiation and the limited scanning step size limit the resolution 
and quality of THz stress imaging. Therefore, it is worth studying to improve the 
spatial resolution of THz stress measurement. 

Using a super resolution algorithm based on interpolation, reconstruction or 
deep learning to process the obtained low resolution image data can effectively 
improve their spatial resolution. In 2014, Dong [13] et al. proposed a Su-
per-Resolution Convolutional Neural Network (SRCNN) algorithm, which is 
based on deep convolutional neural network (CNN) learning. The algorithm es-
tablished the end-to-end mapping function between high- and low-resolution 
images, to achieve a better reconstruction quality for low-resolution images. In-
spired by this classic work, some powerful machine learning algorithms were 
developed [14] [15] [16]. But these algorithms have great limitations when ap-
plied directly to THz images due to their particularity. 

Low resolution is one of the major shortcomings of THz imaging. In 2019, 
Long [17] et al. analyzed the degradation model of THz images and designed a 
deep CNN model with super resolution ability for THz images. In 2020, Li [18] 
et al. proposed a three-dimensional degradation model for the imaging process 
of real aperture scanning, taking into account the focus beam distribution and 
accurate ranging capability of the general THz system. They introduced an ad-
justable CNN, which produces an improved resolution by simply adjusting the 
input coefficients. The above work only used the intensity information of THz 
image. In 2021, Lu [19] et al. have proposed a mathematical degradation model 
of THz images by considering blur, noise, and low sampling resolution. Recent-
ly, Ljubenovic [20] [21] et al. developed an effective algorithm to reduce the ef-
fects of degradation from frequency-dependent blur and noise. These works 
have improved the image quality from THz radiation. However, these developed 
algorithms are not suitable for THz stress imaging. This is because these algo-
rithms are based on the amplitude of THz signal, but the stress field will mod-
ulate the amplitude and phase of THz signal simultaneously.  

In this paper, we developed a super resolution algorithm specialized for 
stress imaging using THz-TDS to improve its resolution and quality. The rest 
of this paper is organized as follows. In Section 2, the modulation model from 
stress field to THz signal is established on the basis of the stress-optic effect. 
By the classic SRCNN algorithm, the end-to-end mapping of low resolution 
(LR) stress field to high resolution (HR) stress field is realized, and the CNN 
model of super resolution (SR) for LR stress field is trained. In Section 3, we 
perform two verification experiments to demonstrate the SR reconstruction abil-
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ity of the trained CNN. In Section 4, some discussion and conclusive remarks 
are presented. 

2. Data Simulation and Network Training 
2.1. Data Simulation 

To train the CNN model, a large amount of training data is normally needed. 
For example, Dong et al. uses 91 images as the training set in SRCNN [13]. 
However, the scanning imaging using THz-TDS is very time-consuming. In or-
der to provide a large amount of training data for the CNN model, we use the 
key parameters of the used THz-TDS system to generate a large number of si-
mulated THz-TDS images. Here, the used key parameters included the diameter 
of THz spot and the noise level of the used THz-TDS system. Figure 1 shows the 
flow of data processing in this work. 

In this work, our aim is to obtain high resolution plane stress fields. The stress 
state at a point contains three stress components, σx, σy and τxy. These stress 
components are not independent, and should satisfy the following balance equa-
tion, 
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                     (1) 

We supply 30 different stress fields as the training sets, and another 5 stress 
fields are used as the test set. These training and test data contain different forms 
of stress distribution function.  

Figure 2 presents optical setup of the used THz-TDS system. The THz-TDS 
system used a commercial THz time domain spectrometer (Terahertz photonics 
Co. Ltd. TPF15K). The THz radiation is generated and detected by two rotatable 
photoconductive antennas. The emitting antenna generates the polarized THz 
radiation, and the polarization direction can be adjusted by rotating the antenna. 
In the implementation process, we carried out data simulation and experimental 
measurement in the dark field. The dark field here refers to the configuration, in  
 

 

Figure 1. The flow of data processing (a) Data simulation; (b) Solution of stress; (c) CNN 
training. 
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Figure 2. Stress measurement system based on terahertz time domain signal under dark 
field. 
 
which the polarization direction of the emitting antenna is perpendicular to that 
of the receiving antenna. The angle between the polarization direction of emit-
ting antenna and the horizontal direction is φ, and the angle between the polari-
zation direction of receiving antenna and the horizontal direction is φ + π/2. 
That is, the THz signal strength passing through the unstressed specimen under 
ideal conditions is zero (complete extinction). To obtain the high extinction rate, 
two polarizers are used in this system as shown in Figure 2. Their polarization 
directions are set to be consistent with those of the emitting and receiving an-
tenna, respectively. In Figure 2, the lens is used to focus THz radiation on the 
specimen. After focusing, the diameter of the spot is about 5.5 mm, which is 
measured by the traditional blade method. The highly reliable frequency range 
of the used system was during 0.2 - 2.5 THz. For subsequent convenience, the 
horizontal direction will be referred as x-axis, and the vertical direction as y-axis. 

As the THz radiation passes through the specimen under test, only part of it 
can get through the air-sample and sample-air interface. The classic Fresnel 
formula is used to calculate the transmission coefficient, 

2 2
,a b

ab ba
a b b a

N N
t t

N N N N
= =
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,                    (2) 

where Na = 1 is the refractive index of air, Nb is the refractive index of the speci-
men, tab and tba represent the transmission coefficients at air-sample and sam-
ple-air interface, respectively. 

According to the material mechanics, the principal stress σ1, σ2 and principal 
stress direction θ of a plane stress state can be calculated from σx, σy and τxy by 
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According to the stress optic law, when a plane polarized beam is incident 
vertically on a specimen under plane stress state, it is divided into two polarized 
components along the two principal stress directions. The propagation velocities 
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of the two plane-polarized beams are different in the specimen. This causes the 
material to behave as optical anisotropy, resulting in birefringence. The relation 
between principal stress and refractive index is expressed as 

1 0 1 2

2 0 2 1

N N A B
N N A B

σ σ
σ σ

− = +

− = +
,                    (4) 

where N0 represents the initial refractive index in the stress-free state, N1 and N2 
are the refractive index along the directions of σ1 and σ2, and the stress optic 
coefficients A = 2.03 × 10−9, B = 2.63 × 10−9 [11] for the material to be used in the 
subsequent experiments, Poly Tetra Fluoro Ethylene (PTFE). It should be noted 
that Equation (4) is valid only when the stress is less than the elastic limit of ma-
terial.  

When the two beams of plane polarized light pass through the specimen and 
reach the second polarizer, the two beams are combined on its polarization di-
rection. Finally, the THz signal is detected through the receiving antenna. If the 
amplitude and phase of the received THz signal through stress-free specimen are 
unit and zero, respectively, following a deduction procedure similar to that in 
Ref. [12], the signal received through specimen under plane stress state E can be 
expressed as 
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In Equation (6), δ1 and δ2 are the phase change of the THz radiations pola-
rized along the direction of σ1 and σ2, respectively. Based on the above model in 
Equation (5), we can obtain a simulated ideal THz signal modulated by a plane 
stress state. 

2.2. Degradation Model 

The THz signal simulated in 2.1 is totally ideal. In the physical experiment, the 
captured THz images by step scanning method are degraded due to Gaussian 
blur, rough scanning step and random noise. A model here is proposed to reflect 
these degradation effects in the physical experiments.  

Firstly, since the THz beams generally obey the Gaussian distribution and spot 
diameter has been measured, a Gaussian kernel function G in Equation (7) is 
adopted to simulate the effect of Gaussian blur.  

( )
2 2
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,                (7) 

where m is the standard deviation of the Gaussian kernel. After a scanning map-
ping, we get a three-dimensional THz image of a × b × 1000. Here, a and b 
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represent the width and height of the images, and 1000 is the signal length of the 
time-domain waveform at each point. In other words, we get 1000 two-dimensional 
images. Each image is called a layer. The spatial sampling spacing of the simula-
tion field is 0.05 mm, which is the resolution we want to achieve. Then, the 0.05 
mm-resolution images in each layer is blurred by the kernel in Equation (7). 
When using Equation (7), the value of m is key. The measured radius of THz 
spot is about 5.5 mm. We estimate 95% of the energy of the spot is concentrated 
in the area with a diameter of 5.5 mm. In order to consider possible randomness 
of spot diameter in practice, the standard deviation m takes random values in 
the range of 1 mm - 1.5 mm in the simulation processing. 

Secondly, the step of the scanning imaging is one of the key factors affecting 
the resolution. In physical experiment, it will take about 40 hours to scan a 50 
mm × 50 mm area with a step size of 0.5 mm by our used system, so it is not 
practical to carry out many experiments with a smaller step. So after Gaussian 
blurring, each layer with a resolution of 0.05 mmis down sampled to one tenth 
of the original size to simulate the effect of the limited size of scanning step. This 
method has also been used in the classic literature of SRCNN to simulate the li-
mited spatial resolution in the original images [13].  

Finally, the electromagnetic random noise is inevitable in the used THz-TDS 
system. Thus, we capture several THz signals through air, and then estimate the 
level of random noise. At last, each layer is added by a Gaussian random noise 
with a mean of 0, and standard variance of α. The standard variance is deter-
mined by the physically captured signal of dark field configuration, in which the 
ideal signal should be zero. Ten signals are collected to evaluate the noise level, 
and finally α take one percent of the maximum signal intensity. 

In order to include the above three degradation factors, a degradation model 
in Equation (8) is adopted.  

( ) sL H G D n= ⊗ + ,                      (8) 

where H is the ideal THz signal, L is the degraded THz signal, G represents the 
Gaussian blurred kernel, ⊗  represents the convolution operation, Ds is a 
sub-sampler, and n is the additive noise with a noise level of α. Considering that 
THz waves may produce different levels of noise in practice, multiple levels of 
noise should be taken into the training set. The degraded THz signal from Equa-
tion (8) is considered to be a simulation of a physically experimental signal. 

By combing the Fresnel model in Equation (2), the stress optic effect in Equa-
tion (4), and the degradation model in Equation (8), we can get a large number 
of simulated experimental THz signals through a plane-stressed specimen for 
training the neural network. 

2.3. Calculation of Stress Fields 

In 2.1, an original stress field is supposed, and it is used to produce an ideal sig-
nal. In 2.2, we simulate the degenerated terahertz images. In this part, we need to 
calculate the stress field from the degenerated images. In this way, the original and 
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calculated stress fields, which respectively represent the high- and low-resolution 
images, compose a pair of learning data. 

The stress field can be calculated from the captured THz signals at the two 
polarization configurations of φ = 0 and φ = π/4. According to Equation (5), the 
principal stress difference σ1 − σ2, the principal stress sum σ1 + σ2 and the prin-
cipal stress direction θ can be calculated as 
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In Equation (9), ||E||φ=0 and ||E||φ=π/4 are the amplitude of the received radia-
tion when the polarization angle φ = 0 and φ = π/4. As indicated in Equation (9), 
we can obtain a set of σ1 − σ2, σ1 + σ2, and θ from each frequency. In the work, 
the average value at different frequencies is used as their measurement results.  

2.4. Training Model 

The neural network form adopted in this paper is similar to SRCNN in Ref. [13]. 
Instead of training the gray value of the image or the Y channel in the YCbCr 
channels, this paper realizes the end-to-end training from low-resolution stress 
field to high resolution stress field. As indicated in Figure 3, the mapping of 
low-resolution stress field σL to high resolution stress field σH is realized by three 
layers convolution operation. These three convolution operations are Patch Ex-
traction and Representation, Non-linear Mapping and Reconstruction, as pro-
posed in Ref. [13]. We will detail these three layers in turn. 

Feature Extraction: This operation extracts (overlapping) patches from the 
stress field σL of three channels with low resolution, and represents each patch as 
a n1-dimensional vector. 
 

 

Figure 3. The used network of terahertz super resolution stress field measurement based 
on convolutional neural network. 
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( ) ( )1 1 1max 0,L LF W Bσ σ= ⊗ + ,                  (10) 

where W1 and B1 represent the filters and biases, respectively. Here W1 is of a 
size 3 × f1 × f1 × n1, and B1 is an n1-dimensional vector.  

Non-linear mapping: this operation nonlinearly maps each n1-dimensional 
vector onto another n2-dimensional vector by the following Equation (7). Each 
mapped vector is conceptually the representation of a high resolution patch.  

( ) ( )( )2 2 1 2max 0,L LF W F Bσ σ= ⊗ + ,                (11) 

where W2 is of a size n1 × 1 × 1 × n2, and B2 is n2-dimensional.  
Reconstruction: This operation aggregates the above n2-dimensional pat-

chwork representations to produce the final high resolution stress field using 
( ) ( )3 2 3L LF W F Bσ σ= ⊗ + ,                    (12) 

where W3 is of a size n2 × f3 × f3 × 3, and B3 is a three-dimensional vector. 
Learning the end-to-end mapping function F requires the estimation of para-

meters Θ = {W1, W2, W3, B1, B2, B3}. The mean square error function shown in 
Equation (13) is used as the loss function to minimize the loss between the 
trained stress field F(σL) and the real stress field σH. 

( ) ( ) 2
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Li H i
i

L F
N

σ σ
=

Θ = Θ −∑ ,                  (13) 

where N is the total number of sub-field in the training process. 
In the training phase, we set f1 = 9, f3 = 5, n1 = 64 and n2 = 32 in our imple-

mentation. The filter weights of each layer are initialized by drawing randomly 
from a Gaussian distribution with zero mean and standard deviation 0.001. The 
learning rate is 10−4 for the first two layers, and 10−5 for the last layer as sug-
gested by Ref. [13]. 

In order to facilitate the display of the training set and test set, we transfer the 
normalized principal stress difference, principal stress sum and principal stress 
direction into RGB three color image channels respectively. Figure 4 presented a 
visual display of the training set and test set. 
 

 

Figure 4. The visual display of the training set (a) and the test set (b). 
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We train the models in a Intel(R) Core(TM) i5-9400F CPU and NVIDIA Ge-
Force RTX 2060 GPU with Caffe package [22]. 

3. Result 

We train the convolutional neural network for all three channels simultaneously. 
The three channels are principal stress difference, principal stress sum, and 
principal stress direction. After one million rounds of back propagation training, 
the mean square error of the test set in Equation (13) is reduced to 0.09. Based 
on the trained neural network, two verification experiments are conducted. The 
first experiment is a numerical experiment, while the other is a physical experi-
ment. 

3.1. Numerical Experiment 

In this numerical experiment, the stress field conforming to a function presented 
in Equation (14) is selected to demonstrate the super resolution ability of the 
trained neural network. The corresponding principal stress difference σ1 − σ2, 
principal stress sum σ1 + σ2 and principal stress direction θ can be calculated by 
using Equation (3). 

2
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Figures 5-7 shows the super resolution effect of principal stress difference, 
principal stress sum, and principal stress direction, respectively. In these three 
figures, (a) sub-figures show the ideal high resolution fields obtained by Equa-
tion (14), (b) ones show the degraded low resolution fields simulated by the me-
thod in Section 2.1, and (c) ones show the super resolution fields obtained from 
the trained neural network. There is a sharp jump near y = −5.5 mm in Figure 
7(a), which is an ideal position for us to observe the super resolution effect. In 
Figure 7(b), the jump become blurred and smooth due to Gaussian blur of large 
focus spot and random noise. In Figure 7(c), the jump is partially restored. Ob-
viously, this jump in Figure 7(c) is sharper than that in Figure 7(b). This de-
monstrates the ability of the trained neural network to a certain extent. Howev-
er, after all, the super-resolution of the network is limited, and it is impossible to 
recover all the details perfectly. For example, at the location of x = 17 mm, y = 
−5.5 mm in Figure 7(a), the field has sharp jump in both x and y directions. Af-
ter super reconstruction, the horizontal change in the vicinity x = 17 mm along y 
= −5.5 mm line in Figure 7(c) is still more blurred than that in Figure 7(a).  

In order to exhibit the super-resolution ability of the proposed algorithm in 
more detail, Figure 8 shows the stress components when x = −25.5 mm. In this 
figure, the solid line shows the ideal high resolution components, the spot line  
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Figure 5. The result of principal stress difference (a) HR; (b) LR; (c) SR. 
 

 

Figure 6. The result of principal stress sum (a) HR; (b) LR; (c) SR. 
 

 

Figure 7. The result of the principal stress direction (a) HR; (b) LR; (c) SR. 
 

 

Figure 8. Stress comparison when x = −25.5 mm (a) the principal stress difference (b) the principal stress sum (c) the principal 
stress direction. 
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shows the blurred low resolution components simulated by the method in Sec-
tion 2.1, and the dotted line shows the super resolution components obtained 
from the trained neural network. Obviously, the random variation of the simu-
lated field (i.e. the spot line) is depressed in the super resolution result (i.e. the 
dotted line). So the trained neural network has the ability of depressed random 
noise. Figure 8(c) more intuitively shows the ability of the trained neural net-
work to restore the sharp jump. 

3.2. Physical Experiment 

In this section, a diametrical loaded disk is chosen to demonstrate the ability of 
the proposed super resolution algorithm in physical experiment. Figure 9 shows 
the setup of the diametrical loaded disk experiment. The loading device is in-
stalled on a two-dimensional scanning platform to facilitate us to obtain two- 
dimensional terahertz spectral fields. In the experiment, a scanning step of 0.5 
mm is adopted.  

According to elastic mechanics theory, the analytical stress distribution of the 
loaded disk should be 
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where p is the applied force, r and t are the radius and the thickness of the disk, 
and x, y is the coordinate in space. The corresponding principal stress difference 
σ1 − σ2, principal stress sum σ1 + σ2 and principal stress direction θ can be calcu-
lated by using Equation (3). In this experiment, the disk material is PTFE. The 
experimental parameters are presented in Table 1.  
 

 

Figure 9. The schematic of the diametrical loaded disk (a) the experimental device; (b) 
two-dimensional moving platform. 
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Table 1. The key parameters in the experiment. 

Material Thickness Radius Loading 
Scanning 

Step 
A B 

PTFE 10 mm 25 mm 1000 N 0.5 mm 
2.03 × 10−9 

Pa−1 
2.63 × 10−9 

Pa−1 

 
Figure 10 presented the high resolution stress field distribution from Equa-

tion (15). Figure 11 shows the low-resolution stress fields from the actual THz 
signal by Equation (9). In Figure 10(a), there are two approximately circular 
bright spots near the loading points. In Figure 10(b), there are two dark spots. 
By comparison, in Figure 11(a) and Figure 11(b), it is found that the bright and 
dark spots in the low resolution field become blurred, and their boundaries be-
come smooth. Furthermore, comparing Figure 10(c) and Figure 11(c), we can 
find that the mutation in the θ field near the loading points in the low-resolution 
fields is blurred. These should be caused by large terahertz Gaussian spot, in-
evitable random noise and limited scanning step.  

In order to restore more details of the stress fields, the trained network is 
adopted to obtain its super resolution counterpart. Figure 12 shows the super 
resolution stress fields. In order to show the super resolution effect in more de-
tail, Figure 13 shows the principal stress difference when y = 0 mm and the 
principal stress direction when x = 12.5 mm, respectively. After super resolution 
network processing, the boundary of bright and dark spots in the Figure 12(a) 
and Figure 12(b) become sharper than that in Figure 11(a) and Figure 11(b). 
The edge of angle mutation in the Figure 12(c) also becomes clear. Figure 13 
demonstrates the noise depression capability of the used neural network. Fur-
thermore, it is obvious the super resolution results are closer to the analytical 
solution in Figure 13. 

In order to quantify the effect of the trained neural network, error analysis is 
performed on simulated data and experimental data. The mean square error of 
principal stress difference, principal stress sum, and principal stress direction are 
calculated respectively. The mean square error here refers to the average relative 
error of the LR result and the SR result with respect to the analytical solution at 
each point. They can be calculated by 

2

1

2

1

error

N

i H i
i

N

H i
i

σ σ

σ

=

=

−
=
∑

∑
,                    (14) 

where σi is the stress components of LR and SR, and σHi is those of HR. In addi-
tion, we also calculate a mean square error of the three channels. Table 2 lists 
the results. The datum in Table 2 indicates that the SR result obtain a closer ap-
proaching to the analytical solution. This shows the effectiveness of the proposed 
super-resolution algorithm to a certain extent. 
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Table 2. The error analysis of the diametrical loaded disk. 

Evaluation 
object 

Project 
Principal stress 

difference 
Principal stress 

sum 
Principal stress 

direction 
MSE 

Numerical 
experiment 

LR 0.0095 0.0011 0.0020 0.0011 

SR 0.0010 0.00041 0.0011 0.00087 

Physical 
Experiment 

LR 0.0113 0.0099 0.0089 0.0107 

SR 0.0020 0.0069 0.0060 0.0050 

 

 

Figure 10. HR stress field (a) the principal stress difference; (b) the principal stress sum; (c) the principal stress direction. 
 

 

Figure 11. LR stress field (a) the principal stress difference; (b) the principal stress sum; (c) the principal stress direction. 
 

 

Figure 12. SR stress field (a) the principal stress difference; (b) the principal stress sum; (c) the principal stress direction. 
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Figure 13. Stress field comparison (a) the principal stress difference when y = 0 mm; (b) 
the principal stress direction when x = 12.5 mm. 

4. Discussion 

In the experiment of diametrical loaded disk, a step of 0.5 mm is used, because 
the smaller step can measure the stress of each point relatively accurately, which 
is also the minimum step that can be achieved considering the scanning time. At 
the same time, 0.5 mm here is the step of low resolution state, that is to say, the 
pixel of low resolution stress image is 101 × 101. After calculation with the 
trained network model, the high resolution state step is equivalent to 0.1 mm, 
that is to say, the pixel of the low resolution stress image is 505 × 505. 

In addition, the noise reduction effect of the proposed super-resolution algo-
rithm for stress fields can also save time for the scanning experiment of full-field 
stress measurement. In order to obtain the terahertz signal with a lower noise 
level, 50 or 100 times of signal acquisition for each point to be measured is often 
averaged in the experiment, which causes multiple time loss. The super-resolution 
algorithm is applied to the measurement experiment, only 20 times of repeated 
acquisition is needed to take the average value, which greatly saves the time of 
the experiment. 

In this paper, based on the developed SRCNN, we propose an effective su-
per-resolution method for THz stress field imaging using the THz-TDS tech-
nology. Based on the Fresnel model, the stress optic effect, and the degradation 
effect of the used THz-TDS system, a modulation model of plane stress field to 
the THz-TDS signal is established. By SRCNN algorithm, we train the end-to- 
end mapping network model of low-resolution stress field to high resolution 
stress field. A training set of low-resolution stress fields simulated from the es-
tablished modulation model is used as the input of the network to learn its blur 
features and noise features. The numerical simulation and physical experiment 
show that the SRCNN algorithm can partly restore the degradation caused by 
the large THz spot, limited scanning step and random noise of the used system, 
improve the resolution of stress distribution image and improve the measure-
ment accuracy. For different imaging systems, the proposed method can be easi-
ly applied by estimating the blurred kernel, incorporating it into the training set, 
and retraining the new model. 
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Compared with the existing terahertz image super-resolution algorithms, the 
key difference of the proposed algorithm is that it uses both the amplitude and 
phase of the THz signal. Since THz radiation can penetrate most non-metallic 
materials, it is a very potential technology to use THz radiation to image the in-
ternal stress field of these optically opaque materials, including some organic 
Molecule Compounds [23]. The proposed algorithm in this paper can improve 
the resolution and promote the speed of THz stress imaging, so it can help THz 
stress imaging obtain more extensive engineering applications. 
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