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Abstract 
This work proposes the construction of a prototype of pulse-kink hybrid so-
litary waves with a strong Kink dosage of the Sasa-Satsuma equation which 
describes the dynamics of the wave propagating in an optical fiber where the 
stimulated Raman scattering effect is bethinking during modeling. The ulti-
mate goal of this work is to propose a plateful of solutions likely to serve as 
signals during studies on computer or laboratory propagation studies. The 
resolution of such an equation is not always the easiest thing, and we used the 
Bogning-Djeumen Tchaho-Kofané method extended to the implicit functions 
of Bogning to obtain the results. The flexibility of the iB-functions made it 
possible to deduce the trigonometric solutions, from the obtained solitary 
wave solutions with a hyperbolic analytical sequence of the studied Sa-
sa-Satsuma equation. A better appreciation of the nature of the solutions ob-
tained is made through the profiles of some solutions obtained during the 
different analyses. 
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1. Introduction 

Nowadays, nonlinear optics is a field that increasingly instigates the curiosity of 
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many researchers around the world. This curiosity can be justified by the fact 
that many telecommunication industries use optical fibers more as a medium for 
transmitting or transporting large quantities of data over long distances, espe-
cially transoceanic, transcontinental and many other distances. This under-
standing can also be extended to the fact of the wide application of which optical 
solitons constitute the basic element of data transmission technology. It is un-
doubtedly for this reason that a good number of works encountered in the lite-
rature track down and reveal the optical solitons which coexist with mathemati-
cal models such as the nonlinear Schrödinger equation [1] [2] [3] [4], the Fo-
kas-Lenells, Drinfeld-Sokolov-Wilson equations [5], and the generalized Sa-
sa-Satsuma equation [6], to name just a few. Although we are particularly inter-
ested in optical solutions, many other relevant previous works have focused on 
models studied in hydrodynamics [7] [8] and many others. It turns out that 
these works for the most part only offer exact solutions of the single soliton type 
and periodic solutions [9]. Thereby, it emerges that very few of the previous 
works, or almost none, offer solutions of the exact, approximate or forced mul-
tiple optical solitary waves type [10] [11] [12], and this comprises hyperbolic 
functions. This is a problem if we stick to the fact that a new solution of a nonli-
near partial differential equation is a new behavior likely to be developed by 
physical systems whose dynamics are described by the considered mathematical 
model. As corollaries, we will miss the behaviors which make it possible to ana-
lyze and explain new phenomena that occur in physical systems described by the 
studied Sasa-Satsuma equation, in particular certain propagations and interac-
tions regimes of robust waves of multi-soliton types in nonlinear optical fibers. It 
is in response to these shortcomings that this work fits and chooses the dynami-
cal model of Sasa-Satsuma. 

The aim of this work is to construct new prototypes of optical solitary waves 
of the Sasa-Satsuma dynamical equation in order to further enrich the literature 
with new varieties of more robust solitary wave solutions. And at the same time, 
allow new investigations in laboratories during the propagation tests which will 
lead to the understanding of new phenomena that occur in the studied model. 
Owing to all of this, our manuscript is organized as follows: Section 2 gives a 
brief description of the chosen model while; Section 3 explains the outline of the 
Bogning-Djeumen Tchaho-Kofané method (BDKm) [13]-[18] used; Section 4 in 
its content delivers the results obtained; the discussions are carried out in Sec-
tion 5; a conclusion coupled with perspectives is recorded in Section 6.  

2. Chosen Model 

The Sasa-Satsuma equation which is the chosen model is written as being 
[19]-[23] 

22 3
2 2

2 3 0.i i
t x xx x

λ γ α β θ
 ∂ Φ∂Φ ∂ Φ ∂ Φ ∂Φ + + Φ Φ + + Φ + Φ =
 ∂ ∂ ∂∂ ∂ 

     (1) 

The first term describes the temporal evolution of the optical soliton molecules 
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while the second term provided the group velocity dispersion (GVD). Then, the 
third term is the well-known Kerr-law fiber nonlinearity, ( ),x tΦ  the optical 
soliton profile, the factor of the imaginary i through the coefficients , ,β θ α  
sequentially provides the self-steepening, stimulated Raman scattering in addi- 
tionally third-order dispersion. Two mathematical techniques namely, improved 
F-expansion and improved auxiliary methods was used in [19] to construct sev-
eral types of solitons such as dark soliton, bright soliton, periodic soliton, elliptic 
function and solitary waves solutions of Equation (1), while in [22], it was used 
to introduce and discussed the Sasa-Satsuma model in berefringent fibers with-
out of four-wave mixing terms (FWM). Equation (1) is used to describe the 
propagation of femtosecond pulses in optical fibers as well as the propagation 
and interaction of the ultrashort pulses in the sub-picosecond or femtosecond 
regime. Let us take a look what it is about the used method.  

3. Used Method 

The Bogning-Djeumen Tchaho-Kofané method [13] [14] [15] [16] [17] [24]-[33] 
extended to the implicit Bogning functions (iB-functions) [34] [35] [36] and 
used within the framework of this work applies to some partial differential equa-
tion types in which coexist the nonlinear terms and the dispersive terms (and 
others) under the form:  

( )( )2 2, , , , , , , , , , , 0,t xy xzt ty yz ttz xxx
t

X Φ Φ Φ Φ Φ Φ Φ Φ Φ Φ Φ =       (2) 

where ( ), , ,x y z tΦ  is an unknown function to be determined, X is some func-
tion of Φ  and its derivatives with respect to , , ,x y z t  and X includes the 
highest order derivatives and the nonlinear terms. Most often, we use the change 
of variables ( ) ( ),x t ξΦ = Ω , 0

p
k kk xξ α

=
= ∑ . In the case where Φ  is a func-

tion of , ,x y z  and t, ξ  becomes x y z tξ ν= + + − , where ν  is the wave 
speed. In this context, Equation (2) gives rise to the ordinary differential equa-
tion (ODE) below:  

( )2, , , , , 0,ODEX ′ ′′ ′Ω Ω Ω Ω Ω =                   (3) 

where ,′ ′′Ω Ω  represent respectively the first and second derivatives of the 
envelope Ω  with respect to ξ . Then, the solution we are looking for can be 
expressed under contracted form  

( ) ( ), ,ij i j
ij

Jξ µ ηξΩ = ∑                        (4) 

where η  is a real constant, ijµ  are the unknown constants to be determined 
and ( ),n mJ xα  are the iB-functions whose explicit hyperbolic form is written as:  

( )
( )0

0
,

0

sinh
.

cosh

pm
p i i

n m i i ni i i

i

i
p

x
J x

x

α
α

α=

=

=

 
= 

 

∑
∑

∑
                  (5) 

where ( ), 0;1;2; ;i i pα =   are the parameters associated to the independent 
variables ( ), 0;1;2; ;ix i p=  , m and n are powers of both terms of Equation 
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(5). For more details, see [34] [35] [36]. So, the combination of Equations (3) 
and (4) gives rise to the main equation of ranges  

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

,0 ,1 ,0

,1 0,0

, , , , , ,

, , , , 0,

n ij n m ij m k ij k
ijn ijm ijk

l ij l ij
ijl ij

A J B J C J

D J E J

µ η ν ηξ µ η ν ηξ µ η ν ηξ

µ η ν ηξ µ η ν ηξ

−

−

+ +

+ + =

∑ ∑ ∑

∑ ∑
  (6) 

where , , ,i j k l  are positive natural integers and ,n m  the real numbers [30] [31] 
[34]. It can be noted here that Equation (16) is the one from which all the possible 
analyzes result. The identification of coefficients ( ) ( ), , , , , ,n ij m ijA Bµ η ν µ η ν

( ) ( ) ( ), , , , , , , ,k ij l ij ijC D Eµ η ν µ η ν µ η ν  at zero makes it possible to obtain the 
ranges of equations whose the resolutions could allow to obtain the expressions 
of the unknown coefficients ijµ . It is important to point out here that, the res-
olution of this series of equations often leads to exact solutions [4] [34] for cer-
tain models and according to the form of the considered ansatz while, for other 
models and according to the form of the chosen ansatz, it (resolution) leads to 
approximate or forced solutions. In the case of approximate or forced solutions, 
the priority in the order of resolution is given to those from the highest clues of 

( ),0nJ ηξ , then to those of the highest clues of ( ),1mJ ηξ . But, otherwise we go 
to those from the coefficients of lowest clues of ( ),0kJ ηξ−  and ( ),1lJ ηξ− . 
Here, the priority makes reference to the serie that permits to obtain good results 
or merely that tends more to the sought exact solution. Very often, the series of 
equations obtained by identify at zero the coefficient of ( ),0nJ ηξ  gives satisfac-
tion. 

4. Results 

Now, we address the resolution of Equation (1) by applying the BDKm with cer-
tain transformations specific to traveling waves.  

4.1. Analytical Optical Solitary Wave Solutions 

The traveling wave solutions that we seek to construct can be considered in the 
form below  

( ) ( ) ( ),, e ,i x tx t φξΦ = Ψ                        (7) 

where ( ),x t kx tφ ω= − + ; x tξ ν= − ; ω  is the angular frequence; k the wave 
number and ν  the wave speed. Thus, the insertion of Equation (7) into Equation 
(1) yields the following equation  

22 3
2 2

1 2 3 42 3 0,m m m i m α β θ
ξ ξ ξξ ξ

 ∂ Ψ∂ Ψ ∂Ψ ∂ Ψ ∂Ψ Ψ + + Ψ Ψ + + + Ψ + Ψ =
 ∂ ∂ ∂∂ ∂ 

 (8) 

where 3 2
1m k kα λ ω= − − ; 2 3m kλ α= + ; 3m kγ β= + ;  

( )2
4 2 3m k kλ α ν= − + + . Equation (8) describes the dynamics of the amplitude 

Ψ . We decided to look for ( )ξΨ  verifying Equation (8) such that  

( ) ( ) ( ) ( )1,0 1,1 2,1 ,aJ ibJ cJξ ηξ ηξ ηξΨ = + +               (9) 
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where ( ) ( )1,0 1,1,J Jηξ ηξ  and ( )2,1J ηξ  are hyperbolic iB-functions; , ,a b c  
are constant real coefficients, η  the inverse of the width at half height of each 
of the solitons contained in Equation (9), and i an imaginary such that 1i = − . 
Equation (9) is a complex multi-soliton whose basic form is represented by the 
first two terms of coefficient a and b, respectively. This basic shape is disturbed 
by the addition of a hybrid soliton of amplitude c. We believe that it is this dis-
turbance term that is at the origin of the emergence of new hybrid structures in 
the propagation media. In this context, inserting of Equation (9) into Equation 
(8) leads to gamuts main equation below  

( ) ( )

( ) ( )

( ) ( )

( ) ( )

6

1 2 3 4 ,0
1

6

1 2 3 4 ,1
2

1 2 3 4 ,0

6

1 2 3 4 ,1
1

, , , , , , , , , ,

, , , , , , , , , ,

, , , , , , , , , ,

, , , , , , , , , , 0,

l l
l

n n
n

j j
j

p p
p

P a b c m m m m J

Q a b c m m m m J

i R a b c m m m m J

S a b c m m m m J

β η θ α ηξ

β η θ α ηξ

β η θ α ηξ

β η θ α ηξ

=

=

=

+


+ 



+ =



∑

∑

∑

∑

         (10) 

where { }1;2;3;4;5;7j∈ . Equation (10) is made up of four gamuts of equations, 
two of which are preponderant in the order of resolution in the case where we 
want to approach or force the solutions, in particular the ranges of equations 
resulting from the global coefficients lP  and jR . In the case 0c ≠ , we obtain 
the approximate solution while the case 0c =  produces exact solutions. Thus, 
we obtain two families of solutions.  

4.1.1. Family I of Solutions: Case:  
m k a b c32 ; 0 ; 0; 0; 0β θ γ β= − = ⇔ = − ≠ ≠ ≠   

According to the theory briefly presented in Section 3, only range equations which 
resulting from the coefficients of the terms, in ( ),0lJ ηξ  and in ( ),0jJ ηξ  allow 
to best approach the solutions given by Equation (9) in the case of this Family I. 
The cape being fixed, one obtains from the identification at zero of the ranges of 
equations offered by the coefficients lP  and jR : 
- From the real part 
the term in ( )6,0J ηξ ,  

( ) 24 0,bcη β θ+ =                          (11) 

the term in ( )5,0J ηξ ,  

2
33 0,m ac− =                            (12) 

the term in ( )4,0J ηξ ,  

( )( ) ( )2 2 2 32 6 6 0,b a c bη β θ η β θ αη + − − + + =              (13) 

the term in ( )3,0J ηξ ,  
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( )2 2 2 2
3 23 2 0,m a b c m aη − + − =                   (14) 

the term in ( )2,0J ηξ ,  

( )2 2 2 3
42 2 2 4 0,a b c m bηθ η β θ ηθ η αη − + + − − =            (15) 

the term in ( )1,0J ηξ ,  

( )2 2
3 2 1 0,m b m m aη+ + =                     (16) 

- From the imaginary part 
the term in ( )7,0J ηξ ,  

( ) 32 2 0,cη β θ− + =                       (17) 

the term in ( )5,0J ηξ ,  

( ) ( ) ( )2 2 2 34 2 2 3 2 24 0,a b c cη β θ η β θ η β θ αη + − + + − − =        (18) 

the term in ( )4,0J ηξ ,  

32 0,m abc− =                          (19) 

the term in ( )3,0J ηξ ,  

( ) ( ) ( )2 2 2 3
43 2 3 2 2 2 20 0,b a c m cη β θ η β θ η β θ η αη + − + − + + + =     (20) 

the term in ( )2,0J ηξ ,  

32 0,m abc =                          (21) 

the term in ( )1,0J ηξ ,  

( )2 3
4 0,b m cηβ αη η− + + =                   (22) 

From the structuring of the above equations, it appears from Equations (11) 
and (17) that we can have 4β θ= −  or 0b =  or 0c =  and 2β θ= −  or 

0c =  respectively, while Equations (12), (19), (21) enforce to choose 

3 0m kγ β= ⇔ = −  or 0a =  or 0c =  or 0b = . Given all these conditions, 
only the case 3 0 ; 2 ; 0; 0; 0m k a b cγ β β θ= ⇔ = − = − ≠ ≠ ≠  allows to obtain 
non-trivial approximate solutions. Under these conditions, Equations (12), (17), 
(19) and (21) are verified. On the other hand, Equation (11) proposes 4β θ= −  
and 0b c= = , which means in this case that, the contribution of this equation 
to this order of power of the constitutive hyperbolic functions of the ansatz given 
by Equation (9) is not significant, and therefore negligible. Continuing our anal-
ysis, Equations (14) and (16) lead successively to 2 0 3m kλ α= ⇔ = −  and 

3 2
1 0m k kω α λ= ⇔ = −  while the combination of Equations (13) and (15) 

gives, respectively:  

3 ,
2

c αη
θ

= ±                          (23) 

and  

( )2 21 13 ,
2 2

a k kα λ νη
θ θ θ

= ± − − −                 (24) 

with 0; 0; 0αθ λθ ν    and 3kη ≥ . Then, Equations (18) and (20) give, 
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respectively  
2 2 26 12 0b cθ θ αη− − =                        (25) 

and  

( )2 21 10 3 .
2 10

kb k α λ νη
θ θ θ

= ± − − −                  (26) 

Given Equation (23), the successive combinations of Equations (22), (24) and 
(25) provides the two respective constraints  

2 99
5

kν αη λ= +                           (27) 

and  

( )2 2 2

19 .
120 15 120

k
k
λθα

η θ η
= −

+ +
                    (28) 

Finally, we obtain the approximate expression of Family I of solutions of 
Equation (1) in the form   

( ) ( ) ( )

( ) ( )

( ) ( )3

2 2
1,0

2 2
1,1

4
2,1

1 1, 3
2 2

1 10 3
2 10

3 e ;
2

i kx k t

x t k k J

ki k J

J
α

α λ νη ηξ
θ θ θ

α λ νη ηξ
θ θ θ

αη ηξ
θ

− +


Φ = ± − − −



± − − −


± 



            (29) 

with 30; 0; 0; 3; 2 ; 2 ; 3 ; 4k k k kαθ λθ νθ η β θ γ θ λ α ω α≥ = − = = − =     
(these expressions of , , ,ω λ γ β , are obtained from equations  

1 2 30, 0, 0m m m= = =  and (17) whose are constraints imposed by the studied 
system.) and the constraints given by Equations (27) and (28) respectively. It 
should be emphasized here that the third term of Equation (29) is a hybrid soli-
ton of the bright-dark or dark-bright type. By carefully observing this Equation 
(29), we realize that it is a complex multi-soliton prototype whose third term is 
at the origin of the appearance in the propagation medium of multiform solitary 
wave structures, this in relation with the values taken by the parameters of the 
wave. This can be justified in the sense that the magnitude of the amplitude Ψ  
stages the squares of the first and the second term, which, in the absence of the 
third term, generates either a bright soliton or a classic dark soliton. It is necessary 
to note in this case that, the dynamics of the amplitude given by the Equation (9) 
is only described by the traveling wave equation provided by the imaginary part 
of the Equation (8) and which is under the form:  

23
2

4 3 0.m α β θ
ξ ξ ξξ

∂ Ψ∂Ψ ∂ Ψ ∂Ψ
+ + Ψ + Ψ =

∂ ∂ ∂∂
              (30) 

Equation (30) compared with Equation (8) suggests that the dynamics of the 
amplitude given by Equation (29) is in a marginal mode with respect to the GVD 
and of the Kerr law nonlinearity. Stimulated Raman scattering keeps a great in-
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fluence on the dynamics of Ψ . This influence is illustrated with the coefficients 
,β α  and θ , respectively.  

4.1.2. Family II of Solutions: Case: c 0=   
For 0c = , all the equations resulting from the coefficients nQ  and jR  (see 
Equations (17)-(22)) are verified. Then, only some equations provided by the 
coefficients lP  (see Equations (11) and (12)) and pS  are verified while Equa-
tion (10) reduces to  

( ) ( )

( ) ( )

4

1 2 3 4 ,0
1

4

1 2 3 4 ,1
1

, , , , , , , , , ,

, , , , , , , , , , 0.

l l
l

p p
p

P a b c m m m m J

i S a b c m m m m J

β η θ α ηξ

β η θ α ηξ

=

=

′

 
′+ = 

 

∑

∑
         (31) 

Thus, the identification to zero of the equations resulting from the coefficients 

lP′  and pS ′  leads to the following two series of equations. 
- From the real part 
the term in ( )4,0J ηξ ,  

( )( )2 2 32 6 0,b a bβη ηθ αη + − + =                   (32) 

the term in ( )3,0J ηξ ,  

( )2 2 2
3 22 0,m a b m aη − − =                     (33) 

the term in ( )2,0J ηξ ,  

( )2 2 3
42 2 4 0,a b m bηθ ηβ ηθ η αη − + − − =              (34) 

the term in ( )1,0J ηξ ,  

( )2 2
3 2 1 0,m b m m aη+ + =                     (35) 

- From the imaginary part 
the term in ( )4,1J ηξ ,  

( )( )2 2 32 6 0,b a aηβ ηθ αη + − + =                 (36) 

the term in ( )3,1J ηξ ,  

( )2 2 2
3 22 0,m a b m bη − − =                    (37) 

the term in ( )2,1J ηξ ,  

( )2 3
4 0,b m aηβ η αη+ + =                    (38) 

the term in ( )1,1J ηξ ,  

( )2
3 1 0m b m b+ = .                      (39) 

A thorough observation of the two ranges of equations above shows that, 
apart from a factor, Equations (32) and (36) are identical. The same is true for 
Equations (33) and (37). Under this observation including the structuring of the 
rest of the above equations, and taking into account the fact that we are looking 
for the non-trivial solutions of Equation (1), this Family II of solutions reveals 
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four subfamilies: Case 0, 0, 0, 2 , 2a b c kβ θ γ θ≠ ≠ = ≠ − ≠ − ; case  

1 2 3 0, 0, 0, 0m m m a b c= = = ≠ ≠ = ; case 0, 0a b c≠ = = ; case  
0, 0, 0a b c= ≠ = .  

1) Subfamily I of the Family II of solutions: case: 0, 0, 0, 2 ,a b c β θ≠ ≠ = ≠ −
2 kγ θ≠   

For this first case, the combination of Equations (32) and (33) or of Equations 
(36) and (37) results in the same constraint which gives the expression of α  as 
a function of the other parameters as being  

( )
( )

2
3 2 k
β θ λ

α
γ θ
+

=
−

                          (40) 

with 2 ; 2 kβ θ γ θ≠ − ≠ . Thereafter, the combination of Equations (34) and (35) 
gives, respectively  

( ) ( )2 2 3 23k k k
b

k

η λ η α ω

γ β

− + + −
= ±

+
                  (41) 

and  

( ) ( ) ( ) ( )( ) ( )
( )

2 2 2 2 2 2 3 22 2 3 2 2

2

k k k k k k k
a

k

η θ η β γ λ η γ θ β η α γ β ν

γ β θ

   − − + − + − + − + − +   = ±
+

 

(42) 

with 
( ) ( ){
( ) ( )( ) ( ) }( )

2 2 2 2

2 2 3 2

2 2

3 2 2 0

k k k

k k k k k

η θ η β γ λ

η γ θ β η α γ β ν γ β θ

 − − + − 

 + − + − + − + +  

 and 

( ) ( ) ( )2 2 3 23 0k k k kη λ η α ω γ β − + + − +   . On the other side, the  
combination of Equations (38) and (39) offers the constraint  

( ) ( )2 2 2 22 3 2k k k k k γω η α λ ν η α λ ν
β

   = − + + + − + +             (43) 

where 0β ≠ . So, we obtain Subfamily I of Family II of the solutions of Equ-
ation (1) and which is represented by the exact solution below   

( )
( ) ( ) ( ) ( )( ) ( )

( ) ( )

( ) ( )
( )

( ) ( )2 2 2 2

2 2 2 2 2 2 3 2

1,0

2 2 3 2 2 3 2

1,1

2 2 3 2 2
,

2

3
e ,

i kx k k k k k t

k k k k k k k
x t J

k

k k k
i J

k

γη α λ ν η α λ ν
β

η θ η β γ λ η γ θ β η α γ β ν
ηξ

γ β θ

η λ η α ω
ηξ

γ β

     − + − + + + − + +           

    − − + − + − + − + − +    Φ = ± +


− + + − ±
+


 

(44) 

with constraints obtained for the cause. Equation (44) is also a kind of complex 
multi-soliton, which due to the squares existing in the modulus of the amplitude 
Ψ , makes appear in the propagation medium either a bright-soliton, or a 
dark-soliton, and this according to the values taken by the wave parameters. This 
gives freedom of choice of the structure that one would like to use during labor-
atory propagation tests.  
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2) Subfamily II of the Family II of solutions: case: 3 2 , 0,k k aω α λ= − ≠
0, 0, 2 , 2 , 3b c k kβ θ γ θ λ α≠ = = = − = −   

For 3 2
1 0m k kω α λ= ⇔ = − , Equations (39) and (33), (35), (37) impose suc-

cessively taking 3 0m kγ β= ⇔ = −  and 2 0 3m kλ α= ⇔ = −  while Equations 
(32), (34), (36) and (38) remain unchanged. Herein, we also notice that Equa-
tions (32) and (36) up to a factor, are identical. Under this ascertainment, the 
combination of Equations (32), (34) and (38); or the Equations (36), (34) and 
(38) gives  

2 ,β θ=                               (45) 

( )2 22 3 2a k k α νη
β β

= ± + + +                     (46) 

( )2 23 2 .b k k α νη
β β

= ± + − +                     (47) 

So, the Subfamily II of Family II of the solutions of Equation (1) is the fol-
lowing exact solution   

( ) ( ) ( )

( ) ( ) ( )3 2

2 2
1,0

2 2
1,1

, 2 3 2

3 2 e ,
i kx k k t

x t k k J

i k k J
α λ

α νη ηξ
β β

α νη ηξ
β β

 − + −  


Φ = ± + + +




± + − + 


      (48) 

with 0; 0αβ νβ   and 2 23 2k k η+ ≥ . Equation (48) presents the same cha-
racteristics noted in the case of Equation (44) with the only difference that its 
dynamics is described by the reduced traveling wave equation given by Equation 
(30).  

3) Subfamily III of the Family II of solutions: case: 0, 0, 0,a b c≠ = =
2 ; 2 kβ θ γ θ≠ − ≠   

For 0; 0b c= = , Equations (32), (34), (37) and (39) are verified while the 
combination of Equations (35) and (38) leads to the explicite expression of ω  
as being  

( ) ( )2 2 21 10 8 2 3 .
2

k k kω α λα λ αν λν = + + + +             (49) 

Then, the combined resolution of Equations (33) and (36) gives rise to, re-
spectively  

( )
( )

2
3 2 k
β θ λ

α
γ θ
+

=
−

                        (50) 

and  

2
2

a
k

λ
γ θ

= ±
−

                        (51) 

with ( )2 0kγ θ λ−  . Thus, the Subfamily III of Family II of solutions of 
Equation (1) is reduced to the exact solution below   
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( ) ( )
( ) ( )2 2 21 10 8 2 3

2
1,0

2, e
2

i kx k k k t
x t J

k

α λα λ αν λνλ ηξ
γ θ

  − + + + + +    
 

Φ = ± 
− 

   (52) 

with ( )2 0kγ θ λ−  . The solution given Equation (52) shows that the Sa-
sa-Satsuma dynamical equation admits a bright-soliton as an exact pure real so-
lution.  

4) Subfamily IV of the Family II of solutions: case: 0, 0, 0;a b c= ≠ =
2 ; kβ θ γ β≠ − ≠ −  

When equating 0a c= = , Equations (33), (35), (36) and (38) are verified 
while the real part gives, from Equations (32) and (34), respectively  

6
2

b αη
β θ

= ± −
+

                        (53) 

and  

( )2 22 3 4

2

k k
b

λ η α ν

β θ

+ − +
= ±

+
                  (54) 

with ( ) ( )2 0; 3; 2 0
2
kα β θ η λ β θ+ ≥ +   and ( )2 0ν β θ+  . Then, the  

imaginary part leads, from Equations (37) and (39), successively  

2 6 kb
k

λ αη
γ β
+

= ± −
+

                       (55) 

and  
2 3k kb

k
λ ω α

γ β
+ −

= ±
+

                      (56) 

with ( )( )2 6 0k kγ β λ α+ +   and ( )( )2 3 0k k kγ β λ ω α+ + −  . Since the 
coefficient b must be unique; on the one hand, Equations (53) and (54) give the 
equality 2 2b b= , which leads to the constraint  

2 2

2
2 3

k
k

λ να
η

+
= −

+
                         (57) 

with 0; 0k η≠ ≠ . On the other hand, Equations (55) and (56) also give the 
equality 2 2b b= , leading in turn to the constraint  

( )
( )

2 2

2 2

2

6

k

k k

ω η λ
α

η

+ +
=

−
                       (58) 

with 60;
6

k kη≠ ≠ . If the coefficient b is unique, then the parameter α   

must also be unique. In this context, the combination of Equations (57) and (58) 
reveals  

( ) ( )2 2 4 2 2

2 2

4 1 5 6

2 3

k k k k

k

η λ η ν
ω

η

 − − + − =
+

              (59) 

with ( ) ( )23 2 3 0k k kγ β λ ν + − +   . So, the Subfamily IV of Family II of 

https://doi.org/10.4236/opj.2022.125010


C. T. D. Tchaho et al. 
 

 

DOI: 10.4236/opj.2022.125010 139 Optics and Photonics Journal 
 

solutions of Equation (1) can be expressed as   

( )
( )

( )( ) ( )

( ) ( )2 2 4 2 2

2 2

4 1 5 6
2

2 3

1,12 2

2 3 2 6
, e

2 3

k k k k
i kx t

kk k
x t i J

k k

η λ η ν

ηλ ν
η ηξ

γ β η

  − − + −   − + 
+ 

 

 − + Φ = ±
 + +  

 (60) 

with the constraints given by Equations (57); (58); (59) and  
( ) ( )23 2 3 0k k kγ β λ ν + − +   . This last subfamily IV of the Family II of solu-
tions shows that Equation (1) likewise admits a kink-soliton as an exact pure 
imaginary solution. 

4.2. Trigonometric Solutions 

The transition from hyperbolic forms to trigonometric forms of iB-functions is 
done by means of the relation [34] [35] [36]  

( ) ( ), ,
m

n m n mJ x i T xη η=                        (61) 

with  

( ) ( )
( ),

sin
cos

m

n m n

x
T x

x
η

η
η

=                        (62) 

such that ( ),n mT xη  is the secondary form of iB-functions related to trigonome-
tric functions. Thus, when we come back to our work, by making the corres-
pondences ( )1 ,i i xη η ξ← = − ← , we obtain from Equations (29), (44), (48), 
(52) and (60), the respective trigonometric solutions.  

( ) ( ) ( )

( ) ( )

( ) ( ) ( )3

2 2

2 2

42

1 1, 3 cosec
2 2

1 10 3 tan
2 10

3 cosec sin e ,
2

i kx k t

x t k k

kk

i
α

α λ νη ηξ
θ θ θ

α λ νη ηξ
θ θ θ

αη ηξ ηξ
θ

− +

Φ = ± − − −


± − − −

± 


          (63) 

( ) ( ) ( )
( ) ( )2 2 2 22 3 2

, cosec tan e ,
i kx k k k k k t

x t a b
γη α λ ν η α λ ν
βηξ ηξ

     − + − + + + − + +           Φ = ± ±    (64) 

( ) ( ) ( ) ( )3 2

, cosec tan e ,
i kx k k t

x t a b
α λ

ηξ ηξ
 − + −  Φ = ± ±            (65) 

( ) ( ) ( )3 2

, cosec e ,
i kx k k t

x t a
α λ

ηξ
 − + −  Φ = ±                (66) 

and  

( ) ( ) ( )3 2

, tan e ,
i kx k k t

x t b
α λ

ηξ
 − + −  Φ = ±                 (67) 

where a, b and c are expressions obtained in Subsection 4.1, including the ac-
companying constraints. Equations (63)-(67) constitute the trigonometric ver-
sions of the solutions obtained in Subsection 4.1. 

4.3. Profile of Some Obtained Traveling Wave Solutions 

This subsection is dedicated to the display of the profiles of certain traveling 
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wave solutions given by Equations (29) and (44), respectively. The graphical tool 
which made it possible to achieve this result is MAPLE. Thus, we have, respec-
tively. 

Note here that, the choice of values is linked to constraints given by the ob-
tained analytical expressions. At this level, several values of variables can be de-
fined. This is for example, the case of Figure 1: (A) where we have made the 
choice of 0.09, 0.08, 0.2, 0.02a b ν η= = = =  which is essential parameters 
which intervene directly in obtaining profile.  

5. Discussions 

In this section, it is important to note that the obtained analytical or graphical 
results corroborate with the theoretical predictions about the multi-soliton cha-
racters which consist of the proposed ansatz, and this with a more or less good 
accuracy. An illustration of this corroboration may be observed through: 
- the different profiles of Figure 1 where Figure 1(a) reveals a bright soliton 

while Figure 1(b) presents a dark soliton. This is a consequence of the fact 
that the plotted module involves the sum of two squares, one of which is a 
bright soliton and the other a dark solid. Thus, depending on the values as-
signed to each of the coefficients ,a b  of the wave given by Equation (44), 
one or the other structure is obtained. 

- the different profiles of Figure 2 where Figure 2(a) displays a bright-dark 
soliton structure while Figure 2(b) shows a dark-bright soliton structure. 
These two structures are all hybrids and have equal bright and dark tenden-
cies respectively. This is the direct result of the fact that the analytic form 
given by Equation (29) is a package consisting in the order of a bright soliton 
(first term), a kink soliton (second term) and a hybrid soliton (third term), 
respectively. As a result, depending on the values assigned to each of the pa-
rameters , , , ,a b c ν η  of the solitary wave, the hybrid forms (resulting from 

 

 
Figure 1. Graphical representation given by Equation (44): Bright and dark dispersive optical solitons: (a) 0.09a = ; 0.08b = ; 

0.2ν = ; 0.02η = ; (b) 0.06a = ; 0.07b = ; 0.2ν = ; 0.02η = . 
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Figure 2. Graphical representation given by Equation (29): Hybrid dispersive optical soliton: (a) 0.1a = ; 0.08b = ; 0.009c = − ; 

0.002ν = ; 0.02η = ; (b) 0.1a = ; 0.08b = ; 0.09c = ; 0.002ν = ; 0.02η = ; (c) 0.3a = ; 0.001b = ; 0.9c = ; 0.002ν = ; 
0.02η = ; (d) 0.3a = ; 0.001b = ; 0.9c = − ; 0.002ν = ; 0.02η = . 

 
the third term of Equation (29)), are equals tendencies of bright-dark or 
dark-bright soliton. On the other hand, Figure 2(c) and Figure 2(d) display 
two bright-dark soliton structures with a strong bright soliton tendency. This 
is also due to the different values taken by the wave parameters. 

In summary, we note that the values assigned to each of the parameters of the 
wave in particular, then extended to the parameters of the system studied in 
general, are fundamental in the formation of the resulting structure. In addition, 
Figure 1 and Figure 2 confirm one of the a priori ideas that loum during the 
conception of the ansatz given by Equation (9) and which reported that the dis-
turbance term of amplitude c is at the origin of the emergence of the new hybrid 
structures displayed by Figure 2(c) and Figure 2(d). It should also be noted 
here that the results obtained are new and different from those proposed in [19] 
[20] [21] [22] [23], at least in the mathematical form, and through the displayed 
profiles. This being the case, one conclusion is in order. 
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6. Conclusion  

In our previous work [20], we constructed the solitary wave multi-solutions of 
the modified Sasa-Satsuma equation describing the dynamics of sea waves. The 
method used for this purpose was the BDKm and it had shown its full effective-
ness. The transformations associated with the method in its initial form were 
very cumbersome and required a lot of care in their management when we came 
to the idea of constructing the solitary wave solutions of the Sasa-Satsuma equa-
tion. But, this time, with the one that describes the wave dynamics in optical 
systems and in particular the optical fiber having the particularity of taking into 
account the Self-Steeping effect, the third-order dispersion and especially the 
stimulated Raman scattering effect, we opted to use the BDK method extended 
to iB-functions. The idea of the method to be adopted has been decided upon. 
We fixed ourselves the objective of constructing a hybrid solitary wave solution 
made up of an assembly of solitary waves of the pulse type of order 1, the kink of 
order 1, and the kink of order 2. In other words, a solitary pulse-kink wave solu-
tion with a strong kink tendency can be appreciated in Equation (9). We have 
successfully carried out analyses and calculations, and the results have been ob-
tained. The advantage of choosing such a form of solution from the start comes 
from the fact that the other sub-solutions can be obtained via the constraints 
imposed on the coefficients , ,a b c  and above all from the properties of the 
iB-functions. The flexibility linked to iB-functions has also allowed deducing so-
litary wave solutions with a hyperbolic analytical sequence, which is the trigo-
nometric solution of the Sasa-Satsuma equation concerned in this work. Beyond 
the mathematical field, the results obtained can find important applications in 
the theory of solitary waves, physics and especially fiber optic telecommunica-
tions. 
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