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Abstract 
Ensuring safety has always been of utmost importance in vehicular opera-
tions, where traditionally, human drivers have been solely responsible for 
driving. However, with the emergence of advanced technologies, we are now 
on the brink of a new era with the introduction of Autonomous Vehicles 
(AVs), in which control over the vehicle gradually shifts to Artificial Intelli-
gence (AI). The safety of these vehicles has raised concerns among the public. 
In terms of safety, human drivers heavily rely on visual perception. Key ele-
ments that contribute to safe driving include situational awareness, vehicle 
control, reaction capabilities, and anticipation of potential hazards. With the 
introduction of AVs, these fundamental factors remain unchanged. AVs rely 
on two primary technologies, namely LiDAR and Non-LiDAR, to perceive 
their surroundings. This research focuses on three primary aspects. Firstly, it 
involves the development of an image classification model to assess the safety 
of AVs. This model determines whether the images captured by LiDAR and 
Non-LiDAR technologies can be accurately predicted using supervised learn-
ing. An algorithm is employed to identify the input images obtained from 
both LiDAR and Non-LiDAR technologies. The results demonstrate that the 
model achieved a high accuracy rate of 94.63% in predicting the images. Se-
condly, a Safety Framework is established to facilitate the subsequent propos-
al for Experimental Research, which is the third aspect. The Safety Frame-
work incorporates the application of LiDAR and Non-LiDAR technologies 
mounted on a vehicle that is operated in diverse weather conditions by both a 
human driver and an autonomous system. The Scenario tables, which are 
currently in a blank state, will be populated upon completion of the Experi-
mental Research. The Experimental Research aims to compare and contrast 
the performance of LiDAR and Non-LiDAR technologies on a vehicle driven 
by a human operator versus an Autonomous Vehicle. The findings of this re-
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search will be documented in the Scenario table outlined within this study, 
ultimately shedding light on the safety implications of implementing LiDAR 
and Non-LiDAR technologies within an AV context. 
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1. Introduction 

The idea of an Autonomous Vehicle (AV) started with Leonardo Da Vinci when 
he designed a self-propelled cart that could move without being pushed [1]. 
Google started its Autonomous Vehicle project in 2009 [2]. In 2015, Tesla re-
leased its autopilot [3]. Tesla’s autopilot is not entirely AV; the feature is Autos-
teer that keeps the car in its current lane; the technology has four different kinds 
of sensors; forward radar, forward-facing camera, 360-degree ultrasonic sensors, 
and GPS in combination with high-resolution navigation maps designed to track 
individual lanes and features of the roads [4]. NHTSA further mentioned that 
self-driving vehicles would be integrated into U.S. roads by advancing through 
the six levels of driver assistance technology advancements. The six-level driver 
assistance technology advancements focus on who does what and when, i.e., the 
driver and the Automated Driving systems (ADS). 

1.1. Six Levels of Driver Assistance Technology Advancements 

According to NHTSA, these are the levels of automation, who does what and 
when shown in Table 1 [5]. 

Level 0 has no automation, and the human driver completely controls the ve-
hicle. Level 1 has driver assistance; the vehicle is equipped with assistance func-
tions such as lane-keeping assistance, and the human driver remains responsible 
for all driving tasks. Level 2 is partial automation; humans still drive the vehicle, 
and the vehicle combines automated functions such as lane-keeping and adap-
tive cruise control. The human driver must be prepared to take control of the 
vehicle at any time. Level 3 is conditional automation; an automated driving 
system drives the vehicle and can perform all aspects of driving under certain 
conditions; the human driver can intervene when prompted by the system or 
when specific conditions arise. Level 4 is high automation; an automated driving 
system drives the vehicle, and the system can operate autonomously without 
human intervention on specific operational conditions; the human driver is dis-
engaged from driving responsibilities. Level 5 is full automation; an automated 
system drives the vehicle and is capable of all driving tasks under all conditions, 
and no human intervention is required. 

Back in September 2016, the NHTSA and the United States Department of 
Transportation (USDOT) has released a Federal Automated Vehicles Policy 
(FAVP) to provide a safety approach on safety assurance and innovations [6]. In  
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Table 1. The six levels of automation of NHTSA. 

Levels Description 

Level 0 
The driver does all the driving without an advanced driver assistance 
system (ADAS) intervention. 

Level 1 
There is an ADAS onboard the vehicle which not most of the time 
assists the driver in steering, braking, or accelerating and not  
concurrently. 

Level 2 
There is an onboard ADAS that controls the steering, braking, or 
accelerating in each situation and the driver must always pay full 
attention, then do the rest of the task of driving. 

Level 3 
There is an ADS onboard and do all the driving task in each  
situation, the driver must be ready to take back the control at any 
time when the ADS request the driver to do so. 

Level 4 
The ADS performs all the tasks of driving, and monitors the  
environment in each situation, the driver does not need to pay  
attention at all. 

 
September 2017, NHTSA and USDOT released the “Automated Driving Sys-
tems: A Vision for Safety 2.0” document [7], which gives a nonregulatory me-
thod on automated vehicle technology safety and safe testing of Levels 3-5. In 
October 2018, both NHTSA and USDOT released the document “Preparing for 
the Future of Transportation: Automated Vehicles 3.0” [8]; the paper was orga-
nized in three key areas such as the advancement of multi-modal safety, the re-
duction of policy uncertainty, and the outline of the process for working with 
USDOT. And on January 2020, the USDOT released a document called “Ensur-
ing American Leadership in Automated Vehicle Technologies: Automated Ve-
hicles 4.0” [9], which was based on “Preparing for the Future of Transportation: 
Automated Vehicles 3.0” and expanded 38 components and organized on three 
key areas. The United States Government Automated Vehicles (USG AV) prin-
ciples and the administration’s efforts in supporting the Automated Vehicle 
(AV) growth and leadership. Including the United States Government (USG) 
activities and opportunities for collaboration. 

1.2. Framework Measuring Automated Vehicle Safety 

In 2018 RAND Corporation, through the research of Blanar et al. [10], wrote a 
report on automated vehicle safety; it was found that there was no definite stan-
dard that existed in terms of AV safety, but the information presented a frame-
work wherein the safety of AV can be tested and measured. The framework de-
veloped by Blanar et al. [10] focused on the features of Level 4 of SAE J3016 [11] 
version levels of driving automation. The testing was performed within 
pre-specified conditions. Level 4, as explained on the Landmark Dividend web-
site [12], is where the automated system can take over the driving task in each 
situation. NHTSA [5] mentioned that drivers do not need to pay attention. 
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In the research of Blanar et al. [10], safety was defined as the elimination, mi-
nimization, or management of harm to the public; this research focused on 
comparing AV and conventional vehicles. To further clarify, the comparison is 
based on the operational design domain (ODD) Blanard& Holliday [13], and 
ODD was described by Blanar et al. [10] in terms of geography, weather, light-
ing, roadway markings, previous experience on a specific roadway. Table 2 
shows the integrated safety framework developed by Blanar et al. [10], wherein 
Column 1 is the Setting, Column 2 is the Stage, and Column 3 is the Leading 
Measures, and Column 4 Lagging Measures. 

The research can interest stakeholders such as academics, transportation reg-
ulators, transportation managers, industries, and the public. The future of logis-
tics will be based on autonomous or semi-autonomous vehicles; this research 
will help develop a guide on such vehicles’ rules and regulations on the public 
road. Businesses inclined to use Autonomous vehicles will have an informed 
choice of whether to go with the technology of LIDAR or Non-LIDAR, which 
are currently being developed. 

The two-leading image-gathering technologies for AVs’ image gathering: Li-
DAR and Non-LiDAR, are essential for the safety of AVs. It serves as the eyes to 
detect objects on the roads and surroundings; it is paramount that these tech-
nologies must assure the public that such detection of objects can be used to 
make the driving of the AVs safe. For society to trust their lives on AVs, there 
must be a proper safety measurement. The public needs to know the similarities 
and differences between the two technologies regarding safety. The businesses 
who invest and use the technology should ensure it is safe to use in any weather 
conditions. Therefore, there is a need to develop a safety framework to measure 
the two technologies’ safety. In the research conducted by Blanar et al. [10], it 
was not mentioned that the AV used in the experiment uses LiDAR or 
Non-LiDAR. Using LiDAR on Non-LiDAR in terms of safety is essential because 
this will define the safety of AVs. 

2. Background 

On November 11, 2020, in Japan, Honda Motor Co., Ltd. announced the ap-
proval of an SAE Level 3 autonomous vehicle [14]. According to the SAE Inter-
national standard, a level 3 autonomous vehicle means the driver is not driving, 
and the automated features of autonomous driving are engaged, even though the 
driver is in the driver’s seat. According to the article Honda, the Ministry of 
Land, Infrastructure and Tourism (MILT) of Japan approved the Level 3 auto-
nomous vehicle based on SAE standards; this will enable the vehicle to drive 
when there is traffic congestion on the expressway; Honda calls this as “Traffic 
Jam Pilot” and will be available to consumers on the first quarter of 2021. In 
March 2021, Honda made the Honda Legend available to the public, the first 
SAE Level 3 certified AV and considered the world’s first [15]. In October 2021, 
an article on Car Buzz [16] stated that Honda is already testing Level 4  
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Table 2. The integrated safety framework. 

Stage Setting Leading Measures Lagging Measures 

Development Simulation Infractions Outcome 

Demonstration Closed course Roadmanship  

Deployment Public roads Disengagement  

 
autonomous technology and compares it to Tesla being in Level 2 in autonom-
ous technology. 

2.1. LiDAR 

LiDAR, according to Wasser [17], is an active remote sensing system, and an ac-
tive system is a system that produces energy or light to quantify things on the 
ground. Wasser further explained that remote sensing is measuring things, not 
using our hands; sensors are used to obtain information regarding a landscape 
and record things to measure characteristics and conditions. Light is emitted 
from a quick-firing laser, which makes a LiDAR system; according to Wasser, 
this light goes to the ground, and the light bounces off obstacles like buildings or 
trees; the bounced light then goes back to the LiDAR sensor then records it. 

LiDAR sensors can achieve mapping precision of up to 1 cm horizontally (x, 
y), and 2 cm vertically (z) and range accuracy of 0.5 to 10 mm relative to the 
sensor. As a result, they serve as particularly advantageous remote sensing 
equipment for mobile mapping. (Vectornav n.d.). Furthermore, LiDAR sensors 
may capture several returns from a single light pulse. This is due to the fact that 
as the light pulses travel from the sensor, they may come into contact with many 
objects that will reflect the pulse, such as the leaves and branches of a tree cano-
py. LiDAR sensors can record this data to provide a detailed picture of both the 
tree canopy and the underlying structure. 

2.2. Non-LiDAR 

This technology does not employ LiDAR on AV; it uses the same technology as 
other Avs, except it does not install LiDAR as part of autonomous driving but 
relies heavily on the onboard camera. On October 22, 2020, Washington Post 
published an online article about Tesla putting self-driving technology in their 
cars [18]. Before the Washington Post, on October 20, 2020, Elon Musk, the 
CEO of Tesla, tweeted that an FSD (Full Self-driving) rollout was happening 
[19]. The article in Washington Post mentions that according to some safety ex-
perts, Tesla’s technology can detect vehicles and pedestrians on the road, as well 
as some objects such as trees, but it cannot always discern the real shape or 
depth of the obstacles it encounters. As it approached the rig from behind, the 
automobile might not be able to tell the difference between a box truck and a 
semi. Furthermore, according to the article, Tesla will use eight surround-
ing-view cameras connected to the car to gather information so it can steer 
through freeways, city streets, and traffic. This is made possible by enhancing the 
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software of the car to compensate for its hardware. This will create a virtual Li-
DAR using eight cameras connected to its neural network. 

2.3. Current Research 

Zywanowski, Banaszczyk, & Nowicki [20] compared camera-based (non-LiDAR) 
and 3D LiDAR-based image recognition across different weather conditions and 
processed all data inputs employing similar architecture of a neural network and 
worked for 50 weeks and found that there is a need for more research into place 
recognition with multi-sensory setups. Their study used the data set from the 
University of Sydney that has been recorded using cameras, 3D LiDAR u-blox 
GPS, an Inertial Measurement Unit (IMU), and others. The researchers drove 
the same route weekly for over a year and gathered 50 recordings of lighting 
conditions, weather conditions, infrastructural, environmental, and traffic con-
ditions. In all these driving, they used cameras (non-LiDAR) and LiDAR and 
then compared the data collected. Zywanowski, Banaszczyk, & Nowicki [20] 
used transfer learning to train their networks; the camera and LiDAR intensity 
images were used in these training datasets. The researchers acquired the results 
based on weather conditions observed and divided them into six categories such 
as (S) sunny, (C) cloudy, (S/C) sunny/cloudy, (AR) after rain, (SS) sunset, and 
(VC) very cloudy then created a table comparing camera (non-LiDAR) and Li-
DAR. 

A comparison review on LiDAR and Camera (Non-LiDAR) in AV conducted 
by Mugunthan et al. [21] states that in using LiDAR, the pulses are affected by 
heavy rains or hanging clouds and that these obstacles influence the refraction. 
Furthermore, the sun’s angle also has a significant impact since laser pulses are 
based on the principle of refraction. Regarding the use of a camera, Mugunthan 
et al. [21] indicated that when using a camera, there are problems with changing 
lighting and weather conditions and that the depth data using algorithms are not 
as accurate as the LiDAR. From the research, the researchers concluded that 
LiDAR and cameras on their own are not safe and that it was suggested in the 
article that LiDAR and cameras should be used together. However, the research 
did not mention using image processing to compare LiDAR and camera; there 
was no baseline to test the findings. The study is all based on a literature review.  

2.4. Image Recognition Model 

The website of Fritz.ai [22] defines image recognition as a computer vision tech-
nique that allows machines to decode and classify what they see on an image or 
video. This is often called image classification or image labelling; in machine 
learning, Du, Guo, & Simpson [23] wrote an article on self-driving car steering 
angle prediction based on image recognition. In their research, they used a set 
of images with the steering angle captured during driving; the study explored 
two models to perform predictions based on photos using various deep learn-
ing techniques, which include Transfer Learning, 3D CNN (3D Convolutional 
Neural Network), LSTM (Long Short-Term Memory) and ResNet (Residual 
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Network). Furthermore, the website of Fritz.ai [22] explains that to build an im-
age recognition model which will automatically detect an image, there are three 
basic steps one is to train the model, two to input the image or video, three is the 
output which will statistically predict the input image. 

2.5. Image Recognition Architectures 

Several neural network architectures are used in image recognition, and it is 
typical for the neural network to be used in different image recognition prob-
lems; it can also be tested on object detection or segmentation. Kumar [24] ex-
plained that CNN architectures are a well-known deep learning framework 
and the application of which ranges from computer vision to natural language 
processing (NLP); based on an article written by Dang [25], many technology 
companies developed research studying architectures in CNN such companies 
are Google, Microsoft, and Facebook these companies used CNN for analyzing 
image content, image segmentation, classification, detection, and retrieval. Fur-
ther, the article explains that CNN builds a network in neurons in the early layer 
of the network, extracts visual topographies, then neurons in later layers put to-
gether all the topographies and create higher-order topographies. The layers 
stated in the article are convolutional, pooling, and fully connected. 

3. Methodology 

Since Karl Benz’s invention of the automobile in Germany in 1885/1886 [26], 
human drivers have consistently assumed control of vehicles. Among the para-
mount safety requirements in driving is the ability to visually perceive the road, 
discern obstacles, and maintain situational awareness, all of which necessitate 
the use of our visual faculties. This fundamental principle also applies to auto-
nomous vehicles (AVs) as they, too, require a means of “seeing.” The integration 
of LiDAR and Non-LiDAR technology empowers AVs to perceive the road, 
identify obstacles, and maintain environmental awareness. Pertinent terminolo-
gies in the realm of AVs encompass perception, localization, prediction, and de-
cision-making [27]. The focus of this research lies specifically in the realm of 
perception, which enables AVs to accurately identify and categorize the objects 
within their visual field. In terms of data acquisition for identification and cate-
gorization purposes, the two dominant technologies employed are the Camera, 
which falls under the Non-LiDAR category, and the LiDAR itself. Through an 
extensive literature review, this research endeavour seeks to juxtapose and ex-
amine the relative merits and limitations of these two technologies. Further-
more, the research entails a comparative evaluation of proposed experimental 
methodologies for data collection, which will serve as inputs for an image 
processing model. This model will be constructed based on publicly accessible 
datasets, facilitating a comprehensive analysis and comparison of the perfor-
mance of the Camera and LiDAR technologies within the context of AV percep-
tion. Additionally, the research involves the development of a safety framework 
that will effectively contrast and evaluate the outcomes of the conducted experi-
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ments. Ultimately, this research endeavour will contribute by proposing innova-
tive experimental methodologies to enhance our understanding of AV percep-
tion capabilities and further refine the field’s safety framework. Figure 1 shows 
the concept of the research framework. 

3.1. LiDAR for Object Detection and Image Classification 

Acquiring LiDAR data presents significant challenges compared to visible image 
data, as highlighted by Wenhui and Fan [28]. These challenges include the 
sparseness of the LiDAR point cloud and the occurrence of mutual occlusion, 
where objects obstruct each other within close proximity, which poses a crucial 
obstacle in object detection and classification algorithms [29]. The recognition 
and classification of object structures based on point cloud data involve mani-
pulating the distinct properties of objects, such as their non-uniform densities 
and non-structural distributions, which deviate from conventional methods of 
point cloud analysis. Furthermore, the accuracy and speed of LiDAR-based sys-
tems are hindered by the unorganized allocation of the LiDAR point cloud [30]. 

Zhang, Fu, & Dai [29] addressed the issue of mutual occlusion in their re-
search on LiDAR-based object classification by employing Explicit Occlusion 
Modeling. Their investigation emphasized the crucial role of mutual occlusion 
between adjacent objects in object detection and classification, as it significantly 
affects accuracy. The authors’ research approach involved explicitly modeling 
occlusion, defining a view volume in which the LiDAR camera is most likely to 
be positioned during runtime. However, it should be noted that in the research 
conducted by Zhang, Fu, & Dai [29], the LiDAR point cloud used for classifica-
tion was incomplete and fragmented, leading to potential misclassifications. 

In their research, Song et al. [31] highlighted the challenges arising from the 
unstructured distribution, disordered arrangement, and large volume of data in 
LiDAR point clouds, which result in high computational complexity and diffi-
culties in classifying 3D objects. To address these issues, the authors proposed a 
CNN-based 3D object classification method that leverages the Hough space of 
LiDAR point clouds. The Hough Transform, a method commonly employed for 
isolating features of specific shapes in images, including lines, circles, and el-
lipses [32], was utilized to transform the object point cloud into Hough space. 
Subsequently, the Hough space was rasterized, transforming the electronic data 
into a sequence of evenly sized grids [33]. The count of accumulators in each 
grid was computed and fed into a CNN model for the classification of 3D ob-
jects. Moreover, the researchers developed a semi-automatic 3D object labeling 
tool to construct a LiDAR point cloud object labeling library. Following the in-
itialization of the CNN model, the dataset from the object labeling library was 
employed to train the neural network. The outcome of this approach yielded an 
object classification accuracy of 93.3% [31]. 

The process of gathering data, as illustrated by the research conducted by 
Song et al. [31], involves transforming the object point cloud into Hough space 
using the Hough Transform algorithm. Subsequently, the Hough space is  
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Figure 1. Research concept framework. 

 
rasterized into evenly sized grids, and the count of accumulators in each grid is 
computed. These accumulated counts are then utilized as input for a CNN mod-
el to classify 3D objects. Additionally, a semi-automatic 3D object labelling tool 
is employed to construct a LiDAR point cloud object labelling library. The CNN 
model is initialized, and the dataset from the object labelling library is used for 
training the neural network. The proposed methodology demonstrates promis-
ing results in achieving accurate object classification in LiDAR-based systems. 

The process of gathering data based on the research of Song et al. [31]. Figure 
2 shows the process of gathering data of LiDAR in preparation for the CNN in-
put [31]. 

3.2. Non-LiDAR for Object Detection and Image Classification 

In May of 2021, Tesla, a prominent advocate of Non-LiDAR technology, made a 
significant transition to a vision-only model by removing all Radar sensors from 
their vehicles. This decision was aimed at demonstrating the company’s belief 
that cameras alone are sufficient for computer vision applications. According to 
information from the Tesla website, the Model 3 and Model Y, manufactured in 
North America, became the first vehicles to rely on camera vision and neural net 
processing for their Autopilot self-driving capabilities [34]. 

Jahromi [35] provided an explanation of the process by which light emitted 
from an object passes through a lens and lands on the light-sensitive surface or 
image plane. The light-sensitive surface converts the rays into electrons, which 
are then transformed into voltage, amplified, and passed through an Ana-
log-Digital Converter (ADC) to ultimately form a pixel. 

In line with the research conducted by Fujiyoshi, Hirakawa, & Yamashita [36], 
the extraction of feature vectors or local features from 2D images is crucial for 
image recognition. In the context of autonomous vehicles, the detection of ob-
jects such as pedestrians is of particular interest. Fujiyoshi, Hirakawa, & Yama-
shita [36] suggested the use of histogram-oriented gradients (HOG) features in 
combination with a support vector machine (SVM) for this purpose. HOG fea-
tures involve calculating the gradient orientation quantities in a portion of an 
image. The extracted image is then resized to dimensions of 128 × 64 pixels, 
and the gradient is calculated by considering both magnitude and angle. The 
gradient matrices are divided into 8 × 8 cells to form blocks, and from each 
block, a 9-point histogram is computed. These histograms with 64 different val-
ues represent the intensity of the gradient in each bin. After performing the  
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Figure 2. Process of data gathering of LiDAR in preparation for CNN input. 

 
histogram calculations for all blocks, four blocks from the 9-point histogram 
matrix are combined to create a new block. This combination is achieved 
through an overlapping process with an 8-pixel stride. For each block, the 
9-point histogram values from all four cells are concatenated to form a 
36-feature vector, thus extracting a HOG feature [37]. 

An SVM is a machine learning algorithm utilized for searching a hyperplane 
in an N-dimensional space to classify data points. Hyperplanes act as decision 
boundaries for classifying data points, which can belong to different classes and 
can exist on either side of the hyperplane. The dimensions of the hyperplane 
depend on the number of features considered. In the case of two features, the 
hyperplane corresponds to a line, while for three features, it represents a 
two-dimensional plane [38]. Support vectors, which are data points close to the 
hyperplane, influence its position and orientation. By incorporating these sup-
port vectors, the classifier maximizes the margin, which refers to the distance 
between the hyperplane and the nearest data points. The removal of support 
vectors would alter the location of the hyperplane, making them integral to SVM 
[38]. 

3.3. Image Processing Model 

The Literature Review establishes that CNN (Convolutional Neural Network) is 
considered the most effective approach for object detection and image classifica-
tion. This is attributed to the limitations of traditional methods, such as their 
complexity in processing a large volume of data, insufficient accuracy, and in-
adequate processing speed. CNN has demonstrated significant advancements in 
various areas, including image classification, object detection, and image seg-
mentation. Leonard [39] conducted comprehensive research on CNN and de-
veloped algorithms for image classification and object detection based on this 
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neural network architecture. The fundamental structure of CNN consists of sev-
eral key components, including an input layer that receives input from both Li-
DAR and Non-LiDAR technologies, a convolutional layer, a pooling layer, a ful-
ly connected layer, and an output layer [39] (Figure 3). 

Once the substitution of multiple convolutional layers and downsampling 
layers is performed, the Convolutional Neural Network (CNN) proceeds to util-
ize a fully connected network for the purpose of classifying the extracted features 
and obtaining a probability distribution based on the input. Figure 4 shows the 
basic structure of CNN with downsampling [39]. 

3.4. CNN Implementation 

The implementation of Convolutional Neural Networks (CNNs) plays a crucial 
role in various fields, including computer vision and image recognition. CNNs 
are deep learning models specifically designed to process and analyze visual data, 
making them highly effective in tasks such as image classification, object detec-
tion, and facial recognition. 

CNNs consist of multiple layers, including convolutional, pooling, zero pad-
ding, Dropout Layer, and fully connected layers. The convolutional layers per-
form the main computations by applying a set of learnable filters to input im-
ages, enabling the network to automatically extract hierarchical features. The 
pooling layers reduce the spatial dimensions of the features, helping to extract 
important information while preserving spatial invariance. Dropout is a regula-
rization technique commonly applied to fully connected layers or convolutional 
layers in CNNs. It aims to prevent overfitting by randomly dropping out a pro-
portion of the neurons during training. Zero padding is a technique used in 
convolutional layers to preserve the spatial dimensions of the input while apply-
ing convolutions. It involves adding zeros around the borders of the input fea-
ture maps before performing convolutions. Finally, the fully connected layers act 
as a classifier, making predictions based on the extracted features. 

To implement CNNs, popular deep learning frameworks such as Tensor Flow 
[40] and PyTorch [41] provide extensive libraries and tools that simplify the 
process. These frameworks offer pre-defined CNN architectures, such as 
VGGNet [42], ResNet [43], and InceptionNet [44], which have achieved re-
markable performance in various computer vision tasks. 

For example, researchers have successfully employed CNNs in image recogni-
tion tasks. In a study by Krizhevsky, Sutskever, and Hinton [45], they introduced 
a CNN architecture known as AlexNet, which significantly improved the accu-
racy of image classification on the ImageNet dataset. The AlexNet model com-
prised multiple convolutional and pooling layers, followed by fully connected 
layers, and achieved state-of-the-art results at the time of its publication. 

In summary, the implementation of CNNs is essential for various computer 
vision tasks, and popular deep learning frameworks such as TensorFlow and 
PyTorch provide the necessary tools and libraries to facilitate the develop-
ment and training of CNN models. Numerous studies have demonstrated the  
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Figure 3. Basic structure of CNN. 

 

 
Figure 4. Basic structure of CNN with downsampling. 
 
effectiveness of CNNs, such as the pioneering work of Krizhevsky et al. [45] with 
the AlexNet architecture, which revolutionized the field of image recognition. 

3.5. Safety Framework 

In order to assess the safety of LiDAR and Non-LiDAR technologies, it is neces-
sary to establish parameters that allow for a fair comparison between the two. 
Therefore, this research employs specific parameters that evaluate the capability 
of autonomous vehicles (AVs) to perceive the road, detect obstacles, and main-
tain situational awareness under various weather conditions. The image recogni-
tion model utilized in this study aims to classify and identify the images it is 
presented with. To accomplish this, publicly available training and testing image 
datasets are employed. 

In this research, the VGG-16 architecture, the same as that used by Zywa-
nowski, K., Banaszczyk, A., & Nowicki, M. [20], is adopted to train the image 
recognition model. The experimental details of the safety framework are com-
prehensively presented in Chapter V, with particular emphasis on the image 
processing model. Both LiDAR and Non-LiDAR sources are utilized as inputs 
for the image recognition model in the convolutional neural network (CNN). 
The methodology for collecting the data is publicly available images, including 
the VGG16 dataset, are used. The selection of the VGG Neural Network Archi-
tecture is based on extensive literature research that supports its compatibility 
and effectiveness with CNNs, as demonstrated by Zywanowski, K., Banaszczyk, 
A., & Nowicki, M. [20]. 

3.5.1. VGG Architecture 
The architecture referred to as VGGNet, or VGG16, is widely recognized as a 
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classical convolutional neural network (CNN) architecture. Its primary purpose 
is to enhance the depth of CNN models, thereby improving their overall perfor-
mance [46]. VGG16 consists of 16 layers designed to classify images across 1000 
object categories, and it operates with an input size of 224 × 224 pixels. This ar-
chitecture is constructed based on the most effective and essential features of 
CNNs [46]. Figure 5 shows the VGG net architecture [46]. 

3.5.2. VGG Architecture 
The VGG16 architecture consists of a total of 13 convolutional layers and three 
fully connected layers [46]. The key characteristics of VGG16 are as follows: 
• Input: The network takes in an image with dimensions of 224 × 224 pixels. 
• Convolutional Layers: VGG16 employs 3 × 3 convolution filters, which are 

the smallest possible size for convolutions. The input undergoes a linear 
transformation using 1 × 1 convolution filters, followed by a Rectified Linear 
Unit (ReLU) activation function. The convolution stride is set to 1 pixel, en-
suring that the spatial resolution remains unchanged after convolution. 

• Hidden Layers: In VGG16, all the hidden layers utilize the ReLU activation 
function. 

• Fully Connected Layers: VGG16 includes three fully connected layers. The 
first two layers have 4096 individual channels, while the third layer has 1000 
channels, each corresponding to a specific class. 

The VGG16 network is readily available in Keras, an image processing frame-
work capable of recognizing 1000 categories of images. Instead of training VGG16 
from scratch on the ImageNet dataset, this research leverages pre-trained 
weights from ImageNet. The image is converted into a NumPy array before be-
ing passed through the model, which processes batches of images, treating them 
differently across various channels. In this research, the safety measurement en-
tails considering the top five outputs with the highest probability from the mod-
el. For instance, if the input is an image of a car, the image processing model 
should predict that it belongs to the “car” category among the top five model 
outputs. 

3.6. Image Processing Model 

The images used in this research are sourced from two technologies: LiDAR and 
Non-LiDAR. LiDAR utilizes point cloud data to recognize and classify images, 
employing the PointNet method to feed the data into the CNN [29]. On the oth-
er hand, Non-LiDAR uses camera images directly as input to the CNN. The ob-
jective of comparing and contrasting these two technologies is to identify the 
differences and similarities in their performance under different weather condi-
tions. The hypothesis to be investigated by the image processing model is that 
there is no difference in the speed and accuracy of image recognition between 
the two technologies in various weather conditions for Autonomous Vehicles. 
The research aims to develop an image processing algorithm to be used in the 
proposed experimental research, which will test and validate this hypothesis. 
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Figure 5. VGG net architecture. 

 
In the proposed experiment, both LiDAR and Non-LiDAR technologies will 

be tested by human drivers in controlled environments under different weather 
conditions. The data collected in this experiment will serve as the baseline for 
the subsequent experiment, where the vehicles will be driven autonomously 
without human intervention. The results of both experiments will be compared 
and analyzed to address the hypothesis. 

For building the image processing model, the researcher employed supervised 
learning, a branch of machine learning and artificial intelligence. In supervised 
learning, the computer learns to perform functions based on labeled training 
data [47]. The image processing model utilizes CNN to create and compile the 
images. The images obtained from LiDAR and Non-LiDAR technologies un-
dergo processing to generate an output. During the image processing stage, local 
receptive fields, which are small regions of input layer neurons, connect to neu-
rons in the hidden layer. These receptive fields traverse the image, creating an 
input map from the input layer to the hidden layer neurons. The process of 
creating and compiling the image processing model is illustrated in Figure 6. 

The programming language used for implementation is Python 3.10.4, in 
conjunction with TensorFlow. TensorFlow facilitates the building and deploy-
ment of a supervised machine learning model, where the model is trained by 
providing input data and corresponding expected results. 

The following processes are employed in building the Supervised Learning 
Model: 

1) ML Algorithm: Convolutional Neural Network (CNN) 
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Figure 6. Creating and Compiling the image processing model fully 
connected network. 

 
2) Training: Loading the training data along with their expected output to 

train the model. The training data accounts for 80% of the dataset, following the 
Pareto principle of 80% effects and 20% causation, as used by Zhao et al. [48]. 

3) Testing: Loading separate testing data, distinct from the training data, to 
predict the correct results. The testing data constitutes 20% of the dataset. 

4) Evaluation: Loading new data for evaluation purposes. This data differs 
from both the training and testing data. The evaluation process ensures that the 
model can predict outputs for data it has not encountered before, thereby en-
hancing its accuracy. 

3.6.1. CNN Model 
A fully connected neural network is not suitable for processing images due to the 
large number of parameters that arise when each pixel is considered as an input. 
To address this issue, smaller images are used in this research. The creation and 
compilation of the image processing model are illustrated in the figure below. 
The input image size is 28 × 28 with one channel. The convolution operations 
employ a 5 × 5 kernel with 32 filters. Following the pooling operation, the image 
size is reduced to 12 × 12. Subsequently, another convolution is applied with a 5 
× 5 kernel and 64 filters, followed by another pooling operation, resulting in a 4 
× 4 kernel size. The flattened image is then connected to a Fully Connected (FC) 
network. The FC network consists of 1024 nodes, and the final output layer 
comprises ten outputs [49]. Figure 6 shows the creation and compilation of the 
image processing model of a fully connected network [49]. 

3.6.2. Preprocessing 
The initial step in training the ML algorithm is to load the data, and TensorFlow 
offers a convenient method for loading datasets. TensorFlow provides a pipeline 
that efficiently manages the loading of data, making it well-suited for handling 
large volumes of datasets [49]. The algorithm begins by loading the necessary li-
braries, including operations such as convolution, max pooling, flattening, and 
the fully connected (dense) layer, which are essential components of the CNN. 
For this research, the Modified National Institute of Standards and Technology 
Database (MNIST) datasets are utilized, as they are readily available in the Keras 
library [49]. 

A sequential model is employed in the algorithm, as it allows for a linear ar-
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rangement of neural network layers. The algorithm utilizes two “categoricals” to 
reshape the data and output the labeled data into ten categories or bins. The 
training dataset consists of 60,000 images, while the validation dataset contains 
10,000 images for assessing the performance of the model. 

Data loading results: 
(60,000, 28, 28) 
(10,000, 28, 28) 
(60,000,) 
(10,000,) 
Pre-processing the data results: 
(60,000, 28, 28, 1) 
(10,000, 28, 28, 1) 
(60,000, 10) 
(10,000, 10) 

3.6.3. Creating and Compiling 
The sequential model was constructed by following a series of steps. First, the 
convolution model was added to the model. Next, padding was applied using the 
“same” mode, ensuring that the input image was fully covered by the filter. This 
was done to ensure that all input sequence data had the same length, which re-
quired padding. The activation function employed in the algorithm was “relu”. 
A convolution layer was added, followed by a Maxpooling layer. Another con-
volution layer and a subsequent Maxpooling layer were added. The network was 
then flattened to prepare it for the fully connected network, also known as the 
dense layer. 

The fully connected network consisted of 1024 nodes with the “relu” activa-
tion function. Another fully connected layer was added to serve as the output 
layer, which had ten bins or classes. The “relu” activation function outputs zero 
for any value of x that is less than zero, and for values of x that are equal to or 
greater than zero, it returns the input value x. Thus, ReLU produces an output of 
zero for all negative inputs and preserves positive inputs [50]. 

During the compilation of the model, the “adam” optimizer was employed as 
a parameter. For the loss function, categorical cross-entropy was used since the 
output had ten possible classes. The accuracy metric was chosen to evaluate the 
model’s performance [50]. 

Creating and compiling results: 
Model: “sequential” 
____________________________________________________________ 
Layer (type)      Output Shape   Param # 
================================================== 
conv2d (Conv2D)    (None, 28, 28, 32)  832 
max_pooling2d (MaxPooling2D  (None, 14, 14, 32)  0) 
conv2d_2 (Conv2D)    (None, 14, 14, 64)  51264 
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max_pooling2d_1 (MaxPooling  (None, 7, 7, 64)  02D) 
flatten (Flatten)     (None, 3136)   0 
dense (Dense)     (None, 1024)   3212288 
dense_1 (Dense)     (None, 10)   10250 
================================================= 
Total params: 3,274,634 
Trainable params: 3,274,634 
Non-trainable params: 0 

3.6.4. Training and Evaluation 
After the creation and compilation of the model, the next crucial stages are 
training and evaluation. The training stage involves feeding the dataset into the 
image processing model. During training, the model analyzes the data, draws 
conclusions, and predicts the results. This process generates the output of the 
image processing model, which includes the input data and the corresponding 
output. 

To assess the accuracy of the model, an evaluation is conducted. The evalua-
tion phase tests the suitability of the given dataset and algorithm for the image 
processing model. Through evaluation, the accuracy of the input data is deter-
mined, and the model predicts the outcomes. The accuracy of the model plays a 
significant role in the image processing model; a higher accuracy indicates a 
more accurate prediction to some extent. 

The training accuracy is utilized to train the model, while the validation accu-
racy is employed to evaluate the performance of the model. In the obtained re-
sults, it is observed that the training accuracy is higher than the validation accu-
racy. This difference highlights significant disparities between the data used for 
training the model and the data used for evaluation purposes. 

Figure 7 shows the plot of the training accuracy. The y-axis is the accuracy 
percentage, while the x-axis shows the number of epochs. 

Figure 8 shows the plot of training accuracy and training validation accuracy. 
The blue line represents the training accuracy, and the orange line shows the 
training validation accuracy. 

Figure 9 shows the comparison of the training accuracy, the training valida-
tion accuracy, and the model’s loss function. The loss function evaluates how 
well the image processing model algorithm performs; it measures the model in 
predicting the expected outcome. The top blue line is the training accuracy, and 
the blue line is the training validation accuracy. The bottom green line is the 
loss. 

The plot shows that the loss function is low; it is also indicated on the 25th 
epoch with the value of 0.0024; this means that the image processing model 
works well. 

Evaluation result: The evaluation result shows that the model has an accuracy 
of 99.29% and a loss of 0.69% or 0.07%. This indicates that after running the 
evaluation, the model is accurate. 
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Figure 7. Training accuracy plot (image derived from Jupyter Notebook). 

 

 
Figure 8. Evaluation result plot (image derived from Jupyter Notebook). 

 

 
Figure 9. Comparison of training accuracy, training validation accu-
racy, and the loss function (image derived from Jupyter Notebook). 

 
313/313 [======================] - 2 s 6 ms/step - loss: 0.0695 – 
accuracy: 0.9929 
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Result: These numbers represent a loss of 0.06949 and an accuracy of 0.9929; 
this shows that there is a low loss and a high accuracy, which indicates that the 
model is performing well. 

[0.06949020177125931, 0.992900013923645] 
The CNN training and evaluation yielded highly accurate results, with an ac-

curacy rate of 99.29%. However, one of the challenges encountered in the image 
processing model is the presence of numerous parameters, which can potentially 
lead to overfitting. Overfitting occurs when the model is trained extensively on 
the dataset to the extent that it learns irrelevant information or “noise.” Conse-
quently, the model becomes excessively tailored to the training data and fails to 
perform optimally as intended. 

3.6.5. Enhancing the Model 
To mitigate the issue of overfitting, a technique called “Dropout” is incorporated 
into the model. Dropout involves randomly deactivating neurons in a layer dur-
ing the training phase. By applying a dropout probability (commonly set to 0.5), 
approximately half of the neurons are deactivated during training, preventing 
the network from relying too heavily on any individual neuron. It is important 
to note that dropout is only applied during the training process and not during 
evaluation or prediction. 

To augment the image data and increase the diversity of the training set, a 
technique called image augmentation is employed. Image augmentation involves 
applying various transformations to the existing images in the dataset, resulting 
in additional transformed copies of each image. This augmentation process in-
troduces more image variations into the training data, making the model more 
robust and stable. 

In this research, two image generators are used to create different versions of 
the training dataset. These generators apply modifications such as changes in 
height and width by 0.2, zooming by 0.2, and image flipping. By running these 
image generators, the images undergo transformations and generate additional 
datasets. As a result, the research confirms that there are eight images available, 
with four images in the “knights” class and four images in the “nurses” class, ef-
fectively representing the two classes in the dataset. 

Result: 
Found 8 images belonging to 2 classes. 
Checking the sample images results: 
Found 8 images belonging to 2 classes. 

The process of image augmentation resulted in the generation of additional 
datasets containing variations of the original eight images. This approach was 
implemented to enhance the stability of the model and enable it to effectively 
identify and classify images with diverse variations. By exposing the model to 
different versions of the same image, it becomes more adept at recognizing and 
correctly categorizing images despite inherent variations or changes in their vis-
ual characteristics. This ensures that the model is capable of generalizing its 
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learned features and effectively handles variations within the dataset, leading to 
improved overall performance. 

3.7. VGG16 

The Image Processing Model employed in this study was based on the VGG16 
architecture, developed by the Visual Geometry Group (VGG) at Oxford Uni-
versity, renowned for its success in winning the 2014 ImageNet competition. 
VGG16 is a relatively smaller and faster model compared to its counterpart, 
VGG19. Leveraging the capabilities of VGG16, the model created in this re-
search was designed to recognize objects present in random images. To facilitate 
the implementation of VGG16, the model imported relevant libraries from Ke-
ras. As this was the first time VGG16 was utilized in this specific model, the 
pre-trained weights were obtained from the Imagenet database. 

Given that VGG16 requires images of size 224 × 224 as input, the model en-
sured that the images provided to VGG16 were appropriately resized by specify-
ing the target size within the model. The images were converted into NumPy ar-
rays, enabling training and classification in batches using CNN. To ensure com-
patibility with the model’s requirements, an additional dimension was added to 
the images using the “expand_dims” function available in NumPy. This process 
of expanding the array shape helps prevent errors during prediction by ensuring 
that the input data possesses the expected four dimensions as prescribed by the 
model. This was achieved by expanding the array shape and inserting a new axis 
with a value of zero at the specified position. 

Output on Converting to a NumPy array: 
(224, 224, 3) 
Output after expanding the dimensions: 
(1, 224, 224, 3) 

3.8. Preprocessing the Image 

After expanding the dimensions of the input images, the next crucial step is pre-
processing, which involves encoding batches of images. In this study, the images 
utilized are sourced from the VGG16 package provided in Keras. The image 
processing model leverages these images from the VGG16 package to recognize 
various objects. The primary purpose of incorporating the VGG16 package is to 
utilize the ImageNet dataset as the training data for the model. 

Subsequently, the images are converted into a NumPy array since Python em-
ploys the format of height, width, and channel for image representation. This 
conversion ensures uniformity in size for all images fed into the model. Follow-
ing the execution of the model, the output obtained is a NumPy array compris-
ing the probability values associated with the image’s classification into one of 
the 1000 categories present in the Caffe Distribution [51]. 

To determine the prediction made by the model, the decode_predictions me-
thod is employed, providing the top ten predictions. To evaluate the model's 
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performance on an unseen image, a random image of a fork is utilized, which 
has not been encountered by the model during training. 

Regarding the preprocessing output, this step involves encoding a batch of 
images and processing them according to the specified channel order, which can 
be either channel first or channel last. The VGG16 package includes the neces-
sary preprocess input images for this purpose. The subsequent numbers pre-
sented represent the numerical representations of the array, which serves as a 
data structure capable of storing multiple items of the same type. In the context 
of the image processing model algorithm, this data structure plays a crucial role. 

Top ten prediction results: 
[[('n04270147', 'spatula', 0.19171521), 
 ('n04154565', 'screwdriver', 0.13400662), 
 ('n03804744', 'nail', 0.07883306), 
 ('n04208210', 'shovel', 0.044209614), 
 ('n03481172', 'hammer', 0.037919484), 
 ('n03658185', 'letter_opener', 0.03411597), 
 ('n03759954', 'microphone', 0.02908787), 
 ('n03532672', 'hook', 0.025673749), 
 ('n04367480', 'swab', 0.022219818), 
 ('n02906734', 'broom', 0.019698625)]] 

Upon subjecting the fork image to prediction using the VGG16 model, it was 
determined that the image bears a 19.17% resemblance to a “spatula.” This out-
come can be attributed to the absence of a specific “fork” category within the 
synsets provided. In order to further assess the model’s performance, another 
image is subsequently tested. This time, the image selected belongs to one of the 
categories encompassed by the synsets presented in the study by Jia et al. [51]. 
The image under consideration depicts a bee. 

Another image prediction results: 
[[('n02206856', 'bee', 0.9463092), 
 ('n02190166', 'fly', 0.049911786), 
 ('n01773549', 'barn_spider', 0.0010194371), 
 ('n03530642', 'honeycomb', 0.0009426607), 
 ('n01773797', 'garden_spider', 0.0004893371), 
 ('n07730033', 'cardoon', 0.00036843063), 
 ('n02219486', 'ant', 0.00022792102), 
 ('n02177972', 'weevil', 0.00021030655), 
 ('n01833805', 'hummingbird', 0.00013077597), 
 ('n02169497', 'leaf_beetle', 7.780898e−05)]] 

The evaluation of the image depicting a bee using the image processing 
model yielded a prediction accuracy of 94.63%. This indicates a high level of 
confidence in the model’s ability to correctly identify the image. Additionally, 
the model assigned a prediction probability of 7.780898e−05, which is equiva-

https://doi.org/10.4236/ojsst.2023.133006


B. Quito, L. Esmahi 
 

 

DOI: 10.4236/ojsst.2023.133006 122 Open Journal of Safety Science and Technology 
 

lent to 0.0072571%, to the leaf_beetle category. 

4. Safety Framework 

In the proposed experimental research, a vehicle will be equipped with both Li-
DAR and Non-LiDAR technologies. The hardware used should have easy instal-
lation and removal capabilities. To ensure unbiased data collection, the envi-
ronment and driver will remain consistent across the experiments when creat-
ing a table for weather conditions. The study will involve data collection under 
six different weather conditions: sunny (S), cloudy (C), daytime rainy (DR), 
foggy (F), nighttime rainy (NR), and snowy (SW). Two scenarios will be ex-
amined: one with LiDAR technology mounted on the vehicle and the other with 
Non-LiDAR technology. The testing locations for both technologies will be 
identical. A driving course with obstacles will be set up for the experiment. Since 
the focus of the experiment is on weather conditions, the data collection period 
will span 52 weeks. 

The input data will be obtained from both LiDAR and Non-LiDAR technolo-
gies, and an interpreter software will be employed to feed this data into the Im-
age Processing Model. The experimental research aims to evaluate the accuracy 
of the LiDAR and Non-LiDAR hardware in terms of the data they produce. The 
Image Processing Model will then predict the outcomes based on this data. Giv-
en that the model operates on supervised learning principles, the images to be 
predicted will already be labeled. The objective of the test is to determine wheth-
er the model can correctly identify the labeled images using inputs from the Li-
DAR and Non-LiDAR technologies. The challenge lies in assessing how effec-
tively these two technologies can capture and feed the image data to the model, 
considering the specific weather conditions outlined in the tables. Each weather 
condition will be subjected to 25 runs for each technology, ensuring a substantial 
amount of data is collected for the experiment. 

4.1. Scenario 1—LiDAR 

The LiDAR technology will be installed on the vehicle and driven through the 
designated driving course under various weather conditions, including sunny 
(S), cloudy (C), daytime rainy (DR), foggy (F), nighttime rainy (NR), and snowy 
(SW). A table will be utilized to record the prediction accuracy percentage for 
each labeled image. For instance, during a sunny day (S), the image captured by 
the LiDAR and processed by the image processing model achieved a prediction 
accuracy of 98%. This value will be entered into the table corresponding to the 
“S” category. As there will be a total of 25 runs, 25 tables of this nature will be 
generated. Table 3 shows the LiDAR weather experiment test blank table for the 
experimental research. 

This table summarizes the average of all 25 tables in Table 4. E.g., on a sunny 
day (S), the average image captured and fed to the image processing model by 
the LiDAR was 98% accurate; the 98% will be inputted into the table under “S,” 
and the mean will be calculated. 
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Table 3. LiDAR weather experiment test. 

LiDAR S C R F DR NR SW 

S        

C        

R        

F        

DR        

NR        

SW        

 
Table 4. LiDAR weather experiment results. 

LiDAR S C R F DR NR SW Mean 

S         

C         

R         

F         

DR         

NR         

SW         

4.2. Scenario 1—Non-LiDAR 

The camera is securely mounted on the vehicle and utilized during the vehicle’s 
traversal of the designated driving course under various weather conditions: 
sunny (S), cloudy (C), daytime rainy (DR), foggy (F), nighttime rainy (NR), and 
snowy (SW). A table will be employed to record the percentage of accurate pre-
dictions for the labelled images. For instance, when encountering a sunny day 
(S), the captured image will be processed by the camera and fed into the image 
processing model. If the resulting accuracy of the prediction is 98%, this value 
will be recorded in the respective table entry for the “S” category. As the experi-
ment will be conducted 25 times, a total of 25 tables will be generated to encom-
pass the outcomes of each run. Table 5 shows the Camera weather experiment 
test blank table for the experimental research. 

Table 5 presents a comprehensive summary that calculates the average values 
derived from the 25 individual tables. For example, considering a sunny day (S), 
the average accuracy of the images captured and processed by the camera and 
subsequently fed into the image processing model was found to be 98%. This 
average accuracy value of 98% will be recorded within the corresponding entry 
in the table under the “S” category. The mean value will be calculated based on 
the collected data from all the tables, providing a consolidated representation of 
the overall performance (Table 6). 
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Table 5. Camera weather experiment test. 

Camera S C R F DR NR SW 

S        

C        

R        

F        

DR        

NR        

SW        

 
Table 6. Camera weather experiment results. 

Camera S C R F DR NR SW Mean 

S         

C         

R         

F         

DR         

NR         

SW         

 
The outcomes of this experiment will serve as the foundation for conducting a 

comparative analysis between LiDAR and Non-LiDAR technologies imple-
mented in a driver-operated vehicle. The collected data will be utilized for the 
purpose of comparing and contrasting these technologies with an Autonomous 
Vehicle system. By examining and contrasting the performance of LiDAR and 
Non-LiDAR in the context of a human-driven vehicle, insights can be gained 
regarding their effectiveness and potential advantages when compared to auto-
nomous driving systems. 

4.3. Safety Framework for Autonomous Vehicle 

The forthcoming experiment will employ the same weather conditions and sce-
narios as the previous one, albeit without the involvement of a human driver. 
The focus will be on evaluating the performance of LiDAR and Non-LiDAR 
technologies within an autonomous vehicle (AV) context. To facilitate this re-
search, a collaboration with Waymo and Tesla, proponents of LiDAR and 
Non-LiDAR technologies respectively, is proposed. These companies possess 
extensive training and test data, thereby minimizing the training duration since 
their AVs are already trained. The experiment will be conducted under compa-
rable conditions as those involving a human driver. Subsequently, the results 
from both experiments will be compared and contrasted. The primary objective 
is to establish a baseline for assessing whether an AV can effectively navigate 
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around obstacles on the road, akin to the actions of a human driver. While a 
human driver would slow down or halt upon encountering an obstruction, Li-
DAR and Non-LiDAR will record obstacle data for comparison with AV per-
formance. 

The proposed experimental research will adhere to the safety principles out-
lined in Blanar et al.’s [10] study on Responsibility Sensitive Safety (RSS). These 
principles encompass maintaining a safe distance in front of and laterally to 
obstacles, respecting right-of-way, and exercising caution when encountering 
roadblocks or signs. Comparable to the actions of a human driver, these prin-
ciples will be contrasted with AV behavior. 

The experimental research aims to enhance the existing Image Processing 
Model developed in this study. The enhancements include incorporating dis-
tance and speed measurements, evaluating the time taken to stop relative to ob-
stacle distance, utilizing GPS measurements for navigating or avoiding obstacles, 
determining the time required for turning or obstacle avoidance, and identifying 
and adhering to road signs. These enhancements will significantly contribute to 
the safety capabilities of AVs in the future. 

In summary, the proposed experimental research serves as a suggestion for 
the future advancement of the image processing model. The model established 
in this study forms a foundational framework for subsequent research. While the 
model primarily focuses on image identification—an essential attribute for AV 
safety—the suggested enhancements will bolster AV safety measures. The results 
obtained from the developed image processing model will serve as the ground-
work for formulating the safety framework for AVs. However, these outcomes 
alone are insufficient to instill trust and confidence among drivers, pedestrians, 
and society at large. Since LiDAR and Non-LiDAR technologies serve as the 
“eyes” of AVs, similar to human vision, it is crucial to compare the reactions of 
AVs with those of human drivers based on established rules. This comparative 
analysis will aid in establishing a certain level of trust in AVs. The tables pre-
sented within the safety framework will provide tangible and verifiable data, fa-
cilitating a clear comparison and contrast between the two technologies through 
the developed image processing model in this research. 

5. Conclusions 

In the introductory section, the study provided an overview of different LiDAR 
and Non-LiDAR technologies, as well as an exploration of Driver Assistance 
Technologies and the Framework on Measuring Automated Vehicle Safety. The 
background section examined existing research on the two prominent technolo-
gies in Automated Vehicles, namely LiDAR and Non-LiDAR, and highlighted 
current advancements in the field. Additionally, insights into Image Recognition 
models and architectures, including Convolutional Neural Networks (CNNs), 
were discussed. 

The methodology section established the research framework and presented 
the theoretical background on Machine Learning and Artificial Intelligence, with 
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a specific focus on Image Processing. Furthermore, the Image Processing Model 
was elaborated upon, involving the development of an algorithm to identify in-
put images from both LiDAR and Non-LiDAR technologies. 

Subsequently, the images collected from the two technologies were fed into 
the algorithm for prediction. Given that the algorithm employed a supervised 
learning model, the images were appropriately labeled, enabling accurate mea-
surement of input accuracy for each technology. The collected images were then 
organized into tables based on weather conditions, and each technology under-
went 25 runs under various weather conditions. The results from these 25 runs 
were averaged and compiled into tables, facilitating a comprehensive compari-
son and contrast between the two technologies. 

The image processing model developed in this research served as the founda-
tion for data collection from both technologies using a vehicle driven by a hu-
man driver in a simulated environment. The same tests and scenarios outlined 
in the Safety Framework were also conducted with Autonomous Vehicles (AVs). 
The resulting data was subsequently compared and contrasted, taking into ac-
count the safety framework known as Responsibility Sensitive Safety (RSS). The 
RSS rules, which encompass maintaining safe distances, respecting right-of-way, 
and exercising caution in the presence of obstacles or road signs, were employed 
to evaluate the safety of AVs in comparison to human drivers. The primary ob-
jective of the safety framework was to establish trust and confidence among 
drivers, pedestrians, and society, thereby facilitating the acceptance of AVs on 
the road. 

The research introduced a safety framework to measure the image input of 
LiDAR and Non-LiDAR technologies. This measurement was derived from the 
prediction of the image classification model developed in this study. The model’s 
results were incorporated into safety framework tables, which collated the iden-
tified images under specific weather conditions. The weather conditions consi-
dered were sunny (S), cloudy (C), daytime rainy (DR), foggy (F), nighttime rainy 
(NR), and snowy (SW). The safety framework tables encompassed two scena-
rios: scenario 1 involved LiDAR-based technology, while scenario 2 involved 
Non-LiDAR-based technology. The aggregated results from these scenarios were 
then compared and contrasted, serving as a baseline for AVs. The AVs, using the 
same simulation and vehicle but without a human driver, underwent the same 
scenarios, and the corresponding data was collected and processed in a manner 
similar to that of a human-driven vehicle. However, improvements to the image 
processing model, as mentioned earlier in this chapter, were made to enhance 
security and align with the principles of Responsibility Sensitive Safety (RSS). 
The results obtained from the AVs’ simulation were subsequently compared to 
those of the human-driven vehicle simulation, thereby addressing the hypothesis 
that there is no difference in the speed and accuracy of image recognition based 
on the two technologies under varying weather conditions in an Autonomous 
Vehicle. 

This study proposes several areas for enhancing the image processing model 
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in order to provide a more comprehensive analysis. These recommendations in-
clude: 

1) Incorporating Distance Measurement: The image processing model should 
be expanded to include the ability to accurately measure distances between ob-
jects and obstacles in the captured images. 

2) Adding Speed Measurement: Enhancements should be made to enable the 
image processing model to measure the speed of objects and vehicles present in 
the images. 

3) Considering Time of Stop Relative to Obstacle Distance: The model should 
be improved to capture and analyze the time duration for which a vehicle re-
mains stationary in relation to the distance of the obstacle encountered. 

4) Integrating GPS Measurement for Turning or Obstacle Avoidance: The 
image processing model should incorporate GPS data to accurately measure the 
trajectory of a vehicle during turning maneuvers or when avoiding obstacles. 

5) Analyzing Time of Turning or Obstacle Avoidance: Enhancements should 
be made to enable the model to analyze and measure the time taken by a vehicle 
to complete turning maneuvers or navigate around obstacles. 

6) Identifying and Tracking Road Signs: The image processing model should 
be enhanced to identify and track road signs present in the captured images, al-
lowing for more comprehensive analysis of the environment. 

Simulation Comparison and Responsibility Sensitive Safety (RSS). The pro-
posed simulation involving a human driver serves as a valuable baseline for 
comparing and contrasting the performance of LiDAR and Non-LiDAR tech-
nologies. The image processing model, which is based on supervised learning, 
plays a crucial role in facilitating this comparison. However, in order to effec-
tively compare the simulation involving a human driver with that of an Auto-
nomous Vehicle (AV), further enhancements to the image processing model are 
necessary. The current focus of the developed image processing model on image 
classification is insufficient for a comprehensive comparison and contrast with a 
human driver. Therefore, additional enhancements are required. 

Once the image processing model has been enhanced to address these limita-
tions, AVs can be tested following the Responsibility Sensitive Safety (RSS) rules 
outlined in this research. By adhering to these rules, the performance of AVs can 
be evaluated and compared to that of human drivers. This evaluation aims to 
measure the safety of AVs in order to build trust and confidence among drivers, 
pedestrians, and society, ultimately promoting the wider acceptance of AVs on 
the road. 
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