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Abstract 
This article presents ArcGIS Pro workflow results aimed at rating and map-
ping cold-weather crop suitability from 0% to 100% at 1-m elevation resolu-
tion for the Province of New Brunswick (NB). This rating accounts for varia-
tions by soil conditions (texture, coarse fragments, depth, calcareousness, 
drainage, slope), growing degree days (GDD) and frost-free days (FFD) from 
within fields to across regions. The ratings so produced reflect a significant 
part of farm and farm/woodlot property assessment values as these also vary 
by area and building footprint. While the soil properties for texture, coarse 
fragments, depth, and calcareousness vary by NB soil association mapping 
units, within-field suitabilities also vary by slope from flat to steep and by 
drainage as it correlates across the terrain by depth-to-water (DTW) from 
very poor to poor, imperfect, moderate, well and excessive. Areas marked by 
1.5 < DTW < 10 m away from permanent flow channels, wetlands and open 
water bodies are generally not too wet and not too dry. Areas with slopes > 
10% have low to no suitability because of slope-increased soil erosion and 
trafficability risks. The number of growing-degree and frost-free days across 
NB were rated to be sufficient for cold weather cropping, except marginally so 
at the high-elevation locations. 
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1. Introduction 

The increasing availability of high-resolution LiDAR-generated digital elevation 
models (DEMs) now enables detailed refinements of crop-specific land capabili-
ty ratings as affected by soil, climate, and topography. The objective of this ar-
ticle is to illustrate how a 1-m resolution DEM enhances this rating across New 
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Brunswick (NB), with focus on cold-weather cropping (Figure 1). The advan-
tages that accrue refer to an improved lay-of-the-land presentation to assess 
cropping potentials from poor (0%) to fair (50%) and best (100%) by soil sub-
strate, drainage, slope, and climate conditions. The map-generating workflow is 
based on the Traditional Crop Rating Methodology (TCRM) [1] and its further 
developments [2] [3] [4]. For example, the Land Suitability Rating System (LRSL) 
at [5] rates each parcel of land by:  

1) climate conditions (mean annual/seasonal temperatures, precipitation 
amounts, and frost conditions),  

2) soil properties (water holding capacity, texture, structure, soil organic mat-
ter (SOM), uncompacted soil depth, pH, salinity, sodicity, temperature, parent 
material, drainage),  

3) surface expressions (slope, surface deposits, waterbodies, wetlands, bedrock 
formations), and  

4) vegetation cover (forests, grasslands, deserts). 
 

 
Figure 1. Locator map for the DEM-based cold-weather crop rating initiate across New 
Brunswick, done at 1-m resolution, followed by examining how the mean suitability rat-
ings for individual farm and woodlot properties relate to the corresponding property tax 
assessment values. This was done for a proof-of-concept evaluation (POC, yellow area; 
142,839 ha), and extending this analysis to the area of interest (AOI, black outline; 
971,665 ha) along the “Potato Belt” of the Upper Saint John River Valley. Background 
shows counties and major lakes and rivers. 
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This rating scheme involves matching basic crop-growing requirements by 
some and all of the above items, involving additions, subtractions, multiplica-
tions, divisions, and variable transformations. In so doing, several techniques 
have emerged which may also include applying Analytical Hierarchy Processes 
(AHP), Fuzzy Logic Methods (FLM), Machine Learning and Crop Simulation 
(MLCS) [6]. Listed in Table 1 are examples by location, rating criteria and me-
thods. These efforts also differ by region, areal extent, digital resolution, and choice 
of soil, climate, and socio-economic factors [7].  

The objective of this article refers to producing a cold-weather crop suitability 
map across NB at 1-m spatial resolution by soil type, drainage, slope, and cli-
mate, with socio-economic factors addressed in reference to listed property taxa-
tion values. Doing so exceeds NB’s current coarse-resolution cold-crop suitability 
coverage [8], and focuses on potato cropping, which involves managing 21,500 
ha each year, with an annual production value of about 1.3 billion dollars [9]. 

 
Table 1. Recent land suitability rating methods and criteria, for potato crops.  

Author and Location Potato Crop Rating Criteria Land Capability Rating Technique 

[10]  Mean annual temperature, precipitation 

AHP, with remote sensing and GIS-DEM 
evaluation 

 
Elevation, slope, aspect 

Amazonas, Peru Land use, distance to rivers, roads 

 
Soil Texture, pH, organic Matter, N, P, K 

 
Cation exchange capacity, electrical conductivity 

[11] Mean annual temperature, precipitation 
TMRC, using multi-criteria decision 
making with GIS-DEM evaluations  

Elevation, slope, aspect 

Amhara Region, Ethiopia Soil type, crop management 

[12] Soil root depth, texture, organic matter, stoniness TMRC using pedo-climatic functions and 
GIS-DEM evaluations; FLM: Fuzzy Logic 

Methods 
 

Rainfall, temperature, evapotranspiration 

England, Wales Growing season 

[13] Rainfall, temperature 

TMRC, with GIS-DEM evalations Wonosobo, Elevation, slope 

Indonesia Soil texture 

[14]  Annual precipitation 

MLCS with GIS-interpolated weather 
station data 

 
Annual average minimal temperature 

Across China Average temperature in the coldest month 

 
Sunshine duration 

[15] Average, max. and min. air temperature 

FM with GIS-based weather  
station interpolations 

 
Precipitation 

Across Relative humidity 

Northern China Solar radiation 

 
Wind speed 

AHP: Analytical Hierarchy Processes; TRCM: Traditional Crop Rating Methods; FLM: Fuzzy Logic Methods; MLCS: Machine 
Learning and Crop Simulation. 
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This article proceeds by 1) describing the rating process as applied, 2) illu-
strating and interpreting the results so obtained with local examples, and 3) de-
monstrating how the officially registered property tax-assessment values are in 
part influenced by crop-supporting soil quality as rated. Research along this line 
started by selecting a proof-of-concept area (POC) within the south-central por-
tion of New Brunswick’s “Potato Belt”. This effort was subsequently expanded to 
a five times larger area of interest (AOI, Figure 1) and then to the entire prov-
ince. 

2. Methods  
2.1. Data Layers and Workflow 

Available from GeoNB for 1-m resolution crop suitability mapping across NB 
are:  

1) The province-wide 1-m spatial resolution LiDAR-DEM coverage [16] to 
portray flow channels, slope, cartographic depth-to-water (DTW), and soil drai-
nage.  

2) The forest soils map for NB [17] to characterize the overall soil conditions 
within and across field and forest properties.  

3) Province-wide data layers for water bodies, wetlands, farmland, forested 
and non-forested areas, paved and non-paved roads, and building footprints 
[18].  

4) Province-wide Property Assessment Map [19]. 
The workflow that tracks, evaluates, combines, and maps the rating factors, 

criteria, and evaluations is outlined in Table 2. The 1-m resolution LiDAR- 
generated DEM was used to generate province-wide raster layers for Slope (%) 
and cartographic DTW, as described by [20] [21]. The existing shapefile for 
forest soils [22] was modified to account for all GeoNB-registered wetland and 
waterbody locations. The resulting shapefile was 1-m rasterized to allow for 
pixel-by-pixel texture (topsoil and subsoil), depth-to-compaction, CF content, 
and degree of calcareousness crop rating. Also retrieved from GeoNB were 
NB’s property, road, crownland, and non-forested area shapefiles. Non-forested 
areas refer to agricultural fields, other fields, roads, and built-up areas for res-
idential, institutional, and industrial use. Weather station records for air tem-
perature were used to produce province-wide DEM-adjusted rasters for grow-
ing degree days (GDD > 5˚C) and frost-free days (FFDs). The results so pro-
duced generally correspond with the maps in [23] [24] [25] [26] for GDD and 
FFD.  

2.2. Rating by Soil Texture, Depth to Compaction, and Coarse  
Fragment Content  

The summarized variations in soil texture, depth, coarse fragment content and 
calcareousness by soil association [22] were rated poor to best as outlined below 
and in Table 3.  
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Table 2. Workflow for the crop rating factors, criteria, and evaluations.  

Rating Factors Rating Criteria 
Rating: mapping,  

combining, evaluating 

Topogrphy Slope, DTW 
Using 1-m DEM for slope,  

flow channel and DTW derivation 

NB Forest Soil 
Association 

Topsoil texture Updating the NB Forest  
Soil Association layer Subsoil texture 

Depth to compaction 
Using GeoNB’s wetland and  

waterbody delineations 
Coarse fragments 

Calcareousness 

Climate 
Annual growing-degree days Combining the crop-rated climate,  

soil and slope rasters Annual frost-free days 

Socioeconomics  
Evaluating property taxation values in 

terms of property attributes: size, farm/ 
woodlot combination, building footprint 

 
Table 3. Potato crop suitability rating by topsoil texture, subsoil texture, depth-to compaction of soil, CF content, and calca-
reousness. Texture code: C = coarse; C-M = coarse-medium; M-C = medium-coarse; M = medium; M-F = medium-fine; F = fine. 
Depth-to-compaction code: 1 ≤ 30 cm; 2 = 31 - 65 cm; 3 = 66 - 100 cm; 4 ≥ 100 cm; R = rock. Coarse fragment code: H = high; 
M-H = medium high; M = medium; L-H = low-high; L-M = low-medium; L = low.  

Topsoil Texture Subsoil Texture Depth-to-Compaction Coarse Fragments Calcareousness 

C 0.6 C 0.6 1 0.1 H 0.1 Cornhill 0.1 Carleton 0.75 

C-M 0.8 C-M 0.8 1 - 2 0.2 M-H 0.25 Kennebecasis 0.1 Muniac 0.75 

M-C 1 M-C 1 1 - 2/R 0.2 M 0.5 Parleeville/Tobique 0.1 Thibault 0.75 

M 0.6 M 0.6 1 - 3 0.3 L-H 0.75 Parry 0.1 Caribou 1 

M-F 0.3 M-F 0.3 1 - 3/R 0.3 L-M 0.75 Salisbury 0.1 Siegas 1 

F 0.1 F-M 0.2 2 0.5 L 1 Tracadie 0.1 Kedgwick 1 

  
F 0.1 2-3 0.6 

  
Erb Settlement 0.5 Undine 1 

    
3 0.8 

  
Saltsprings 0.5 Others 0 

    
3 - 4 0.9 

      

    
3 - 4/R 0.9 

      

    
4 or 2 - 3/R 0.9 

      

    
4 1 

      
C: coarse; M: medium; F: fine; L: low; H: high; R: residual layer below compacted soil; 1, 2, 3, 4: increasing depth to compaction. 

2.2.1. Soil Texture 
While potato crops can be grown in differently textured soil, they grow best in 
well drained medium-coarse soils such as sandy loams [27] [28]. Hence, me-
dium-coarse soil textures are symbolized as M-C in Table 3 and are rated 1 (i.e., 
M-C = 1). In contrast, soils with dominant clay content (i.e., sandy clay loam, 
clay loam, and clay, symbolized by “F = 0.1” in Table 3) are rated low because 
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fine-textured soils are easily compacted, which leads to poor soil aeration fol-
lowed by potato rot when moist to wet. Across NB, soil textures vary primarily 
by geological surface deposition. Basal tills as well as lacustrine to marine depo-
sits tend to be fine-textured soil whereas ablation till, riparian and glacio-fluvial 
deposits tend to be coarse-textured. Among these, ablation tills and basal tills are 
prevalent.  

2.2.2. Coarse Fragments  
CF refers to gravel, cobbles, stones, and boulders from smallest (≥2 mm) to 
largest when present. Low CF content is rated best (L = 1), while high CF con-
tent is rated worst (H = 0.1). Large CFs need to be removed from fields to facili-
tate seedbed preparations and potato harvesting [29].  

2.2.3. Soil Depth 
Potatoes will not root well in shallow and/or firm to very firm soils. These are 
symbolized as “1” in Table 3 and are given a “0.1” rating. Restrictions in soil- 
related rooting depth are encountered on traffic compacted and/or naturally 
compacted soils, such as fine-textured lacustrine and marine deposits and basal 
tills. Moderate rooting restrictions occur on basal tills overlain by ablation till. 
Low to no depth restrictions as found on deep ablation tills, outwash plains, and 
sandy deposits along riverbanks and well-drained floodplains are symbolized by 
“4” in Table 3 and are rated as “1”.  

2.2.4. Calcareousness  
Soil parent materials containing limestone and/or calcareous siltstones, sand-
stones, mudstones, and slates generally improve and maintain good soil qualities 
in terms of elevated pH (reduced soil acidity), increased exchangeable calcium 
(Ca) and magnesium (Mg) contents, and enhanced soil aggregation on medium- 
to fine-textured soils. By soil association, the calcareousness rating varies from 0 
(100% siliceous) to 1 (100% calcareous) based on evaluating calcareous content 
from absent, minor, half-and-half, dominant, and complete.  

2.2.5. Overall Rating by Soil Association 
Assuming that the coded rate entries in Table 3 capture the soil-affected varia-
tions in potato cropping responses, it was necessary to determine how these rates 
combine into a single potato-crop suitability factor by soil association. To do 
this, it was decided:  

1) to multiply the ratings for topsoil and subsoil texture, rooting depth, and 
CF, i.e., similar to calculating the probability occurrences of random factor com-
binations;  

2) to add the calcareousness rating to the resulting multiplication product, 
assuming that calcareousness is one third as important as the best combination 
of the other four variables;  

3) to normalize the results so obtained by dividing this result with its maxi-
mum value across all the soil associations;  
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4) to transform the normalized values so generated to a linear 0 to 1 suitability 
progression across the soil associations; this was accomplished through 0.33 ex-
ponentiation; the result of so doing generated Equation (1), i.e.: 

( )

0.33

Top Sub Depth CF Calc
Soil

Top Sub Depth CF Calc

0.33

max 0.33
1

R R R R R
R

R R R R R

 +
 =

+ 
≤


          (1) 

with RTop and RSub referring to texture by topsoil and subsoil, RDepth referring to 
soil compaction rating, RCF referring to coarse fragment rating, and RCalc refer-
ring to calcareousness rating. The results so obtained are listed in Table 4.  

2.2.6. Soil Suitability Mapping 
Applying the soil suitability ratings in Table 4 province-wide required updating 
of GeoNB’s catalogued forest soil shapefile to conform to GeoNB’s waterbody 
and wetland layers. This was done using ArcGIS Pro procedures dealing with:  

1) Erasing all waterbody and organic soil features in the forest soil shapefile 
for NB.  

2) Converting the resulting shapefile into a 1-m resolution raster with “no da-
ta” pixels for the GeoNB registered waterbody and wetland locations.  

3) Systematically extending all existing soil-association identified pixels into 
their adjacent “no data” spaces.  

4) Once completed, the resulting pixels for the GeoNB’s identified waterbody 
or wetland pixels were set to DTW = 0 via conditional raster calculations.  

5) Converting the resulting raster into the updated soil association shapefile 
followed by feature smoothing to reduce pixelated appearances. 

2.2.7. Crop Suitability Rating by Soil Drainage 
The crop suitability mapping parts by soil drainage and slope was done using the 
1-m DEM for New Brunswick. For this, the slope was derived using the Slope 
tool in ArcGIS Pro, which determines the percent rise or descent over distance 
among the eight-cardinal directions adjacent to each DEM pixel. The soil drai-
nage layer was derived using the ArcGIS Pro Cost Distance tool, with the deli-
neated flow channels and waterbodies marking DTW = 0 reference cells, and 
with the slope percent raster used as cost raster. The resulting DTW > 0 cm pix-
els refer to the distance between the soil surface and the water table associated 
with the nearest waterbody and flow channel locations. The flow channels were 
developed using the D8 algorithm [30] that derives the flow accumulation raster 
from the depression-filled DEM according to the pixel-determined flow direc-
tions.  

The resulting flow-channel raster was classified to have no-data pixels with < 
4 ha upslope flow accumulation. This threshold refers to mapping the extent of 
permanent streams consistent with end-of-summer water flow. The end-of- 
summer conditions for soil drainage, ranging from very poor to poor, imperfect, 
moderate, well, and excessive generally corresponds to DTW ≤ 0.1, 0.1 to ≤0.25 
m, 0.25 to ≤0.5 m, 0.5 ≤ 1 m, 1 to, e.g., ≤20 m and >20 m, respectively. In turn, 
the 0 to 1 crop suitability rating function for DTW was formulated such that: 
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Table 4. Potato crop suitability rating by soil association across New Brunswick based on Equation (1), with area and lithology 
specifications.  

Forest soil units Code Rating Area, ha 
Primary Lithology  
of Parent Materials 

Forest  
soil units 

Code Rating Area, ha 
Primary Lithology of 

Parent Materials 

Siegas SE 0.77 45,698 
Argillaceous limestones, 

minor limestones 

Reece RE 0.5 522,674 Grey lithic-feldspathic 
sandstone, minor quartzose 

sandstones, Polymictic 
conglomerates, quartz 
pebble conglomerates, 
and/or red mudstones 

Caribou CA 0.83 198,213 Sunbury SN 0.54 281,388 

Undine UN 0.78 17,416 Fair Isle FA 0.39 63,650 

Kedgwick KE 0.8 94,304 

Calcareous siltstones,  
calcareous sandstones 

and/or calcareous slates 

Riverbank RI 0.7 148,791 

Carleton CR 0.86 242,574 Tetagouche TT 0.34 43,445 
Mafic volcanic rocks,  

gabbros and/or diorites 
Thibault TH 0.83 214,897 Kingston KI 0.64 63,546 

Muniac MU 0.81 26,441 Mafic Volcanic MV 0.34 106,595 

Saltspings SS 0.63 9282 Grey calcareous mudstones 
and/or feldspathic to  

lithic sandstones; minor  
polymictic conglomerates 

Tuadook TU 0.74 142,527 

Gneiss, granites, alkali 
granites, granodiorites 
and/or quartz diorites 

Erb Settlement EB 0.68 8904 Juniper JU 0.79 245,307 

Salisbury SA 0.72 167,047 

Red polymictic  
conglomerates, feldspathic 
to lithic sandstones and/or 

mudstones; calcium  
carbonates present as  
cementing material 

Big Bald 
Mountain 

BD 0.35 48,283 

Parry PR 0.82 155,879 Popple Depot PD 0.72 200,003 

Felsic volcanic or mixed 
igneous rocks and/or felsic 

pebble conglomerates 

Cornhill CH 0.45 23,771 Jacquet River JR 0.81 100,974 

Parleeville Tobique PT 0.65 1,743,501 Lomond LO 0.46 168,872 

Kennebecasis KN 0.65 20,616 Gagetown GG 0.62 85,311 

Tracadie TD 0.52 33,923 Long Lake LL 0.84 336,934 
Metasedimentary rocks 

mixed with igneous rocks; 
igneous clasts 20% - 50% 

Holmesville HM 0.79 325,472 

Metaquartzites, slates,  
metasiltstones,  

metaconglomerates  
and/or metawackes 

Britt Brook BR 0.92 233,494 

Victoria VI 0.71 145,859 Serpentine SP 0.44 41,033 

McGee MG 0.66 335,809 Catamaran CT 0.79 117,735 Igneous rocks mixed with 
metasedimentary rocks; 

sedimentary clasts  
20% - 50% 

Glassville GE 0.3 193,900 Irving IR 0.66 121,426 

Grand Falls GF 0.79 71,227 Pinder PI 0.43 38,828 

Stony Brook SB 0.33 466,591 
Red mudstone  

(weathered), minor greyed  
lithic-feldspathic  

sandstones, quartzose; 
sandstones and/or  

polymictic conglomerates 

Rogersville RG 0.61 39,529 

Greyed sandstones or 
mudstones mixed with 
igneous rocks; igneous 

clasts 20% - 50% 

Tracy TR 0.85 53,942 Interval IN 1 45,185 

Undifferentiated. Harcourt HT 0.38 531,746 Acadia AC 0.44 15,299 

Becaguimec BE 0.92 13,078 Mining Debris MD 0 5901 

Barrieau- 
Buctouche 

BB 0.7 95.444 Organic Soil OS 0 235,644 Organic 

 

( ) ( )DTW 1 exp DTW exp DTW 1
c

R a b d= − − − ≤                   (2)  

with a = 1.065, b = 2.5, d = 0.03, c = 4.8. As illustrated in Figure 2, RDTW starts from 
0 when DTW = 0 (too wet), reaches 1 at 2 m (sufficiently moist most of the time), 
and trails downward from there to about 0.6 and further as DTW approaches 20 m 
and beyond due to decreasing uphill soil and subsoil water availability.  
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Figure 2. Potato crop rating specific to variations in DEM-derived DTW (A) and Slope % (B).  

2.2.8. Crop Suitability by Slope 
The 0 to 1 crop suitability rating function for slope (%) was estimated by setting:  

( ){ }Slope 1 1 1 exp 3 Slope 10 1R = − + − − ≤                   (3)  

This equation uses Slope = 10% as the DEM-derived slope threshold for en-
suring that if Slope < 10%, then 1) field operations pertaining to, e.g., seedbed 
preparation, seeding, and harvesting remain safe and 2) soil erosion remains 
minimal. This threshold was modified by gradually approaching the slope = 10% 
threshold from 8% upwards, and by gradually moving away from this threshold 
towards 12% (Figure 2).  

2.2.9. Crop Suitability Rating by Frost-Free Days 
Potatoes require about nine weeks (63 days) for full canopy development, and 18 
weeks (126 days) to initiate senescence and thereby completing tuber growth 
(Figure 3, [31]). Late frost in spring delays crop preparations and foliage devel-
opment. Early frost in fall affects tuber quality by tissue damaging (black spots). 
Formally, the FFD-related potato cropping restriction was formulated and repre- 
sented in Figure 4(A) as follows:  

( )( )FFD 1 1 exp 0.06 FFD 100 1R  = + − − ≤  .               (4)  

Since FFD exceeds 100 days across NB except for the elevated areas in the 
northwest (Figure 5), the FFD rating can be set at 1 for most of NB, but 0 where 
FFD << 100 days. 

2.2.10. Crop Suitability Rating by Growing Degree Days > 5˚C 
Potatoes require about 1000 and 1500 GDDs from emergence to tuber initiation 
and harvesting (Figure 6). Across NB, GDDs range from 1300 to 1800 (Figure 
5), therefore potato cropping across NB is not GDD restricted except for the 
high elevation location in the northwest. Where conditions are suitable, GDDs > 
1500 lead to additional tuber growth, particular for Russet potatoes (Figure 6). 
The effect of increasing GDD on tuber numbers and tuber length is represented 
in Figure 4(B) by setting:  

( ) ( )( )GDD tuber numbers 1 1 1 exp 0.006 GDD 800 1R  = − + − − ≤  ,    (5)  
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Figure 3. Percent extent of potato shoot, foliage, and tuber developments by days after emergence. Source: [31]. 

 

 
Figure 4. RFFD (A) and RGDD (B) versus FFD and GDD (for tuber numbers and length) as generated with Equations (5)-(7).  

 
and 

( ) ( )( )GDD tuber length 1 1 1 exp 0.006 GDD 1300 1R  = − + − − ≤  .     (6)  

2.2.11. Crop Suitability Equation, all Factors Combined 
The combined equation for crop suitability rating is therefore given by  

CS DTW SlopSo eil FFD GDD 1R R RR R R= × × × × ≤ .                 (7)  

Note that RSoil is set to 0 for waterbodies and wetlands. Otherwise, RSoil varies 
from 0.3 to 1. In contrast, RDTW, RSlope, RFFD and RGDD are set to vary from 0 to 1 
because of crop curtailing conditions where too wet (DTW = 0), too steep 
(Slope > 12%), and insufficient frost-free days (RFFD < 100 days) and/or growing 
degree day (RGDD < 500).  

2.2.12. Crop Suitability Rating by Property  
The data layers used to evaluate the extent to which the above crop suitability 
process for RCS reflects the GeoNB-registered property taxation values per Property 
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Account Number (PAN) and building footprint layers (PAN data file [19]). This 
property-by-property evaluation was limited to partially farmed POC and AOI 
areas in Figure 1. PAN areas not associated with farming, farms < 5 ha, and fo-
restry properties (assessed at $100/ha, [33]) were removed from this analysis. 

 

 
Figure 5. Topographically adjusted growing degree days (GDD > 5˚C, (A) and frost-free days (FFD, B) maps for New Bruns-
wick. 

 

 
Figure 6. Russet potato tuber numbers (A) and length (B) in relation to number of stems and increasing GDDs > 5˚C. Source: 
[32].  
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Also removed were all PAN areas intersected by the POC and AOI borders. The 
information for the remaining properties compiled included 1) mean PAN taxa-
tion value per property and per hectare, 2) mean PAN RCS value, 3) PAN area, 4) 
PAN building footprint, and 5) a PAN binary “0” code for Farm and “1” for a 
Farm/Woodlot combination. The resulting PAN values were: 

1) summarized by property type and AOI and POC area, and  
2) regression analyzed with taxation values per property and per hectare as 

dependent variables, and PAN area, building footprint, property type and mean 
RCS value as independent variables.  

For best results, it was necessary to log-transform the PAN taxation, area and 
building footprint numbers. In addition, building footprint numbers needed to 
be transformed to (Building footprint, m2)0.33 for the best-fitted PAN $/ha as-
sessment evaluations.  

3. Results  
3.1. Crop Suitability Map 

Figure 7 shows the Equation (1) and Equation (7) rated crop-suitability maps 
across New Brunswick (RSoil, RCS). The RSoil to RCS modifying RDTW and RSlope 
components are also shown in Figure 7. Close-ups used for illustrating RCS de-
tails and related field-level interpretations are provided in Figure 8 and Figure 
9, with and without RCS and DEM-generated flow channels overlaying the 
hill-shaded DEM and surface images. At the local level, RCS generally tracks the 
layout of cropped fields as traditionally limited by steep slopes and poor soil 
drainage next to permanent streams and water bodies and wetlands across for-
est-covered lands. To some extent, there is also partial RCS-to-image alignment 
along non-permanent flow channels with >1 ha upslope flow accumulation. This 
occurs where the channels run along image-located ditches and dark-coloured 
areas. Exceptions also occur where the DEM-based flow-channel delineations: 1) 
are blocked by roads; 2) are blocked by elevated ground due to ditch excavation; 
3) do not follow image-recognizable ditch lines where bare-earth recognition is 
blocked by overgrown vegetation; 4) cannot be surface recognized because of 
subsoil drainage-tile installations [33].  

3.2. PAN Property Summary by POC and AOI Areas 

Numbers, sums and means for PAN areas (ha), building footprints (m2), mean 
assessment values ($), building footprints and crop suitability ratings (RCS %) are 
listed in Table 5 and plotted in Figure 10 by POC and AOI study areas and by 
PAN type. In terms of PAN property numbers, AOI ≈ 3.3 POI. In terms of PAN 
property areas, AOI ≈ 7 POI. This is mainly due to increasing woodland proper-
ties from south to north. Apart from this, the mean POC and AOI per property 
PAN evaluations (RCS , areas, $s, $/ha, building footprints) for farms, farm/woodlot 
combinations and forests are similar to one another while covering a wide range 
of GDD and FFD values from 1200˚C to 2100˚C days, and from 90 to 150 days,  
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Figure 7. Cold-weather crop suitability maps for New Brunswick. A: RSoil; B: RCS; C: DTW < 1 m; D: Slope. 

 
respectively. There are, however, large variations in PAN suitability and taxation 
values such that farms > farm/woodlots > forests, as shown by the POC and AOI 
boxplots in Figure 10.  

3.3. Best-Fitted Regression Results: POC versus AOI-POC  

The best-fitted regression results for the POC and AOI – POC (POC excluded 
from AOI) areas and corresponding scatterplots shown in Table 6 and Figure 11 
for the log-transformed $ and $/ha PAN assessment values as dependent variables, 
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and with PAN log10(Area), log10(Building Footprint), mean RCS and property 
type (farms 0, farm woodlot combinations 1) as the independent variables. 

 

 
Figure 8. Middle: Cop suitability close-up, showing continuous RCS variations from red (0%) to 
yellow (50%) and green (100%). Bottom: Corresponding hillshaded 1-m DEM with >1 ha up-
slope flow-accumulation channels overlaid (white lines). Top: ESRI surface image. Also shown: 
1) PAN property borders (yellow lines); 2) red/black outlines detailing where DEM-tracked wet 
areas and flow channels coincide with conservation efforts, ditch lines, and/or subsoil drainage.  
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Figure 9. Crop suitability close-up with ESRI surface image focussed on DEM and PAN property assessed values. Red line: PAN 
properties. Left: continuous RCS % map (red to yellow to green) overlaid on hillshaded full-feature DEM to contrast forest areas 
(darker green) from fields (lighter green). Right: ESRI surface image. White numbers: mean PAN RCS % values. White lines: 
DEM-derived flow channels with >1 ha upslope flow accumulation. Pale-green feature on bottom, left and right: a wetland. 

 

 
Figure 10. Boxplots of mean PAN property crop suitability ratings (RCS %, A), mean PAN log10 property areas (B, in 
log10ha), and mean PAN property assessment values ($s per property: C; $s per ha: D), split by land class (farm, for-
est, and farm/woodlot combination). The boxplots display the 25th, 50th and 75th percentiles of the data and asso-
ciated assessment values (dots) below and above the 10th and 90th percentiles. 
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Figure 11. Actual versus best-fitted tax assessment scatterplots for the POC and AOI PAN Property assessment 
values in values $s (A, B) and $s/ha (C, D), with PAN area, building footprint, and property type (farm versus 
farm/woodlot combination) as PAN-specific predictor variables.  

 
Table 5. Statistics (numbers, means, sums) for PAN areas, building footprints, RCS, as-
sessment values ($) by study area (POC, AOI) and PAN type.  

 
Property Type POC AOI 

Number of PAN 
Properties 

Farm 1154 2471 

Forest 1024 5031 

Farms & woodlots 444 1120 
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Farm 421,822 797,189 

Forest 17,374 163,502 

Farms & woodlots 15,845 59,236 

Total 455,040 1,019,927 
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Continued 

Mean PAN Building 
Footprint, m2 

Farm 365.5 322.6 

Forest 17 32.5 

Farms & woodlots 35.7 52.9 

Total 173.5 118.3 

Mean PAN RCS, % 

Farm 54.2 52.9 

Forest 42.1 37.7 

Farms & woodlots 52.7 47.9 

Total 49.2 43.4 

Mean PAN  
Assessment Value, $ 

Farm 80,353 75,564 

Forest 13,074 14,649 

Farms & woodlots 37,006 33,785 

Total 46,738 34,592 

 
Table 6. Best-fitted regression results using POC and AOI PAN-based $ and $/ha tax assessment values as dependent variables 
and PAN area, mean PAN RSC, PAN building footprint and PAN property type (Farm “0”, Farm/Woodlot “1”) as independent 
variables.  

Tax assessment  
variable 

PAN numbers R2 RMSE 

POC AOI-POC POC AOI-POC POC 
AOI- 
POC 

log10(PAN assessment 
value, $) 

1585 3561 

0.5 0.474 0.353 0.375 

log10(PAN assessment 
value, $/ha) 

0.424 0.425 0.337 0.36 

Dependent variable Regression variables 

Regression  
coefficient 

Std. Error t-Value p-Value 

POC 
AOI- 
POC 

POC 
AOI- 
POC 

POC 
AOI- 
POC 

POC 
AOI- 
POC 

log10(PAN assessment 
value, $) 

Intercept 2.87 2.9 0.06 0.04 48.5 75.9 <0.0001 <0.0001 

log10(PAN Area, ha) 0.64 0.61 0.03 0.02 22.8 30.5 <0.0001 <0.0001 

RCS, % 0.0111 0.0113 0.0008 0.0005 22.0 29.1 <0.0001 <0.0001 

log10(Building Footprint, m2) 0.164 0.158 0.008 0.005 14.7 25 <0.0001 <0.0001 

Farm 0, Farm/Woodlot 1 −0.143 −0.165 0.021 0.014 −6.8 −12.0 <0.0001 <0.0001 

log10(PAN assessment 
value, $/ha) 

Intercept 2.85 2.88 0.06 0.004 50.6 78.5 <0.0001 <0.0001 

log10(PAN Area, ha) −0.38 −0.412 0.027 0.019 −14.0 −21.0 <0.0001 <0.0001 

RCS, % 0.0107 0.0110 0.0007 0.0004 14.9 25.4 <0.0001 <0.0001 

(Building footprint, m2)0.33 0.064 0.064 0.002 0.002 26.4 35.1 <0.0001 <0.0001 

Farm 0, Farm/woodlot 1 −0.12 −0.142 0.02 0.014 −6.0 −10 <0.0001 <0.0001 
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The equations that can be derived from the Table 6 for the AOI-POC entries 
are as follows:  

( )
( ) ( )

( ) ( )

10

2
10

10

log PAN assessment value,$

2.90 0.61log PAN area,ha 0.158 PAN building footprint,m

0.0113log PAN ,% 0.165 PAN farm woodlotCSR

= + +

+ −

  (8) 

( )

( ) ( )
( ) ( )

10

1/32

10

log PAN assessment value,$ ha

2.88 0.064 PAN building footprint,m 0.0110 PAN ,%

– 0.412log PAN area,ha 0.142 PAN farm woodlot
CSR= + +

−

   (9) 

Together, Equations (8) and (9) imply that:  
1) The negative farm/woodland coefficient indicates that combined farm/ 

woodland properties are assessed lower than farm properties without woodlots.  
2) The PAN $ assessment values correlate positively while the PAN $/ha as-

sessment values correlate negatively with PAN area.  
3) The suitability rating coefficients for the POC and AOI PAN $ and PAN 

$/ha values effectively remain the same, i.e., 0.0113 versus 0.0110, respectively. 
This indicates that the above analysis is not much affected by the POC versus 
AOI extent, or analysing the property assessment values by $s or $s/ha per PAN 
area.  

4) The building footprint coefficient is positive which indicates that taxation 
by property increases with increasing building footprint.  

5) The t-values indicate that the mean RCS ratings per property appear to be as 
influential as PAN area and building footprint on the $ and $/ha property as-
sessments; this means that properties not encumbered by steep slope, poor soil 
drainage and poor soil type ratings are seen to have higher farm-related assess-
ment values.  

6) Table 7 shows how the PAN $ and $/ha assessment values change from an 
RCS of 100% to 33% for a 100-ha farm with a 100 m2 building footprint. For RCS = 
100%, the numbers are $368,129 for the farm, with 2809 $/ha. For RCS = 33%, the 
numbers drop to $64,402 ha and 515 $/ha. Dropping the RCS rating from 100 to 
33 therefore lowers the PAN assessment values by a factor of 6. For a similar 
farm/woodlot combination the PAN assessment values for RCS = 100% and 33% 
drop from $251,768 and $44,045, and from 2025 and 371 $/ha, respectively.  

7) Note that the best fitted R2 in Table 6 values fall between 0.4 and 0.5. 
Hence, Equations (8) and (9) should only be used to emulate likely property as-
sessment values. Still, the PAN assessment value for a wetland with an assigned 
RCS = 0 value and no building footprint leads to $/ha = $114 (Table 6), i.e., simi-
lar to the NB-set 100 $/ha value for forested lands [34]. 

4. Discussion  

The approach taken above differs from the literature on potato crop suitability 
mapping as follows:  
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Table 7. PAN property assessment values including $/ha estimates via Equations (8) and (9) for farm, farm/woodlot and wetland 
crop suitability ratings set at RCS = 100%, 33% and 0%. 

 
Variable specifications 

Regression 
coefficients 

log10(PAN 
assessment 

value  
contributions 

per ha) 

Variable specifications 
Regression 
coefficients 

log10(PAN 
assessment 

value  
contributions 
per property) 

Farm  
property with 

RCS = 100% 

Intercept 
 

2.880 2.880 Intercept 
 

2.900 2.90 

PAN area, ha 100 −0.412 −0.82 PAN Area, ha 100 0.610 1.22 

Building footprint, m2 100 0.064 0.29 Building Footprint, m2 100 0.158 0.32 

Property type 0 −0.142 0.00 Property Type 0 −0.165 0.00 

RCS % 100 0.0110 1.10 RCS, % 100 0.0113 1.13 

Estimated PAN assessment value, $/ha 2809 Estimated PAN assessment value, $ 368,129 

Farm  
property with 

RCS = 33% 

Intercept 
 

2.880 2.880 Intercept 
 

2.900 2.90 

PAN area, ha 100 −0.412 −0.82 PAN Area, ha 100 0.610 1.22 

Building footprint, m2 100 0.064 0.29 Building Footprint, m2 100 0.158 0.32 

Property type 0 −0.142 0.00 Property Type 0 −0.165 0.00 

RCS % 33 0.0110 0.36 RCS, % 33 0.0113 0.37 

Estimated PAN assessment value, $/ha 515 Estimated PAN assessment value, $ 64,402 

Farm/Woodl
ot property 
RCS =100% 

Intercept 
 

2.880 2.880 Intercept 
 

2.900 2.90 

PAN Area, ha 100 −0.412 −0.82 PAN Area, ha 100 0.610 1.22 

Building Footprint, m2 100 0.064 0.29 Building Footprint, m2 100 0.158 0.32 

Property Type 1 −0.142 −0.14 Property Type 1 −0.165 −0.17 

RCS % 100 0.0110 1.10 RCS, % 100 0.0113 1.13 

Estimated PAN assessment value, $/ha 2026 Estimated PAN assessment value, $ 251,768 

Farm/Woodl
ot property 
RCS = 33% 

Intercept 
 

2.880 2.880 Intercept 
 

2.900 2.90 

PAN Area, ha 100 −0.412 −0.82 PAN Area, ha 100 0.610 1.22 

Building Footprint, m2 100 0.064 0.29 Building Footprint, m2 100 0.158 0.32 

Property Type 1 −0.142 −0.14 Property Type 1 −0.165 −0.17 

RCS % 33 0.0110 0.36 RCS, % 33 0.011 0.37 

Estimated PAN assessment value, $/ha 371 Estimated PAN assessment value, $ 44,045 

Wetland 

Intercept 
 

2.880 2.880 Intercept 
 

2.900 2.90 

PAN Area, ha 100 −0.412 −0.82 PAN Area, ha 100 0.610 1.22 

Building Footprint, m2 0 0.064 0.00 Building Footprint, m2 0 0.158 0.00 

Property Type 0 −0.142 0.00 Property Type 1 −0.165 −0.17 

RCS % 0 0.0110 0.00 RCS, % 0 0.0113 0.00 

 
Estimated PAN assessment value, $/ha 114 Estimated PAN assessment value, $ 9016 

 
1) The approach makes use of high-resolution airborne 1-m LiDAR data. The 

articles quoted in Table 1 do this at significantly coarser resolution.  
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2) The province-wide GDD and FFD data layers in Figure 5 account for ele-
vation-induced temperature variations at 10 m resolution. A similar pattern for 
the coarser-resolution GDD contours in [23] augmented by ArcGIS Pro topo-to- 
raster interpolation is shown in Figure 12 (top left). In contrast, the corres-
ponding pattern for critical alfalfa harvesting in Figure 12 (top right, [35]) is 
similar to the NB-wide FFD pattern in Figure 5. This is to allow for sufficient 
growing time for alfalfa to regain over-wintering dormancy before frost reoc-
currence.  

 

 
Figure 12. Growing degree days (GDD, A) according to [23] and critical alfalfa harvest periods (B) according to [35] centered 
on New Brunswick (top). Also: area outlines for mean maximum July temperature > 25˚C, from 1951 to 1980 (C) and from 
1981 to 2010 (D) across Atlantic Canada (bottom) according to [3].  
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3) Also shown in Figure 12 (bottom) is the regional expansion of the mean 
1951-1980 to 1981 to 2010 maximum July temperatures > 25˚C as compiled in 
[3]. These projections imply an elevated GDD trend along the central to eastern 
NB lowlands, thereby gradually favouring warm-weather crops when also sup-
ported by sufficient rainfall and irrigation across this region.  

4) While GDDs and FFDs tend to decrease with increasingly northern lati-
tudes and elevation, their variations across NB remain within the feasible GDD 
and FFD ranges for potato cropping (Figure 4, Figure 5), but becoming mar-
ginal in the northwest at high elevations.  

5) The above potato crop suitability analysis explicitly accounts topsoil and 
subsoil texture, CF content, depth-to-compaction, calcareousness, slope, and soil 
drainage. Similarly, crop suitability was rated by slope, drainage, texture, calca-
reousness, and erosion risk in [36], and by soil texture, organic matter (SOM), 
and structure in [12]. The articles in [13] and [14] respectively dealt with soil 
texture and climate only. In contrast, the articles in [10] [11] and [37] referred to 
soil pH, organic matter (SOM), total nitrogen (N), phosphorus (P), potassium 
(K), cation exchange capacity (CEC), and electrical conductivity (EC), thereby 
addressing field-specific management actions on overall crop performances. 

6) Further advances could be made by replacing the above RSoil results by soil 
association with results generated by mapping topographically affected varia-
tions in topsoil and subsoil texture, CF content, depth-to-compaction, and cal-
careousness ([38] at 1-m resolution [39]). Doing so, however, requires under-
taking detailed field and forest-specific transect surveys coupled with 1-m DEM 
modelling to ensure proper digital soil modelling calibrations. 

7) Since there the best-fitted POC versus AOI – POC regression coefficients 
do not differ by much, it is reasonable to expect that the above methodology would 
work equally well for all other PAN-identified farmlands and farm/woodland 
combinations across NB [40].  

8) Besides property-based suitability evaluations, socioeconomic factors re-
quire further considerations. For NB, this would entail assessing a) the trans-
portation costs from fields and farms to nearby processing facilities, b) the costs 
needed for upgrading existing fields or adjacent forested areas to enable potato 
cropping, and c) the costs required to establish new fields and nearby processing 
facilities.  

5. Conclusions  

To conclude, the above rating process at 1-m elevation resolution accounts for 
40% to 50% of the province-wide property assessment variations by property 
area, building footprint, farm versus farm/woodlot combination, soil type, drai-
nage, and slope. The related cold-weather crop suitability map generally reflects 
how the crop suitability conditions vary across and within fields and their mostly 
forested surroundings. Applying the above approach to locations other than 
New Brunswick would also require accessing and adjusting readily available data 
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layers for elevation, climate (e.g., [41]) and soil associations (e.g., [42]) for gen-
eral field-specific crop-suitability rating and evaluation purposes. As such, the 
maps so generated would provide a means to ascertain and to explore/survey 
further field and forest-specific details. This could be done in terms of, e.g.,  

1) setting field borders;  
2) evaluating already emplaced drainage structures;  
3) notching the LiDAR DEM to correctly reflect where streams and drainage 

channels are crossing roads or enter ditches;  
4) accounting for erosion-induced soil texture, coarse fragment, and soil depth 

variations. 
More details would yet be required for rating of field-targeted crop manage-

ment actions pertaining to, e.g., pH adjustments, fertilization ([10] [11]), crop 
rotations ([43]), and access to markets ([44] [45]). 
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