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Abstract 
The interactive and cumulative effect of temperature and rainfall on land 
cover change is a priority at global, regional and local scale. This study ex-
amined changes in six land cover categories (forestland, grasslands, shrub 
land, bare land, built-up areas and agricultural lands) in four sub-catchments 
(Amala, Nyangores, Talek and Sand River), of the Mara River basin over a 
30-year period (1987-2017) and made predictions of future land cover 
change patterns. Landsat Imageries of 90 m resolution were retrieved and 
analyzed using ArcGIS 10.0 software. Relationship between NDVI, temper-
ature and precipitation was determined using Pearson’s correlation coeffi-
cient, while Markov chains analyses were performed on different land cover 
categories to project future trends. Results showed low to moderate (R2 = 
0.002 to 0.6) trends of change in NDVI of different land cover categories 
across all sub-catchments. The greatest change (R2 0.34 to 0.5) was recorded 
in bare land in three of the four sub-catchments studied. Precipitation 
showed a strong positive correlation with built-up areas, forestlands, crop-
lands, bare land, grasslands and shrub lands, while temperature correlated 
strongly but negatively with the same land cover categories. The change de-
tection matrix projected significant but varying changes in land cover cate-
gories across the four sub-catchments by 2027. This study underscores the 
impact of changing climatic factors on various land cover categories in the 
Mara River basin sub-catchments, with different land cover categories exhi-
biting strong positive sensitivity to high precipitation and low temperature 
and vice-versa. 
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1. Introduction 

Changes in land cover (LC) pattern globally reflect the interaction between hu-
man activities and the natural environment [1]. Climatic and land cover changes 
are increasingly becoming important components of sustainability especially for 
aquatic ecosystems [2] [3]. Due to anthropogenic activities, the Earth surface is 
under continuous alteration that impacts heavily on the natural environment 
[4]. Studies have linked changes in land cover to increased anthropogenic activi-
ties [5]. While the role of climate on land cover change has been extensively re-
searched and discussed at the global and regional scales, knowledge of their im-
pact at the local sub-catchment scale is limited, disjointed and anecdotal to draw 
any meaningful conclusions. 

Studies show that the impacts of temperature and precipitation on land cover 
change are complex [6] and therefore require area specific studies to understand 
their correlation. This is because global analysis of the relationship between 
NDVI, precipitation and land surface temperature gives different views. While 
some researchers have not found any significant correlation [7], others have re-
ported negative or positive relationships between climatic factors and land cover 
categories [8] [9]. A study in the northeast China by Luo et al. [10] established 
presence of a strong relationship between NDVI, precipitation and temperature 
for different vegetation types. The effect of temperature on NDVI was more ob-
vious than that of precipitation in that particular study [10]. 

Zhang et al. [11] also reported the existence of a positive correlation between 
NDVI and temperature but pointed out that the effect of precipitation on NDVI 
was not as significant. Additionally, Zhang et al. [11] established that bushland 
NDVI correlated more strongly with precipitation than NDVI of other vegeta-
tion [11]. Based on these observations, it is apparent that global and regional 
responses to climate change show wide variation [12]. Therefore, there is a need 
to undertake studies that quantitatively measure the effect of changes in climatic 
factors on land cover change at the local level. 

Given its many advantages, NDVI is best suited to monitor local or global ve-
getation changes resulting from a changing climate [13] [14] [15]. 

Normalized Difference Vegetation Index has been widely used for studying 
climatic effects on vegetation productivity since the 1980s, though results vary 
by complexity of vegetation characteristics and region [16] [17]. It is predicted 
that by 2050, temperature and precipitation are likely to show decreasing and 
increasing signals, respectively, across the East African region [18]. However, the 
magnitude of change is likely to vary by region and location. Predicting land 
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cover change is therefore important in understanding and highlighting potential 
modifications and alterations that are likely to happen over landscapes in the 
near future. Such projections are useful to land use planners, resource managers, 
and conservation practitioners in their attempt to manage and mitigate impacts 
[19]. Prediction of LC change has been used in different applications, such as 
urban planning [20]; selection of conservation priority areas and setting alterna-
tive conservation measures [21] studying dynamics of shifting cultivation [22] 
and in simulation of rangeland dynamics under different climate change scena-
rios [23]. A solid understanding of the trends in land cover change at different 
time scales (past, present and future) at the local scale is therefore critical for de-
cision making and policy formulation. 

A review of the most commonly used approaches to modeling and land use 
change prediction can be found in a study by Agrawal et al. [24]. Markov chain 
analysis has been extensively used to study dynamics of land use change at dif-
ferent scales [25]. It is a simple method for modeling land use change especially 
at large scales [26]. The stationary transitions assumed by the Markov chain 
models make it suitable for short-term projections [27]. However, given its’ 
shortcomings, Markov chain analysis is often integrated with other empirical 
models [28]. The Markov-CA approach used in the current study is considered a 
spatial transition model as it combines the stochastic spatial Markov techniques 
with the stochastic spatial cellular automata method [29]. It has the advantage of 
predicting two-way transitions among the available LC classes, in contrast to the 
Geomod technique that only predicts one-way loss/gain from one class to 
another [30]. Lu et al. [20] noted that transition-based models that integrate spa-
tial Markov model with spatial cellular automata model outperformed regression 
based models in predicting land use change. 

Mara River basin of Kenya which supports the great wildlife migration has 
witnessed remarkable expansion, growth and development since 1980s, just like 
many other river sub-catchments in Kenya. Coupled with current innuendo of 
climate change, anthropogenic activities have resulted in increased land cover 
modification and alterations over time. However, there is limited information 
available on the extent to which climate change has impacted the past and 
present land cover types as well as future impacts in the four sub-catchments of 
Mara River basin, Kenya. This study is a comprehensive attempt to evaluate the 
past, present and predict future land cover changes resulting from climate 
change so as to provide policy and decision makers with a basic tool for future 
planning. 

2. Materials and Methods 
2.1. Study Area 

The Mara River Basin (Figure 1), situated between latitudes 0˚21'S and 1˚54'S 
and longitudes 33˚42'E and 35˚54'E is shared between Kenya 65% (16,320 km2) 
and Tanzania 35% (8030 km2) [31]. On the Kenya side, the Mara basin is bound  
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Figure 1. Map of the study area. 
 

to the west by the Soit Ololo Escarpment, to the east by the Loita and Sannia 
Plains and to the southwest by Mau forest reserve. Both large and small scale 
agriculture is practiced in the basin alongside other anthropogenic activities. Li-
vestock farming is also an important economic activity within the basin. The 
main livestock reared is the zebu cattle, small East African goats and red Maasai 
hair sheep. Dairy farming is limited to high potential areas where the mean an-
nual rainfall is 1000 mm. Grasslands and shrub lands are the dominant vegeta-
tion in the Maasai Mara National Reserve. The major tributaries of the Upper 
Mara Basin are Amala, Nyangores, Talek and Sand River. Indiscriminate defore-
station along the Mau Hills; the source of Mara River, is considered the main 
cause of high flow fluctuations of the Mara River. There is a constant mean 
monthly maximum temperature of 28˚C throughout the year, with a mean 
minimum temperature range of between 16˚C in the hot months (October to 
March) and 13˚C in the cooler months (May to August). 

2.2. Data Acquisition, Sources and Processing 

Land cover data was derived from Landsat images that were downloaded from 
the earth explorer United States Geology Survey (USGS) website. The maximum 
likelihood method was used for the land cover classification in Earth Resource 
Development Assessment System (ERDAS) Imagine 2013 software. Images were 
obtained from the three scenes of Landsat 4 & 5, Landsat 7 and Landsat 8, 
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Path/Row: 169/060, 169/61 and 170/61, respectively. The Digital Elevation Mod-
el (DEM) of 90 m resolution was obtained from the NASA Shuttle Radar Topo-
graphy Mission (SRTM) and delineated/processed using ArcMap software. 

Land cover classification covering the four sub-basins (Amala, Nyangores, 
Talek and Sand River) was processed using ERDAS Imagine 2013. The year 1987 
was taken as base year of study while Landsat imageries were used due to their 
suitability for vegetation cover analysis especially vegetation discrimination, 
measurement of chlorophyll absorption and vegetation type and biomass con-
tent analysis. The Landsat imageries used were for October (driest month) for 
the 1987, 1997, 2007 and 2017 intervals, believed to be reasonable to give sub-
stantial changes in land cover. The geo-referencing and image thinning was ap-
plied with a resolution of 90 m using a factor of two to modify its properties and 
resolution. Image thinning was carried out through contract; which generalizes 
an image by reducing the number of rows and columns while simultaneously 
decreasing the cell resolution. With pixel thinning, every nth pixel was kept while 
the remaining discarded. Based on the priori knowledge of the study area for 
over 30 years and a brief reconnaissance survey, a classification scheme was de-
veloped for the study area. The classification scheme developed gives a rather 
broad classification where the land cover was identified by a single digit as 
shown in Table 1. 

2.2.1. Normalized Difference Vegetation Indices (NDVI) 
The NDVI images for the month of October between 1987 and 2017 were uti-
lized to obtain specific NDVI values. The random points were generated for 
specific land cover category and the multi values extracted using geo-statistical 
tool. Land cover was overlaid on top of the NDVI image in order to extract 
random points of a specific land cover i.e. forestland, bare land, grassland, 
cropland, and built up areas. The generated points were later extracted 
through a process of geo-statistical analysis by multi values regression func-
tion. The random points were separately obtained through computed averages 
for respective monthly NDVI values in order to get the mean monthly NDVI 
for specific land category. 

 
Table 1. Land cover classification scheme. 

 Land Use/Land Cover Categories 

1 Crop land 

2 Bare land* 

3 Built-up areas 

4 Forest land 

5 Shrub land 

6 Grass land 

*The definition of bare land as used in this study denotes land without shrub, sandy areas, dry grasses, 
rocky areas and other human induced barren lands. 

https://doi.org/10.4236/ojss.2020.109018


F. M. Mngube et al. 
 

 

DOI: 10.4236/ojss.2020.109018 332 Open Journal of Soil Science 
 

2.2.2. Transition Probability Matrix 
The transition probability matrix records the probability that each land cover 
category will change to another or remain in the same category. For the 6 by 6 
matrix table, the rows represent land cover categories and the column represents 
corresponding NDVI values. Although this matrix can be used as a direct input 
for specification of the prior probabilities in maximum likelihood classification 
of the remotely sensed imagery, it was used in predicting land cover change by 
2027. 

2.2.3. Temperature and Precipitation Data Acquisition and Analysis 
Temperature and rainfall data sets were obtained from Giovanni website. The 
data obtained were of high resolution (0.1˚ latitude × 0.1˚ longitude) daily grid-
ded sets. Averages were calculated to obtain monthly and annual mean temper-
ature and precipitation for the period between 1987 and 2017 (October). The 
Normalized Difference Vegetation Index technique was used to extract the vari-
ous features presented in satellite imagery. Vegetation indices allowed the delin-
eation of vegetation distribution and soil, based on the characteristic reflectance 
patterns of green vegetation. NDVI of the four sub-basins were generated fol-
lowing their different land cover categories in the study area. This yielded dif-
ferent NDVI values depending on vegetation healthiness and extend. 

The NDVI images for the month of October (driest month) from the years 
1987 to 2017 were utilized to obtain specific NDVI values. Random points were 
generated for specific land use category and the multi values extracted using 
geo-statistical tool. Land cover was overlaid on NDVI images to extract random 
points of specific land cover types i.e. forest, bare land, grassland, shrub land, 
cropland, and built up areas. The generated points were later extracted through a 
process of geo-statistical analysis by multi values regression function. The 
process is as shown in Figure 2. 

2.2.4. Impacts of Temperature and Precipitation on  
Different Land Cover Categories 

Kriging methods were employed in ArcGIS to produce monthly and annual  
 

 

Figure 2. NDVI process. 
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precipitation and temperature gridded maps for each sub-basin. The average 
values of NDVI, temperature and precipitation associated with a particular ve-
getation type were calculated from the averages of all Pearson’s correlations (P) 
between monthly variables in MS Excel and P-values used to determine signi-
ficance levels. Considering the lagged response of NDVI to temperature and 
precipitation, the correlation analyses were also carried out between each sea-
sonal NDVI and the previous season’s temperature and precipitation for the 
month of October. 

2.2.5. Determination of the Accuracy of Land Cover Maps 
The overall accuracy of the land cover maps for 1987, 1997 and 2017 was deter-
mined and the Validation Kappa indices for each map were: 0.901 for Amala, 
0.898 for Nyangores, 0.938 for sand and 0.963 for Talek. The land cover maps in 
the study area from 1987 to 2017 are shown in the results section. A confusion 
matrix was applied in the present study to check the accuracy of the results. The 
overall accuracy and Kappa concordance coefficient of agreements (Kappa coef-
ficient) in each year were calculated, and finally the overall accuracy of all classi-
fication results obtained as an average value. The equation of Kappa coefficient 
is as shown below [32]. If pa = the proportion of observations in agreement and 
pε = the proportion in agreement due to chance, then Cohen’s kappa is: 

1
a s

s

p p
k

p
−

=
−

                          (1) 

Alternatively 

a s

s

n n
k

n n
−

=
−

 

where n = number of subjects, na = number of agreements and ns = number of 
agreements due to chance. 

2.2.6. Forecast 
Comparison of the land cover statistics assisted in identifying the percentage 
change, trend and rate of change between 1987 and 2017. The first task was to 
develop a table showing the area in hectares and the percentage change for each 
of the 10 years (Decadal; 1987, 1997 and 2017) measured against each land cover 
category. Percentage change to determine the trend of change was then calcu-
lated by dividing observed change by sum of changes then multiplied by 100. 

( ) Observed change 100Trend  Percentage change
Sum of change

×
=  

In obtaining annual rate of change, the percentage change was divided by 100 
and multiplied by the number of study years 1987-1997 (10 years) 1987-2007 (20 
years).  

2.2.7. Markov Chain Analysis 
Markov chains were used to obtain the percentage and probability for each cat-
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egory of land cover converted. Using the Markov model, the distribution of each 
land cover category was projected based on the transition probability pij between 
two land cover categories (i and j). Pij was determined over a specific period, 
from time t to time t + 1, as follows: 

1 [  1]ij n nP P x j x i t t+=  = = … +                   (2) 

Let ijP P=  denote the (possibly infinite) transition matrix of the one-step 
transition probabilities 
where: 

P = the Markov transition matrix P 
i, j = the land type of the first and second time period 
Pij = the probability from land type i to land type j 
t t + 1 = time 
The estimate of Markov chain is the relative frequency of transitions observed 

over the entire time period. The result of the estimation was used for prediction. 
In practice, based on the map algebra principle, the class of land type utilizes the 
equation below to calculate the transfer map of land cover change under the 
ERDAS Modeler module. 

1 10  t t
ij ij ijC A AX += +  

10 1t t
IJ ij ijC A X A += +                        (3) 

where: 
t
ijA , 1t

ijA +  = the land use map of the first and second time period, respectively 
t, t + 1 = the first and the second time period 
i, j = the land type of the first and second time period 
Cij = the class of land type i to land type j 
To establish the trajectory of land cover change, numerous sample points were 

selected over the study area and land cover category at every period recorded 
using GIS functions in ArcInfo Tool box. Predictions of future land cover 
change using a Markov-CA model was done in the following steps: 

1) Applying the Markov chain analysis to the 2007 and 2017 developed maps 
for calculating transition matrices; 

2) Calculating land cover change transition potential maps; and 
3) Predicting the land cover change for 2027 by using Markov CA model to 

develop transition matrices and then developing transition potential maps for all 
four sub-basins. 

To understand decadal land cover dynamics, the periods between 1987-1997; 
1997-2007 and 2007-2017, were used to produce land cover dynamics for each 
sub-basin. These dynamics helped to highlight changes to different land cover 
categories (what gained and lost and from which land cover category to anoth-
er). The 2007 and 2017 land cover maps were then used to predict the changes 
likely to occur in land cover by 2027 for each sub-basin. 
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3. Results 
3.1. Land Cover Changes between 1987 and 2017 across the Four 

Mara River Sub-Catchments 

Overall, a considerable reduction in the spatial expansion of LC was observed 
between 1987 and 1997 compared to the period between 2007 and 2017 across 
all the four Mara River sub-catchments. 

3.1.1. Nyangores Sub-Catchment 
The findings presented in Table 2 show the static area of each NDVI of land 
cover category for each study year in the Nyangores sub-basin. Bare lands 
(−0.06) and built-up area (−0.06) occupied the least class with just −15.4% and 
−15.0% respectively, of the total classes in 1987 compared to 2017 (Figure 3). A 
similar trend was observed in areas under forest cover, crop land and grassland. 
Generally, when mean total annual precipitation was high and maximum mean 
annual temperature was low, the NDVI of all land cover categories was highest 
(see year 2007). On the contrary, when maximum mean annual temperature was 
high and mean total annual precipitation was low, NDVI of all land cover cate-
gories was lowest (see year 1997). A decrease of −478.6 mm in precipitation, 
from 1171 mm to 692 mm—translating to −40.87% was observed between 1987 
and 2017 in Nyangores sub-catchment. However, maximum mean annual tem-
perature increased from 22.54˚C to 26.96˚C—a difference of 2.23˚C, translating 
to 9.89% increase. 

Results further showed trends in change in NDVI of land cover categories, 
particularly in dry season (October) from low (R2 = 0.002 to 0.17) to moderate 
(0.3 to 0.5) variation. Variation in mean crop land cover category NDVI was R2 
= 0.002, shrub land NDVI was R2 = 0.03, forest land cover NDVI was R2 = 0.09; 
grassland was R2 = 0.17, while built up area was R2 = 0.30. The greatest change 
was observed in bare land (R2 = 0.50). Temperature variation trend also showed 
relative low change in mean (R2 = 0.32) while rainfall showed greater change in 
mean (R2 = 0.62). The Pearson correlation coefficient between annual mean pre-
cipitation and built-up areas, forest cover, crop land, bare land, grasslands and  

 
Table 2. NDVI per land cover category in Nyangores sub-catchment (1987-2017). 

YEAR 
NDVI 
1987 

NDVI 
1997 

NDVI 
change 
1987 to 

1997 

NDVI % 
change 
1987 to 

1997 

NDVI 
2007 

NDVI 
Change 
1997 to 

2007 

NDVI % 
change 
1997 to 

2007 

NDVI 
2017 

NDVI 
Change 
2007 to 

2017 

NDVI % 
change 
2007 to 

2017 

NDVI 
Change 
1987 to 

2017 

NDVI % 
change 
1987 to 

2017 

BUILT 0.4 0.34 −0.06 −15.0 0.44 0.1 29.41 0.25 −0.19 −43.18 −0.15 −37.5 

FOREST 0.6 0.53 −0.07 −11.7 0.75 0.22 41.51 0.42 −0.33 −44.00 −0.18 −30.0 

CROP 0.46 0.35 −0.11 −23.9 0.6 0.25 71.43 0.39 −0.21 −35.00 −0.07 −15.2 

BARE 0.39 0.33 −0.06 −15.4 0.4 0.07 21.21 0.19 −0.21 −52.50 −0.2 −51.3 

GRASS 0.56 0.42 −0.14 −25.0 0.59 0.17 40.48 0.4 −0.19 −32.20 −0.16 −28.6 

SHRUB 0.48 0.41 −0.07 −14.6 0.57 0.16 39.02 0.39 −0.18 −31.58 −0.09 −18.8 
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Figure 3. October land cover categories NDVI from 1987 to 2017 in Nyangores sub-catchment. 
 

shrub land NDVI was 0.94; 0.82, 0.52, 0.99, 0.80, and 0.71, respectively (Table 3). 
Findings further showed that precipitation affected NDVI positively. Regard-

ing the Pearson’s correlation coefficient between maximum mean temperature 
and land cover (built-up areas, forest cover, crop land, bare land, grasslands and 
shrub land) NDVI were −0.99, −0.96, −0.77, −0.98, −0.93 and −0.9044, respec-
tively. In Nyangores, maximum temperature affected NDVI negatively. Temper-
ature showed less variation (R2 = 0.32) while precipitation showed greater varia-
tion (R2 = 0.62). Due to the change in maximum mean annual temperature (R2 = 
0.32) and mean total annual precipitation (R2 = 0.62), land cover categories have 
been affected differently (Table 3, Table 4 and Figure 3). Generally, land cover 
categories appeared more sensitive to precipitation than temperature in Nyan-
gores sub-catchments. 

3.1.2. Amala Sub-Catchment 
In the Amala sub-basin, changes were observed in different land cover categories 
i.e. cropland (R2 = 0.06); built up with (R2 = 0.12); forest land cover (R2 = 0.14); 
shrub of (R2 = 0.30); grass with (R2 = 0.31) in the month of October. The greatest 
change was observed in bare land of R2 = 0.34. Temperature also showed relative 
low change in mean (R2 = 0.32) while rainfall showed a high change in mean (R2  
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Table 3. Trend of rainfall and temperature in Nyangores sub-catchment. 

YEAR 1987 1997 
Change btw 
1987 & 1997 

2007 
Change btw 
1997 & 2007 

2017 
Change btw 
2007 & 2017 

Change btw 
1987 & 2017 

PPT annual mean 1171 1038.6 −132.4 1139.6 101 692.4 −447.2 −478.6 

TEMP max annual 
mean 

22.54 23.48 0.94 22.03 −1.45 24.77 2.74 2.23 

 
Table 4. Person correlation between temperature, precipitation and NDVI of different land cover categories between 1987-2017 in 
Nyangores sub-catchment. 

Year 
PPT annual 

mean 
TEMP max 

annual mean 
NDVI 

Built-up areas 
NDVI Forest 

cover 
NDVI 
Crop 

NDVI 
Bare 

NDVI 
Grass 

NDVI 
Shrub 

1987 1171 22.54 0.4 0.6 0.46 0.39 0.56 0.48 

1997 1038.6 23.48 0.34 0.53 0.35 0.33 0.42 0.41 

2007 1139.6 22.03 0.44 0.75 0.6 0.4 0.59 0.57 

2017 692.4 24.77 0.25 0.42 0.39 0.19 0.4 0.39 

Temp Pearson Correlation (R)   −0.9996 −0.9561 −0.767 −0.9768 −0.9311 −0.9044 

PPR Pearson Correlation (R)   0.94116 0.82062 0.51515 0.99258 0.80082 0.71443 

 
= 0.51). Pearson correlation coefficient was very high between annual mean pre-
cipitation and forest, shrub, built-up, crop, bare land and grass land NDVI at 
0.81; 0.97,0.70, 0.68, 0.813, and 0.90, respectively. Shrub lands had the highest 
NDVI followed by grassland NDVI, while crop lands had the least. Precipitation 
thus affected NDVI positively in Amala sub-catchment. Regarding the Pearson 
correlation coefficient between maximum mean temperature and land cover, 
forest land, shrub land, built-up areas, cropland, bare land and grassland NDVI 
were −0.97, −0.93, −0.96, −0.94, −0.99, and −0.99, respectively, implying that 
temperature affected NDVI negatively in Amala sub-catchment. Temperature 
showed less variation (R2 = 0.32) than precipitation (R2 = 0.51). Generally, the 
findings point to a strong impact of climate on land cover categories in Amala 
sub-catchment. 

The mean total annual precipitation was high, while maximum mean annual 
temperature was low with respect to the NDVI of all land cover categories (see 
year 2007) (Table 5, Figure 4). On the contrary, when maximum mean annual 
temperature was high and mean total annual precipitation was low, NDVI of all 
land cover categories was lowest (see year 2017). Generally, from 1987 to 2017 
mean total annual precipitation decreased from 1033.95 to 660.01 mm—a de-
crease of −373.94 mm which is by −36.17%. Over the same period, maximum 
mean annual temperature increased from 24.13˚C to 26.96˚C; an increase of 
2.83˚C which translates to 11.73% increase. Changes in maximum mean annual 
temperature (R2 = 0.32) and mean total annual precipitation (R2 = 0.51) have 
thus led to changes in land cover categories differently (Tables 5-7). 

3.1.3. Sand River Sub-Catchment 
Sand river sub-catchment showed varying trends in NDVI of different land cover  
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Figure 4. October land cover categories NDVI from 1987 to 2017 in Amala sub-catchment. 
 
Table 5. NDVI per land cover category in Amala sub-catchment 1987-2017. 

YEAR 
NDVI 
1987 

NDVI 
1997 

NDVI 
change 
1987 to 

1997 

NDVI % 
change 
1987 to 

1997 

NDVI 
2007 

NDVI 
change 
1997 to 

2007 

NDVI % 
change 
1997 to 

2007 

NDVI 
2017 

NDVI 
Change 
2007 to 

2017 

NDVI % 
change 
2007 to 

2017 

NDVI 
Change 
1987 to 

2017 

NDVI % 
change 

1987-2017 

FOREST 0.58 0.53 −0.05 −8.6 0.74 0.21 39.62 0.36 −0.38 −51.35 −0.22 −37.9 

SHRUB 0.43 0.48 0.05 11.6 0.57 0.09 18.75 0.13 −0.44 −77.19 −0.3 −69.8 

BUILT 0.31 0.27 −0.04 −12.9 0.35 0.08 29.63 0.24 −0.11 −31.43 −0.07 −22.6 

CROP 0.44 0.35 −0.09 −20.5 0.62 0.27 77.14 0.25 −0.37 −59.68 −0.19 −43.2 

BARE 0.35 0.26 −0.09 −25.7 0.38 0.12 46.15 0.16 −0.22 −57.89 −0.19 −54.3 

GRASS 0.45 0.41 −0.04 −8.9 0.52 0.11 26.83 0.25 −0.27 −51.92 −0.2 −44.4 

 
Table 6. Trend of rainfall and temperature. 

YEAR 1987 1997 
Change 

btw 1987 
& 1997 

% change 
btw 1987 
& 1997 

2007 
Change 

btw 1997 
& 2007 

% change 
btw 1997 
& 2007 

2017 
Change 

btw 2007 
& 2017 

% change 
btw 2007 
to 2017 

Change 
btw 1987 
& 2017 

% change 
btw 1987 
to 2017 

PPT annual mean 1033.9 1098.9 64.9 6.28 1079.6 −19.24 −1.75 660.0 −419.6 −38.87 −373.94 −36.17 

TEMP max 
annual mean 

24.13 25.05 0.92 3.81 23.35 −1.7 −6.79 26.96 3.61 15.46 2.83 11.728 
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categories in the dry season (October) from week (R2 = 0.19) to moderate (0.33 
to 0.5). Changes in mean bare land NDVI of R2 = 0.5; shrub land NDVI of R2 = 
0.36; forest land cover NDVI of R2 = 0.0.33; and grassland NDVI of R2 = 0.19 
were observed. Greater NDVI changes of R2 = 0.5 were observed in bare land 
within Sand river sub-catchment. Temperature also showed relative low change 
in mean R2 = 0.22 while rainfall showed an even lower change in mean R2 = 0.06 
(Tables 8-10, Figure 5). Nevertheless, Pearson’s correlation coefficient was very 
high between annual mean precipitation and different land cover categories i.e. 
forest cover, bare land, shrub land and grassland whose NDVIs were 0.75, 0.79, 
0.76 and 0.78 respectively. The highest being observed in bare land was followed 
by grassland NDVI, while the least was observed in forest land. Regarding Pear-
son’s correlation coefficient between maximum mean temperature and different 
land cover categories, i.e. forest cover, bare land, shrub land and grassland, NDVIs 
were −0.96, −0.87, −0.95, and −0.971, respectively. Generally, NDVI was affected  

 
Table 7. Person correlation between temperature, precipitation and NDVI land cover categories between 1987-2017 in Amala 
sub-catchment. 

YEAR 
Total Annual 

Rainfall 
Mean annual 
max Temp 

Forest Shrub Built Crop Bare land Grassland 

1987 1033.95 24.13 0.58 0.43 0.31 0.44 0.35 0.45 

1997 1098.85 25.05 0.53 0.48 0.27 0.35 0.26 0.41 

2007 1079.61 23.35 0.74 0.57 0.35 0.62 0.38 0.52 

2017 660.01 26.96 0.36 0.13 0.24 0.25 0.16 0.25 

Temp Pearson Correlation (R)   −0.9746 −0.9334 −0.95854 −0.93628 −0.99078 −0.99485 

Ppt Pearson Correlation (R)   0.81299 0.966716 0.698927 0.684236 0.813424 0.902623 

 
Table 8. NDVI per land cover category within Sand River sub-catchment 1987-2017. 

YEAR 
NDVI 
1987 

NDVI 
1997 

NDVI 
change btw 

1987 & 
1997 

NDVI % 
change btw 

1987 & 
1997 

NDVI 
2007 

NDVI 
change 
1997 to 

2007 

NDVI % 
change btw 

1997 & 
2007 

NDVI 
2017 

NDVI 
change btw 

2007 & 
2017 

NDVI % 
change btw 

2007 & 
2017 

NDVI 
change 
1987 to 

2017 

NDVI % 
change btw 

1987 & 
2017 

Forest 0.37 0.39 0.02 5.4 0.42 0.03 7.69 0.25 −0.17 −40.48 −0.12 −32.4 

Bare 0.23 0.25 0.02 8.7 0.24 −0.01 −4.00 0.15 −0.09 −37.50 −0.08 −34.8 

Shrub 0.29 0.31 0.02 6.9 0.33 0.02 6.45 0.18 −0.15 −45.45 −0.11 −37.9 

Grass 0.28 0.31 0.03 10.7 0.35 0.04 12.90 0.19 −0.16 −45.71 −0.09 −32.1 

 
Table 9. Trend of rainfall and temperature 1987-2017. 

YEAR 1987 1997 
change 

btw 1987 
& 1997 

% change 
btw 1987 
& 1997 

2007 
Change 

btw 1997 
to 2007 

% change 
btw 1997 
to 2007 

2017 
Change 

btw 2007 
to 2017 

% change 
btw 2007 
to 2017 

Change 
btw 1987 
to 2017 

% change 
btw 1987 
to 2017 

PPT annual 
mean 

430.1 904.3 474.25 110.27 718.4 −185.9 −20.6 327.6 −390.8 −54.4 −102.5 −23.83 

TEMP max 
annual mean 

24.3 24.4 0.17 0.70 23.3 −1.08 −4.4 25.9 2.6 11.0 1.66 6.85 
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Table 10. Person correlation between temp, ppt and NDVI land cover categories 1987-2017. 

Year PPT annual mean TEMP max annual mean Forest Bare land Shrub Grass 

1987 430.09 24.25 0.37 0.23 0.29 0.28 

1997 904.34 24.42 0.39 0.25 0.31 0.31 

2007 718.43 23.34 0.42 0.24 0.33 0.35 

2017 327.59 25.91 0.25 0.15 0.18 0.19 

Temp Pearson Correlation (R)   −0.96497 −0.86935 −0.9534 −0.9681 

PPT Pearson Correlation (R)   0.751871 0.794609 0.762858 0.778507 

 

 
Figure 5. October land cover categories NDVI trend from 1987 to 2017 in Sand sub-catchment. 
 

positively by precipitation and negatively by maximum temperature, though 
both temperature (R2 = 0.22) and precipitation (R2 = 0.06) showed low variation. 

Findings showed that when mean total annual precipitation was high and 
maximum mean annual temperature low, NDVI of all land cover categories was 
high (see year 2007); and when maximum mean annual temperature was high 
and mean total annual precipitation was low, NDVI of all land cover categories 
was low (see year 2017). Mean total annual precipitation decreased from 430.09 
mm to 327.59 mm—a decrease of −102.5 mm translating to −23.83% between 
1987 and 2017, while maximum mean annual temperature increased from 
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24.25˚C to 25.91˚C—translating to a 6.85% increase over the same period. 
Changes in maximum mean annual temperature (R2 = 0.22) and mean total an-
nual precipitation (R2 = 0.06) have affected land cover categories differently in 
Sand River sub-catchment. 

3.1.4. Talek Sub-Catchment 
Varying trends in NDVI of land cover categories from weak (R2 = 0.006 to 0.04) 
to moderate (0.33 to 0.5) levels were also observed in Talek sub-catchment over 
time during the dry season (October). Change in mean grassland cover category 
NDVI of R2 = 0.006; shrub land NDVI of R2 = 0.0.03; forest cover NDVI of R2 = 
0.04; bare land NDVI of R2 = 0.45 and crop land NDVI of R2 = 0.6, were ob-
served. Greatest changes (R2 = 0.6) were observed in cop lands. Temperature 
showed relatively low change in mean (R2 = 0.24) while rainfall showed even 
lower change in mean (R2 = 0.05). Pearson correlation coefficient between an-
nual mean precipitation and land cover categories was moderate i.e. forest, crop, 
bare, grass and shrub, whose NDVIs were 0.67, 0.8, 0.42, 0.49 and 0.49, respec-
tively. The highest change was observed in crop land NDVI followed by forest 
land NDVI, while the least was observed in bare land NDVI. Pearson correlation 
coefficient between maximum mean temperature and land cover categories i.e. 
forest cover, crop land, bare land, grass land and shrub land NDVI were -0.80, 
0.90, −0.92, −0.79, −0.48 respectively. Precipitation affected NDVI of different land 
cover categories positively while maximum temperature affected NDVI of differ-
ent land cover categories negatively except crop lands in Talek sub-catchment. 
While temperature showed less variation (R2 = 0.24) compared to precipitation 
(R2 = 0.5) in Talek sub-catchment, correlation analysis between land cover 
categories NDVI and climate variables (temperature and precipitation) re-
vealed a strong relationship between climatic factors and different land cover 
categories. 

Generally, when mean total annual precipitation was high and maximum 
mean annual temperature was low, the NDVI of all land cover categories was 
high (see year 2007); and when maximum mean annual temperature was high 
and mean total annual precipitation was low, NDVI of all land cover categories 
was low (see year 2017). Mean total annual precipitation decreased from 773.24 
mm to 429.28 mm—a decrease of −343.96 mm which translates to −44.48% be-
tween 1987 and 2017, while maximum annual mean temperature increased from 
24.25˚C to 25.91˚C; an increase of 1.66˚C which translates to 6.85% over the 
same period. As a result, change in maximum mean annual temperature (R2 = 
0.24) and mean total annual precipitation (R2 = 0.05) has affected land cover 
categories differently within Talek sub-catchment (Tables 11-13; and Figure 6). 

3.2. Transition Probability Matrix for Nyangores, Amala,  
Sand and Talek Sub-Catchments 

On the overall, the transitional probability matrix of the four sub-basins showed 
an interesting pattern (Table 14). Row categories represent land cover classes in  
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Figure 6. Land cover categories NDVI trend from 1987 to 2017 (Oct) in Talek sub-catchment. 
 
Table 11. NDVI per land cover category within Talek sub-catchment 1987-2017. 

Year 
NDVI 
1987 

NDVI 
1997 

NDVI 
change 
1987 to 

1997 

NDVI % 
change 
1987 to 

1997 

NDVI 
2007 

NDVI 
change 
1997 to 

2007 

NDVI % 
change 
1997 to 

2007 

NDVI 
2017 

NDVI 
change 
2007 to 

2017 

NDVI % 
change 
2007 to 

2017 

NDVI 
change 
1987 to 

2017 

NDVI % 
change 
1987 to 

2017 

Forest 0.37 0.65 0.28 75.7 0.68 0.03 4.62 0.25 −0.43 −63.24 −0.12 −32.4 

Crop 0 0 0 0.0 0 0 0.00 0.23 0.23 0.00 0.23 0.0 

Bare 0.29 0.28 −0.01 −3.4 0.29 0.01 3.57 0.27 −0.02 −6.90 −0.02 −6.9 

Grass 0.31 0.5 0.19 61.3 0.59 0.09 18.00 0.27 −0.32 −54.24 −0.04 −12.9 

Shrub 0.21 0.5 0.29 138.1 0.48 −0.02 −4.00 0.28 −0.2 −41.67 0.07 33.3 

 
Table 12. Trend of rainfall and temperature within Talek Sub-catchment 1987-2017. 

Year 1987 1997 
Change 

btw 1987 
& 1997 

% change 
btw 1987 
& 1997 

2007 
Change 

btw 1997 
& 2007 

% change 
btw 1997 
& 2007 

2017 
Change 

btw 2007 
& 2017 

% Change 
btw 2007 & 

2017 

Change 
btw 1987 
& 2017 

% change 
btw 1987 
& 2017 

PPT annual 
mean 

773.24 1027.1 253.88 32.83 678.1 −349.07 −33.99 429.28 −248.77 −36.69 −343.96 −44.48 

TEMP max 
annual mean 

24.25 24.42 0.17 0.70 23.4 −1.02 −4.18 25.91 2.51 10.73 1.66 6.85 
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Table 13. Person correlation between temp, ppt and NDVI of land cover categories between 1987 & 2017 in Talek sub-catchment.  

Year PPT annual mean TEMP max annual mean Forest Crop Bare Grass Shrub 

1987 773.24 24.25 0.37 0 0.29 0.31 0.21 

1997 1027.12 24.42 0.65 0 0.28 0.5 0.5 

2007 678.05 23.4 0.68 0 0.29 0.59 0.48 

2017 429.28 25.91 0.25 0.23 0.27 0.27 0.28 

Temp Pearson Correlation (R)   −0.80239 0.903978 −0.91915 −0.79001 −0.48255 

PPR Pearson Correlation (R)   0.668472 −0.80288 0.415691 0.488346 0.494804 

 
Table 14. Transitional probability table derived from the land use land cover map of 2007. 

Amala 2007-2017 Transition Potential 

FROM/TO 1 Forest 2 Grassland 3 Shrub Land 4 Cropland 5 Bare Land 6 Built up areas 

1. Forest 0.808587 0.089546 0.012824 0.080526 0.009 0.00 

2. Grassland 0.453074 0.260371 0.072374 0.197999 0.016 0.00 

3. Shrub Land 0.125763 0.288336 0.029044 0.532872 0.024 0.00 

4. Cropland 0.038497 0.233278 0.013664 0.69706 0.018 0.00 

5. Bare Land 0.054522 0.236698 0.008758 0.680972 0.019 0.00 

6. Built up areas 0.00 0.00 0.00 0.00 0.00 1.00 

Nyangores sub-catchment 2007-2017 Transition Potential 

FROM/TO 1 Forest 2 Grassland 3 Shrub Land 4 Cropland 5 Bare Land 6 Built up areas 

1. Forest 0.656541 0.143995 0.019081 0.170156 0.010065 0.000161 

2. Grassland 0.044171 0.118876 0.004942 0.72793 0.102007 0.002074 

3. Shrub Land 0.030252 0.142379 0.0005945 0.730669 0.0868804 0.003951 

4. Cropland 0.041294 0.08228 0.002465 0.822188 0.051772 0.000000 

5. Bare Land 0.002294 0.097095 0.000000 0.761468 0.13685 0.0002294 

6. Built up areas 0.008130 0.044715 0.000000 0.182927 0.01626 0.7479670 

Sand River sub-catchment 2007-2017 Transition Potential 

FROM/TO 1. Forest 2. Grassland 3. Shrub Land 
 

4. Bare Land 
 

1. Forest 0.571987 0.376739 0.05018 
 

0.001094 
 

2. Grassland 0.043466 0.370093 0.529799 
 

0.056641 
 

3. Shrub Land 0.017485 0.40707 0.53481 
 

0.040635 
 

4. Bare Land 0.00 0.221829 0.478519 
 

0.299652 
 

Talek sub-catchment 2007-2017 Transition Potential 

FROM/TO 1. Forest 2. Grassland 3. Shrub Land 
 

4. Bare Land 
 

1. Forest 0.755453 0.09977 0.144031 
 

0.000738 
 

2. Grassland 0.546455 0.017685 0.371694 
 

0.064166 
 

3. Shrub Land 0.372432 0.037934 0.501656 
 

0.087977 
 

4. Bare Land 0.717363 0.00026 0.228913 
 

0.053465 
 

NB: Crop land and built up in Sand and Talek sub-catchments is very minimal to be captured by this resolution of 90 m. 
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2007 whilst column categories represent 2017 classes. These dynamics helps to 
understand what happened to different land cover categories (what gained and 
lost and from which land cover category to another) and what is likely to change 
in the future. The 2007 and 2017 land cover maps were then used to predict the 
land cover change by 2027 (Table 14). 

3.3. Projected Land Cover Change between 2017  
and 2027 in the Four Sub-Catchment 

3.3.1. Projected Land Cover Change between 2017 and 2027  
in Nyangores Sub-Catchment 

Over the 30-year period (1987-2017), significant changes in land cover were ob-
served in Nyangores sub-catchment (Table 15). Findings show that between 
1987 and 1997 grasslands decreased by −13.96% and forest land by −0.33, while 
all other land cover categories increased, i.e. shrub lands by 57.60%, built-up 
areas by 38.25%, crop land by 12.53% and bare land by 7.73%. A similar trend 
was evident in the following decade (1997-2007) whereby shrub land decreased 
by −33.04%, grassland by −8.84%, forest land by −0.95%, while build up areas 
increased further by 22.85%, crop land by 9.81% and bare land by 8.47%. How-
ever, between 2007 and 2017, grass land decreased by −26.32%, shrub land by 
−26.26% and forest cover by −25.54%, while crop land, bare land and built up 
area increased by 58.21%, 39.75% and 31.55%, respectively. Overall, land cover 
change between 1987 and 2017 showed a significant increase in crop land by 
95.51%, bare land by 63.31% and built-up areas by 123.42%; at the expense of 
shrub land (−22.19%), forest cover (−26.48%) and grass land (−42.21%) in Nyan-
gores sub-catchment. The findings further showed that the greatest degradation of 
forests, shrubs and grasslands occurred between 1987 and 2007 (Tables 15-17 
and Figure 7, Figure 8). 

3.3.2. Projected Land Cover Change between 2017 and 2027  
in Amala Sub-Catchment 

In the Amala sub-catchment, significant changes were observed in land cover 
classes over the 30-year period (1987-2017) (Figures 9-11). Some land cover 
categories increased over time at the expense of others while some decreased 
(Table 18). For instance, bare land decreased by −62.63%, shrub lands by −45.82% 

 
Table 15. Land cover change for 1987, 1997 and 2007 in Nyangores sub-catchment.  

Sub-catchment Category 
1987 Area 

(Ha) 
1997 Area 

(Ha) 
2007 Area 

(Ha) 
2017 Area 

(Ha) 

Nyangores 

Forest 41,031 (43.7%) 40,897 (43.8%) 40,510 (43.6%) 30,164 (32.3%) 

Grassland 27,681 (29.5%) 23,817 (25.5%) 21,712 (23.3%) 15,997 (17.1%) 

Shrub Land 1014 (1.1%) 1598 (1.7%) 1070 (1.2%) 789 (0.8%) 

Cropland 21,835 (23.3%) 24,572 (26.3%) 26,983 (29.0%) 42,690 (45.7%) 

Bare Land 2279 (2.4%) 2455 (2.6%) 2663 (2.9%) 3721.6 (4.0%) 

Built up areas 47.4 (0.01%) 65.53 (0.1%) 80.5 (0.1%) 105.9 (0.1%) 
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Table 16. Land cover percentage changes by category per decade in Nyangores 
sub-catchment. 

Category 
1987-1997 
% Change 

1997-2007 
% Change 

2007-2017 
% Change 

1987-2017 
Overall % change 

Forest −0.33 −0.95 −25.54 −26.48 

Grassland −13.96 −8.84 −26.32 −42.21 

Shrub Land 57.60 −33.04 −26.26 −22.19 

Cropland 12.53 9.81 58.21 95.51 

Bare Land 7.73 8.47 39.75 63.31 

Built up areas 38.25 22.84 31.55 123.42 

 
Table 17. Projected land cover by 2027 in Nyangores sub-catchment. 

Land cover 
category 

1987 Area (Ha) 
and % of total area 

1997 Area (Ha) 
and % of total area 

2007 Area (Ha) 
and % of total area 

2017 Area (Ha) 
and % of total area 

Projected land cover 
by 2027 area (Ha) 

% change btw 2017 
to 2027 (10 yrs) 

Forest 41,031 (43.7%) 40,897 (43.8%) 40,510 (43.6%) 30,164 (32.3%) 32,688.6 8.37% 

Grassland 27,681 (29.5%) 23,817 (25.5%) 21,712 (23.3%) 15,997 (17.1%) 20,636.13 29.00% 

Shrub Land 1014 (1.1%) 1598 (1.7%) 1070 (1.2%) 789 (0.8%) 1673.5 112.10% 

Cropland 21,835 (23.3%) 24,572 (26.3%) 26,983 (29.0%) 42,690 (45.7%) 34,761.97 −18.57% 

Bare Land 2279 (2.4%) 2455 (2.6%) 2663 (2.9%) 3721.6 (4.0%) 3523.6 −5.32% 

Built up areas 47.4 (0.01%) 65.53 (0.1%) 80.5 (0.1%) 105.9 (0.1%) 183.6 73.37% 

 

 
Figure 7. Map Predicted land cover change by 2027 within Nyangores sub-catchment. 
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Figure 8. Projected land cover percentage change between 2017 and 2027 within Nyangores sub-catchment. 

 

 
Figure 9. Predicted land cover change in Amala sub-catchment by 2027. 
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Figure 10. Summary decadal land cover change percentage for Amala sub-catchment. 
 

 

Figure 11. Projected land cover % change between 2017 and 2027 in Amala sub-catchment. 
 

Table 18. Land cover classes change for 1987, 1997, 2007 and 2017 in Amala sub-catchment. 

Category 1987 Area (Ha) 1997 Area (Ha) 2007 Area (Ha) 2017 Area (Ha) 

Forest 56,609 (39.8%) 34,830 (24.4%) 25,798 (18.2%) 29,784 (21.0%) 

Grassland 44,269 (31.1%) 46,186 (32.3%) 36,625 (25.8%) 31,550 (22.2%) 

Shrub Land 6418 (4.5%) 3477 (2.4%) 2738 (1.9%) 2495 (1.8%) 

Cropland 29,828 (21.0%) 56,415 (39.5%) 73,168 (51.5%) 75,574 (53.2%) 

Bare Land 5068 (3.6%) 1894 (1.3%) 3691 (2.6%) 2615 (1.8%) 

Built up areas 34 (0.02%) 44 (0.03%) 65 (0.05%) 80 (0.06%) 

 
and forest land by −38.47%, between 1987 and 1997. However, over the same 
period, crop lands increased by 89.13%, built up areas by 29.42% and grassland 
by 4.33%. Between 1997 and 2007, significant changes occurred as shown in Table 
19. Over the 1997-2007 period, forest cover decreased by −25.93%, shrub lands by 
−21.25% and grass land by −20.70%, while bare land increased by 94.88%, build up 
areas by 47.73% and cropland by 29.70%. Over the 2007-2017 decade, bare land 
decreased by −29.15%, grass land by −13.86% and shrub lands by −8.88%. On the 
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contrary, built-up areas increased by 23.08%, forest cover by 15.45%; and crop 
land by 3.29%. Over the 30-year period, forest land decreased by −47.39%; grass-
land by −28.73, shrub land by −61.12% and bare land by −48.40% while crop land 
increased by 135.29% within Amala sub-catchment (Table 20). 

3.3.3. Projected Land Cover Change between 2017 and 2027 in Sand 
River Sub-Catchment 

In the 30-year period (1987-2017) under study, significant land cover changes 
were observed within Sand River sub-catchment. Between 1987 and 1997, for in-
stance, forest cover decreased by −28.41%, while shrub land and grasslands de-
creased slightly by −1.71% and −0.73%, respectively. However, bare land in-
creased by a massive 210.16%. Likewise, between 1997 and 2007, forest land, 
grass land and shrub land decreased by −18.09%, −5.39% and −2.59%, respec-
tively, while bare land increased by 108.82%. A similar trend was observed in the 
2007-2017 period in which shrub-lands, forest land and grass land decreased by 
−6.01%, −2.42% and −2.35%, respectively, while bare land increased by 41.34%. 
Overall, bare land increased significantly by 815.42%, from just 2510 ha in 1987 
to 22,977 ha, in 2017. The highest decline in forest cover was observed between 
1987 and 1997, while the highest decline in grassland and shrub land was observed 
over the 1997-2017 period, while the projected land cover increase is highest in 
grassland and lowest in bare land (Tables 21-23) and (Figures 12-14). Since 
most of Sand River sub-catchment lies within Maasai Mara Game Reserve with 
scattered settlements (Maasai Bomas and hotels/tents), it was difficult for  

 
Table 19. Land cover percentage changes by category per decade in Amala sub-catchment. 

Category 
1987-1997 
% Change 

1997-2007 
% Change 

2007-2017 
% Change 

1987-2017 
Overall % change 

Forest −38.47 −25.93 15.45 −47.39 

Grassland 4.33 −20.70 −13.86 −28.73 

Shrub Land −45.82 −21.25 −8.88 −61.12 

Cropland 89.13 29.70 3.29 153.37 

Bare Land −62.63 94.88 −29.15 −48.40 

Built up areas 29.41 47.73 23.08 135.29 

 
Table 20. Projected land cover by 2027 within Amala sub-catchment. 

Category 1987 Area (Ha) 1997 Area (Ha) 2007 Area (Ha) 2017 Area (Ha) 
Projected land cover by 

2027 Area (Ha) 
% change between 

2017 to 2027 (10 years) 

Forest 56,609 (39.8%) 34,830 (24.4%) 25,798 (18.2%) 29,784 (21.0%) 31,556 5.95 

Grassland 44,269 (31.1%) 46,186 (32.3%) 36,625 (25.8%) 31,550 (22.2%) 35,750.7 13.31 

Shrub Land 6418 (4.5%) 3477 (2.4%) 2738 (1.9%) 2495 (1.8%) 3065.4 22.86 

Cropland 29,828 (21.0%) 56,415 (39.5%) 73,168 (51.5%) 75,574 (53.2%) 69,152.7 −8.50 

Bare Land 5068 (3.6%) 1894 (1.3%) 3691 (2.6%) 2615 (1.8%) 2456.7 −6.05 

Built up areas 34 (0.02%) 44 (0.03%) 65 (0.05%) 80 (0.06%) 116.5 45.63 
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Table 21. Land cover classes for 1987, 1997, 2007 and 2017 in Sand River sub-catchment. 

Category 1987 Area (Ha) 1997 Area (Ha) 2007 Area (Ha) 2017 Area (Ha) 

Forest 13,955 (7.6%) 9991 (5.5%) 8184 (4.5%) 7986 (4.4%) 

Grassland 87,106 (47.4%) 86,467 (47.2%) 81,804 (44.7%) 79,884 (43.6%) 

Shrub Land 80,217 (43.6%) 78,847 (43.1%) 76,801 (42.0%) 72,183 (39.4%) 

Bare Land 2510 (1.4%) 7785 (4.3%) 16257 (8.9%) 22,977 (12.6%) 

 
Table 22. Land cover percentage changes by category per decade in Sand River sub-catchment. 

Category 
1987-1997 
% Change 

1997-2007 
% Change 

2007-2017 
% Change 

1987-2017 
Overall % change 

Forest −28.41 −18.09 −2.42 −42.77 

Grassland −0.73 −5.39 −2.35 −8.29 

Shrub Land −1.71 −2.59 −6.01 −10.02 

Bare Land 210.16 108.82 41.34 815.42 

 
Table 23. Projected land cover by 2027 in Sand River sub-catchment. 

Category 1987 Area (Ha) 
1997 Area 

(Ha) 
2007 Area 

(Ha) 
2017 Area 

(Ha) 
Projected land cover 
by 2027 Area (Ha) 

% change btw 2017 
to 2027 (10 yrs) 

Forest 13,955 (7.6%) 9991 (5.5%) 8184 (4.5%) 7986 (4.4%) 8465.16 6 

Grassland 87,106 (47.4%) 86,467 (47.2%) 81,804 (44.7%) 79,884 (43.6%) 87,872.4 10 

Shrub Land 80,217 (43.6%) 78,847 (43.1%) 76,801 (42.0%) 72,183 (39.4%) 76,513.98 6 

Bare Land 2510 (1.4%) 7785 (4.3%) 16257 (8.9%) 22,977 (12.6%) 10,178.5 −55.70 

 

 
Figure 12. Map of predicted land cover change in Sand River sub-catchment by 2027. 
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Figure 13. Percentage land cover change between 1987 and 2017 in the Sand River 
sub-catchment. 

 

 

Figure 14. Projected land cover change by 2027 in the Sand River sub-catchment. 
 

this resolution image to identify settlements and small crop lands. 

3.3.4. Projected Land Cover Change between 2017  
and 2027 in Talek Sub-Catchment 

As was the case in the other three sub-catchments, Talek sub-catchment also ex-
hibited some significant changes in land cover over the last 30 years (Tables 
24-26). Precisely, between 1987 and 1997, bare land and grass lands decreased 
by −55.04% and −10.28%, respectively, while forest land and shrub lands in-
creased by 22.51% and 18.37%, respectively. A slightly different trend was ob-
served in the period between 1997-2007, whereby forest land and bare land de-
creased by −49.31% and −8.81%, respectively, while shrub lands and grasslands 
increased by 7.04% and 2.43%, respectively. A further decrease in forest land 
(−35.63%) was observed in the 2007-2017 period, as did grass lands (−26.23%). 
However, bare land and shrub lands increased by 34.06% and 22.93%, respec-
tively. Overall, shrub lands exhibited the largest change over the 30-year period; 
increasing from 18.37% in 1987 to 56.28% in 2017. In addition, the greatest de-
gradation of forest land, grass land and shrub lands occurred between 1987 and 
2007 in the sub-catchment (Figures 15-17). As Talek sub-basin straddles part of 
Maasai Mara Game Reserves with scattered settlements, it was difficult for this 
resolution image to identify settlements and small crop lands. However, in 2017  
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Table 24. Land cover classes for 1987, 1997, 2007 and 2017 in Talek sub-catchment. 

Category 1987 Area (Ha) 1997 Area (Ha) 2007 Area (Ha) 2017 Area (Ha) 

Forest 12,357 (7.0%) 15,138 (8.6%) 7673 (4.4%) 4939 (2.8%) 

Grassland 92,493 (52.8%) 82,989 (47.2%) 85,005 (48.4%) 62,708 (35.7%) 

Shrub Land 62,757 (35.8%) 74,286 (42.2%) 79,786 (45.4%) 98,079 (55.9%) 

Cropland 0 (0.0%) 0 (0.0%) 0 (0.0%) 5607 (3.2%) 

Bare Land 7723 (4.4%) 3472 (2.0%) 3166 (1.8%) 4244 (2.4%) 

 
Table 25. Trend and magnitude of land cover change % (1987-2017) in the Talek 
sub-catchments. 

Category 
1987-1997 
% Change 

1997-2007 
% Change 

2007-2017 
% Change 

1987-2017 
Overall % change 

Forest 22.51 −49.31 −35.63 −60.03 

Grassland −10.28 2.43 −26.23 −32.20 

Shrub Land 18.37 7.40 22.93 56.28 

Cropland 0 0 0 100 

Bare Land −55.04 −8.81 34.06 −45.04 

 
Table 26. Land cover 1987-2017 projected to 2027 in Talek sub-catchment. 

Category 1987 Area (Ha) 1997 Area (Ha) 2007 Area (Ha) 2017 Area (Ha) 
Projected land cover by 

2027 (Ha) 
% change 
2017-2027 

Forest 12,357 (7.0%) 15,138 (8.6%) 7673 (4.4%) 4939 (2.8%) 5136.56 4.0 

Grassland 92,493 (52.8%) 82,989 (47.2%) 85,005 (48.4%) 62,708 (35.7%) 64,902.78 3.5 

Shrub land 62,757 (35.8%) 74,286 (42.2%) 79,786 (45.4%) 98,079 (55.9%) 100,040.58 2.0 

Cropland 0 (0.0%) 0 (0.0%) 0 (0.0%) 5607 (3.2%) 3364.2 -40.0 

Bare land 7723 (4.4%) 3472 (2.0%) 3166 (1.8%) 4244 (2.4%) 2546.676 -40.0 

 

 
Figure 15. Map of predicted land cover change by 2027 in Talek sub-catchment. 
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Figure 16. Decadal land cover change percentage in Talek sub-catchment. 

 

 
Figure 17. Projected land cover change by 2027 in Talek sub-catchment. 

 
a slight increase in crop land of 5607 ha (3.2%) was observed in Talek sub-catchment. 

4. Discussion 

Land cover change in the four sub-basins of the Mara River basin i.e. Amala, 
Nyangores, Sand River and Talek was evident though variable and apparently 
nonlinear. The dynamics of land cover change were however rather gradual, im-
plying that different development trends in each decadal period depended on 
human activities and climatic factors; and area specific interventions. In fact, 
studies show that the pace, magnitude and spatial reach of human alterations of 
the Earth’s land surface are unprecedented; with changes in land cover being 
among the most important [33]. In the current study, spatial analysis revealed 
that the observed land cover changes were distributed across the Mara River ba-
sin sub-catchments and included multiple change directions in LC. Similar land 
cover change trends have been reported in previous studies in other regions [34]. 

High rate of deforestation averaging 5.3% per annum was observed within the 
Mara River basin, but was more pronounced in the two upper Mara River 
sub-catchments (Amala and Nyangores). In addition, nonlinearity of land cover 
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changes in the last 30 years was also illustrated by some distinctive categories of 
LC in the present study. For instance, the built-up areas in the study area in-
creased significantly between 2007 and 2017. A number of forces such as conti-
nuous logging and cropping, human settlements triggered by the ever growing 
human population as well as changes in climatic factors could be driving the ob-
served changes in land cover within the basin. Thus, it is important to track the 
dynamic of LC change in these areas, and understand the underlying driving 
forces of these changes. This would help in predicting future pattern of LC 
change in the region to inform policy. 

Rapid population growth and changes in climatic conditions have been sin-
gled out as some of the major drivers of deforestation in attempts to increase 
agricultural land and human settlements in the Mara River basin. Despite im-
provements in land-cover characterization made possible by earth observing sa-
tellites, global and regional land covers are still poorly enumerated [35]. Howev-
er, scientists recognize that the magnitude of land cover change is massive. One 
earlier estimate, for example, holds that the global expansion of croplands since 
1850 has converted some 6 million km2 of forests/woodlands and 4.7 million 
km2 of savannas/grasslands/steppes, while 0.6 million km2 of cropland has been 
abandoned [36]. 

In the current study, the period between 1987 and 1997, exhibited a much 
higher reduction in spatial expansion in land cover, particularly in forest land 
compared to the period between 2007 and 2017. This could be attributed to a 
number of reasons, key among them laxity in enforcement of law on logging and 
encroachment of the Mau forests. However, from 2007 onwards, the basin wit-
nessed a steady growth in forest cover after the Kenyan government’s spirited 
intervention to reclaim most parts of the Mau forest previously occupied by 
communities. Previous studies show that reclamation practices create a diverse 
and valuable forest of native trees that produce a number of benefits to the eco-
system and to the inhabitants [37]. In all the four sub-catchments, a significant 
difference in forest cover change was observed though to varying degrees. A 
similar trend was also observed in crop lands, grasslands and bare land. 

Temperature and precipitation were identified as significant actors in the ob-
served changes in land cover within the Mara River basin. When the mean total 
annual precipitation was high and maximum mean annual temperature was low, 
the NDVI of all land cover categories recorded highest values, whereas the op-
posite was true. Consistent with the findings of the present study, Herrmann et 
al. [38] reported a close relationship between rainfall and surface greenness in 
the Sahel region on a large scale, while variations in other climatic and environ-
mental factors were considered of minimal effect. On the contrary, some re-
searchers argue that the relationship between rainfall and vegetation greenness 
can be explained by changes in soil moisture conditions, which cause an instan-
taneous plant response [39]. Although variation of soil moisture in semiarid and 
arid regions is significantly controlled by rainfall amount, near-surface air tem-
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perature may also be considered an additional climatic factor in soil moisture 
changes [40] [41] [42]. Therefore, the effect of air temperature on the relation-
ship between rainfall and vegetation greenness should be examined in greater 
detail for tropical ecosystems, which most previous studies have not taken into 
account. 

Following the correlation observed between different land cover categories 
and climatic factors (annual mean precipitation and maximum temperature) in 
the four Mara River sub-catchments in the context of different anthropogenic 
activities, chances that loss in land cover can be restored is eminent. Indeed, 
going by the predictions emanating from this study, there is a likelihood of im-
provement in land cover in the Mara River basin sub-catchments by the year 
2027. This will however depend on continued protection of the Mara River basin 
by the inhabitants themselves, Non-governmental Organizations like Wild Wide 
Funds for Nature (WWF), County governments of Nakuru, Narok and Bomet as 
well as assistance from the national government. It is therefore critical to en-
courage the aforesaid communities and partners to protect and conserve their 
environment for long term benefits. Indeed, between the years 1987 and 1997, 
there was a reduction in forest cover within the Mara River sub-catchment 
compared to the period 2007-2017 period. There is a possibility of similar reduc-
tion in vegetation cover over the next 27 years if there are lapses in the imple-
mentation and enforcement of environmental laws and regulations. 

After the initial reduction in forest cover and a corresponding increase in bare 
land and built-up areas between 1987 and 2007, the Mara River sub-catchments 
witnessed a steady expansion of various land cover classes. The trend may in-
deed continue even after 2027 and beyond as suggested by the land cover change 
projections in the present study. Nevertheless, for these projections to be rea-
lized, it is suggested here that deliberate attempts must be made by the govern-
ment of Kenya and the local communities to deliberately protect the environ-
ment. This will in turn lead to improved economy for the community and the 
government as well as improve the overall health of the Mara River ecosystem. 

5. Conclusion 

This study highlights the impact of changing climatic factors on different land 
cover categories within the four Mara River basin sub-catchments. Generally, 
land cover categories exhibited positive sensitivity to high precipitation and low 
temperature. On the contrary, high temperature exhibited strong negative cor-
relations with the different land cover categories including croplands. The re-
sults however suggest that, with proper interventions, forest land, grassland, 
shrub land and even built-up areas are likely to increase, while crop land and 
bare lands are likely to decrease by 2027. 
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